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The hybrid theory of electron-hydrogen elastic scattering �Phys. Rev. A 75, 032713 �2007�� is applied to the
S-wave scattering of electrons from He+ and Li2+. In this method, both short-range and long-range correlations
are included in the Schrödinger equation at the same time. Phase shifts obtained in this calculation have
rigorous lower bounds to the exact phase shifts and they are compared with those obtained using the Feshbach
projection operator formalism �Phys. Rev. A 66, 064702 �2002��, the close-coupling approach �J. Phys. B 2,
44 �1969��, and the Harris-Nesbet method �J. Phys. B 35, 4475 �2002�; J. Phys. B 36, 2291 �2003��. The
agreement among all the calculations is very good. These systems have doubly excited or Feshbach resonances
embedded in the continuum. The resonance parameters for the lowest 1S resonances in He and Li+ are
calculated and they are compared with the results obtained using the Feshbach projection operator formalism
�Phys. Rev. A 11, 2018 �1975�; Phys. Rev. A 15, 131 �1977��. It is concluded that accurate resonance
parameters can be obtained by the present method, which has the advantage of including corrections due to
neighboring resonances and the continuum in which these resonances are embedded.
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I. INTRODUCTION

Testing of various scattering theories is important. Scat-
tering by single-electron systems provides such means of
testing because the wave function of the target is known
exactly. In a previous paper �1� on the scattering of electrons
from hydrogen atoms, we showed that it is possible to in-
clude long-range polarization potential �2� and short-range
correlations �3� in the Schrödinger equation at the same time.
The phase shifts obtained in this calculation have rigorous
lower bounds to the exact phase shifts. The phase shifts ob-
tained by the close-coupling approach also has this property
while those obtained from the Kohn variational principle,
and other methods closely related to it, do not have any
bounds except at zero incident energy. In �3�, we compared
the results obtained by the Feshbach projection operator for-
malism with those obtained using the method of polarized
orbitals which gives reasonably accurate phase shifts but
does not provide any bounds on the phase shifts but they do
contain the dominant correlations �3�.

Now we apply the formalism given in �1� to the S-wave
elastic scattering of electrons from Coulombic targets He+

and Li2+. Phase shifts obtained are compared with the results
of other calculations. We also show that the same formalism
can be used to calculate 1S and 3S parameters as well of
resonances in electron+target systems. Resonances are ex-
hibited, at an appropriate energy, when the incident electron
excites the target electron and itself gets attached to the ex-
cited target for a finite duration of time. These resonances
have been investigated extensively by the use of the Fesh-
bach projection operator formalism �4�, close-coupling ap-
proach �5�, complex rotation method �6�, etc.

II. THEORY AND CALCULATIONS

Below we recapitulate very briefly the formalism pre-
sented in �1�. In order to replace the many-particle

Schrödinger equation with a single-particle integrodifferen-
tial equation, we write the wave function for any angular
momentum L in the form

�L�r1,r2� = �uL�r1�
r1

YL0�r̂1��pol�r1,r2� � �1 ↔ 2��
+ �

�=1

N

C��L
��r1,r2� , �1�

where C� are the unknown coefficients, the upper sign refers
to the singlet states, and the lower sign to the triplet states.
The effective target wave function in the presence of the
incident electron r1 is

�pol�r1,r2� = �0�r2� −
�ST�r1�

r1
2

u1s→p�r2�
r2

cos��12�
�Z�

, �2�

where the unperturbed target function is

�0�r2� =�Z3

�
e−Zr2, �3�

and the second term in Eq. �2� is of the same type as derived
by Temkin �2�, except for the cutoff function, using the first
order perturbation theory. The function u1s→p is given by

u1s→p�r2� = e−Zr2	Z

2
r2

3 + r2
2
 . �4�

The pseudostate 2p̄ later derived by Damburg and Karule
�7�, to account for the polarizability of the target, is based on
the method of polarized orbitals and is of the same form as
u1s→p, except for the normalization constant. The angle be-
tween r1 and r2 is �12 and the cutoff function �ST �8� is given
by
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�ST�r1� = 1 − e−2Zr1�1

