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A relativistic R-matrix close-coupling method based on effective many