3
�Zr1�4 +

4

3
�Zr1�3 + 2�Zr1�2 + 2Zr1 + 1� ,

�5�

which guarantees that �ST�r1� /r1
2→0 when r1→0. This cut-

off function allows the polarization of the target to take place
whether the scattered electron is inside or outside the target
electron. This is unlike the cutoff function introduced by
Temkin �2�. In that case the polarization takes place only
when the scattered electron is outside the target. A more
flexible cutoff function �1� is given by

�	 = �1 − e−	r1�n, �6�

where the exponent n
3 and 	 is a function of k, but it is
easier to use �ST and the results are not too different when �	

is used �1�. The function �L
� is the correlation function and

for each � and for any L it is given by

�L = �
�

�fL
�,+1�r1,r2,r12�DL

�,+1��,�,��

+ fL
�,−1�r2,r1,r12�DL

�,−1��,�,��� . �7�

The D�,
 functions �
= +1,−1� are called rotational harmon-
ics �9�. The fs are the generalized “radial” functions, which
depend on the three residual coordinates to define the two
vectors r1 and r2, in addition to the Euler angles �9�. We
restrict ourselves to L=0, and we take �0 of the Hylleraas
form,

�L=0�r1,r2� = �
lmn

N���

Clmn�e−�r1−�r2r1
l r2

mr12
n � �1 ↔ 2�� , �8�

where the sum includes all triples such that l+m+n=� and
�=0,1 ,2 . . .8. The total number of terms depends on spin
and whether �=� or not.

The nonrelativistic Hamiltonian, in Rydberg units, is
given by

H = − �1
2 − �2

2 −
2Z

r1
−

2Z

r2
+

2

r12
, �9�

where Z is the nuclear charge of the target. Use of the varia-
tional principle in the Schrödinger equation

H��r1,r2� = E��r1,r2� �10�

results in the integrodifferential equation �1� for the scatter-
ing function u�r1� for L=0, and letting r1=r,

�D�r�
d2

dr2 + k2 + Vd + Vd
pol � �Vex + Vex

pol� − Vop
pol�u�r� = 0,

�11�

where

D�r� = 1 +
43

8Z6	�ST

r2 
2

. �12�

Vd and Vex are the well known direct and exchange poten-
tials, Vd

pol and Vex
pol are the direct and exchange polarization

potentials. Expressions for various quantities are rather
lengthy. They are given in �1� and are not repeated here. It

should be pointed out that the potential −Vd
pol has a term

which is equal to −4.5 / �Zr�4 for r→�. This is the attractive
long-range potential �2� with the correct polarizabilty 4.5 /Z4.
The optical potential Vop

pol takes into account the short-range
correlations �1�. The total energy in Rydberg units is given
by

E = k2 − Z2, �13�

where k2 is the incident electron energy.
The integrodifferential equation is solved by using the

noniterative method. Since we are dealing with the Coulom-
bic systems, this equation has to be solved up to large dis-
tances, especially for low k. The solution is unique �up to an
arbitrary normalization� with asymptotic form

limr→�u�r� � sin�kr +
Z − 1

k
ln�2kr�

+ arg �	1 −
i�Z − 1�

k

 + �� . �14�

Phase shifts presently calculated for e-He+ in 1S and 3S states
are given in Tables I and II. They are also given at very low
values of the incident energy. The phase shifts are compared
with those obtained from including only the optical potential
obtained by use of the Feshbach projection operator formal-
ism. In the present hybrid approach �1�, we do not use any
projection operators to construct the optical potential Vop

pol. A
comparison indicates that the inclusion of the perturbed tar-
get wave function in the variational principle has given re-
sults which are slightly higher but not too different from

TABLE I. Comparison of the presently calculated 1S and 3S
phase shifts �rad� for the scattering of electrons from He+ ions with
those obtained from using the Feshbach projection operator formal-
ism �OP� �3�, with those obtained by close-coupling and correla-
tions �10�, and with those obtained by Gien from the Harris-Nesbet
method �12�.

Target k 1S �present� 1S �OP� 1S �CC� 1S �Gien�

He+ 0.1 0.43808

0.2 0.43550

0.3 0.43142 0.4300

0.4 0.42608 0.42601 0.4228

0.5 0.41974 0.41964 0.4078

0.6 0.41265 0.41278 0.4111 0.4086

0.7 0.40568 0.40561 0.4046 0.4024

0.8 0.39865 0.39857 0.3974 0.3968

0.9 0.39213 0.39202 0.3906 0.3893

1.0 0.38644 0.38634 0.3850 0.3836

1.1 0.38200 0.38187 0.3805 0.3794

1.2 0.37914 0.37899 0.3780 0.3741

1.3 0.37846 0.37832 0.3774 0.3721

1.4 0.38158 0.38560 0.3786

1.5 0.39802 0.4014

1.6 0.34480
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those obtained in the Feshbach formalism. Nevertheless, they
include the short-range and long-range correlations and have
rigorous lower bounds to the exact phase shifts, as in �3�.
The same conclusion was arrived at in �1�, namely that the
correlation functions by themselves include some effects of
the long-range forces. The phase shifts are also compared to
the interpolated close coupling �CC� with correlation results
of Burke and Taylor �10�. Their results have been obtained
by using 1s, 2s, and 2p target states and 16 correlation terms
of the Hylleraas type. This calculation is akin to the present
approach in the sense that it takes into account the short-
range and long-range correlations, except that the polariz-
ability depends upon the number of target states included in
the calculation.

Shimamura �11� and Gien �12� have carried out calcula-
tions by using the Harris-Nesbet method. Gien has used vari-
ous combination of target states in his calculations but he
obtained improved results labeled �E4S�, considered to be
most accurate among his various versions, by using 1s, 2s,
2p states of the target along with a 2p̄̄ pseudostate �13� and
correlations. The pseudostate is given by

2p̄̄ = Z�5/2�0.340r2e−Zr/2 − 0.966r2e−Zr	1 +
Z

2
r
� . �15�

This state has been formed as linear combination of target 2p
state and u1s→p with a constant factor such that it �2p̄̄ state� is
normalized and is orthogonal to the 2p state. The inclusion
of the pseudostate helps to give the exact polarizablity of the
target. The singlet and triplet S-phase shifts have been calcu-
lated at irregular energy points, obtained from the diagonal-

ization of the Hamiltonian with correlation terms for a par-
ticular value of the nonlinear parameter, and his results could
be fitted to

� = A + BE + CE2 + DE3 + F exp�aE� , �16�

where E=k2 is the incident energy, A, B, C, D, F, and a are
the fitting parameters. The phase shifts obtained by Gien are
fairly accurate, however, they suffer from the disadvantage
of not having lower bounds. His results along with the pres-
ently calculated phase shifts are shown in Tables I and II.
The agreement among all four calculations is very good.
There are a number of other calculations �see references in
�12�� but no attempt has been made to compare with all of
them.

Phase shifts are higher for triplet states and both 1S and 3S
phase shifts decrease with increasing incident energy. It is
seen that the phase shifts for 1S start rising after k=1.4, in-
dicating that we are now in the resonance region.

A similar calculation has been carried out for e-Li2+ scat-
tering in the singlet and triplet S states. In this case, the
polarizablity of the target is small compared to that of the
He+ ion which implies that the effect of the second term in
Eq. �2� should be less significant. Phase shifts decrease with
increasing incident energy. The presently calculated phase
shifts are compared in Table III with those obtained by Gien
�14�, labeled �E4S�, by using 1s, 2s, 2p states of the target
along with a 2p̄̄ pseudostate �13� and correlations. Gien has
various versions in his calculations but the results labeled
�E4S� are considered to be most accurate. His results for
e-Li2+ again could be fitted using Eq. �16�. The agreement
between the two calculations is good but as pointed out ear-
lier Gien’s results do not have any bounds.

TABLE II. Comparison of the presently calculated 3S phase
shifts �rad� for the scattering of electrons from He+ ions with those
obtained from using the Feshbach projection operator formalism
�OP� �3�, with those obtained by close-coupling and correlations
�10�, and with those obtained by Gien using the Harris-Nesbet
method �12�.

Target k 3S �present� 3S �OP� 3S �CC� �Gien�

He+ 0.1 0.93065

0.2 0.92704 0.9270

0.3 0.92114 0.9210

0.4 0.91302 0.91300 0.9128

0.5 0.90282 0.90275 0.9019 0.9025

0.6 0.89057 0.89050 0.8910 0.8902

0.7 0.87645 0.87640 0.8777 0.8762

0.8 0.86066 0.86069 0.8617 0.8605

0.9 0.84366 0.84356 0.8440 0.8435

1.0 0.82536 0.82531 0.8253 0.8251

1.1 0.80636 0.80625 0.8062 0.8062

1.2 0.78677 0.78666 0.7868 0.7865

1.3 0.76696 0.76684 0.7672 0.7665

1.4 0.74708 0.74697 0.7466

1.5 0.72746 0.7274

1.6 0.70815 0.7095

TABLE III. Comparison of the presently calculated 1S and 3S
phase shifts �rad� for the scattering of electrons from Li2+ with
those obtained by Gien �14� by using the Harris-Nesbet method.

Target k 1S �present� 1S �Gien� 3S �present� 3S �Gien�

Li2+ 0.1 0.23188 0.56084

0.2 0.23176 0.56020

0.3 0.23148 0.55869

0.4 0.23109 0.55678

0.5 0.23064 0.2273 0.55435 0.5526

0.6 0.23012 0.2264 0.55142 0.5499

0.7 0.22960 0.2265 0.54799 0.5467

0.8 0.22906 0.2272 0.54413 0.5430

0.9 0.22855 0.2277 0.53925 0.5390

1.0 0.22807 0.2275 0.53514 0.5345

1.1 0.22769 0.2262 0.53000 0.5296

1.2 0.22740 0.2250 0.52456 0.5244

1.3 0.22724 0.2258 0.51880 0.5189

1.4 0.22724 0.2328 0.51276 0.5131

1.5 0.22742 0.2521 0.50646 0.5069

1.6 0.22782 0.49997 0.5005
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Calculations have not been carried out at the incident en-
ergy k=0 to calculate scattering lengths as in e−H system
�1�. The scattering length becomes an undefined quantity be-
cause the Coulomb field extends to infinity for the scattering
of electrons from Coulombic systems. The maximum num-
ber of terms in the singlet case for �=� is N���=70�7� and
N���=84�6� for triplet states where ���.

III. RESONANCES

Doubly excited states or Feshbach resonances have been
studied extensively �4–6�. These states are also known as
autoionization states. In the evaluation of phase shifts from
Eq. �11�, expectation values of ��0�H��0
, occurring in the
denominator of Vop

pol, Eq. �55� of �1�, are calculated giving a
whole range of eigenvalues. But it is not possible to distin-
guish resonance positions from other pseudoresonances. It is
therefore necessary to calculate phase shifts at those incident
energies where a rapid change of phase shifts is observed.
Then those phase shifts obtained in this approach are fitted to
the Breit-Wigner form to obtain the resonance parameters for
any resonance,

�calc.�E� = �0 + AE + tan−1 0.5�

�ER − E�
, �17�

where E=k2 is the incident energy, �calc. are the calculated
phase shifts, �0, A, �, and ER are the fitting parameters. ER
and � represent the resonance position and resonance width.

We have calculated the lowest resonance position and
width of the 1S state �below the n=2 threshold of He+� in He
by obtaining the phase shifts in the resonance region. In
Table IV, we give the resonance position with respect to the
ground state of He and width in eV obtained for various
number of terms �N=22, 34, 50, 70� in the trial wave func-
tion given in Eq. �8�, while in Table V we give the phase
shifts in the resonance region only for N=70.

It is seen that phase shifts vary very rapidly in the reso-
nance region. A good way to determine resonance parameters
from the phase shifts in the resonance region, along with �0
and A in Eq. �17�, is to minimize the sum of squares of the
difference between the left and right sides of Eq. �17�, the
difference being calculated at the energies given in Table V.
For the He resonance, parameters for 70 term wave functions
are �0=0.3761, A=0, ER=2.444 26 Ry with respect to He+

and �=0.009 06 Ry when the minimized sum is 1.57
�10−5. This gives resonance position ER=57.8481 eV with

respect to the ground state of He and width �=0.1233 eV.
They agree very well with ER=57.8435 eV and �
=0.125 eV, obtained using the Feshbach projection operator
formalism �4�. Although the phase shifts obtained here have
lower bounds, the resonance position obtained by fitting does
not have any bounds. This is a disadvantage of having to
determine the resonance position by fitting phase shifts to the
Breit-Wigner form Eq. �17�.

The position obtained in the Feshbach projection operator
formalism also loses the bound because of the corrections
applied to the eigenvalue obtained from the EQ
= �Q�0�H�Q�0
=57.8223 eV, which has an upper bound.
The projection operator Q is constructed such that it projects
out all the 1s states of the target and the states obtained from
�Q�0�H�Q�0
 diagonalization have only 2s and higher s
components �4�. Though these state are really scattering
states, the use of the projection operators has reduced the
calculation to that of bound states. In this formulation there-
fore it is easy to find the resonance position by calculating
the lowest eigenvalue, the eigenvalue of interest. But this is
not the true resonance position which should have been ob-
tained by solving the Schrödinger equation like Eq. �11� in
which the optical potential is constructed by using the pro-
jection operators Q and P=1−Q. Instead of this, expressions
for corrections have been obtained by using the first-order
perturbation theory. These corrections are interpreted as due
to the fact that the resonance is embedded in the continuum
and there are other resonance states nearby �4�. This correc-
tion is �=0.021 12 eV, giving ER=EQ+�=57.8435 eV,
given above. On the other hand there are no such corrections
when the resonance position is obtained by fitting phase
shifts to the Breit-Wigner expression given in Eq. �17�.

A similar calculation has been carried out for the lowest
1S resonance in Li+. In Table IV, we show the variation of ER
and � with the number of terms in the trial wave function
given in Eq. �8�. The phase shifts in the resonance region are
shown in Table V for N=70 terms in the wave function only.
The resonance position and width obtained by fitting the N
=70 term phase shifts are ER=70.5904 eV with respect to
the n=1 state of Li2+ and �=0.1657 eV which compare very
well with ER=70.5837 eV, which includes contribution �

TABLE IV. Resonance parametersa for the lowest 1S resonance
in He and Li+.

System N ER � System ER �

He 22 57.85087 0.12994 Li+ 70.5884 0.1570

34 57.84896 0.12545 70.5898 0.1615

50 57.84815 0.12395 70.5897 0.1659

70 57.84805 0.12326 70.5904 0.1657

aResonance position in He is with respect to the ground state of He
while that in Li+ is with respect to the ground states of Li2+.

TABLE V. Phase shifts �rad� for the lowest 1S resonance states
in He and Li+ for various k in the resonance region obtained using
70 terms in the wave function.

Target k � Target k �

He+ 1.555 0.5483195 Li++ 2.282 −0.09048750

1.558 0.6398967 2.2825 −0.05819017

1.560 0.7803777 2.283 −0.03179365

1.562 1.177147 2.2835 −0.009842305

1.5634 1.938293 2.284 0.008682685

1.56345 1.972649 2.2845 0.02451586

1.565 2.776815 2.285 0.03819930

1.5655 −3.372919

1.566 −3.276240

1.567 −3.148991
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from the nearby resonances and the continuum, and �
=0.157 eV obtained using the Feshbach projection operator
formalism �15�.

Again the above parameters have been obtained by mini-
mizing the sum of squares of the difference between the left
and right sides of Eq. �17�, as in He, the difference being
calculated at the energies given in Table V. For the Li+ reso-
nance, parameters for 70 term wave function are �0=2.534,
A=0.1585, ER=5.188 25 Ry and �=0.012 18 Ry when the
minimized sum is 7.96�10−6.

We have calculated all these results for only one value of
the nonlinear parameters �=�. Improved results can be ob-
tained by varying these nonlinear parameters and using a
larger number of terms in the trial wave function Eq. �8�.
Unlike the Feshbach projection operator formalism, where it
is easy to search for resonances, phase shifts in this approach
need to be calculated for a large number of incident energies
at a finer mesh. On the other hand, the present approach does
not require any corrections like � to the calculated resonance
energy.

There is an infinite number of resonances below the n
=2 threshold but only one resonance parameters are calcu-
lated in each He and Li+ to demonstrate the capability of this
method. The present calculations have been carried out be-
low the n=2 threshold of the target. The calculations can be
extended to higher thresholds provided scattering channels
from the higher thresholds are included in Eq. �1�. Then the
problem becomes a multichannel problem including elastic
as well as inelastic channels.

In conclusion, we have calculated phase shifts for the
scattering of electrons from He+ and Li2+. These phase shifts
have rigorous lower bounds to the exact phase shifts. We
have also calculated the lowest 1S resonances in He and Li+.
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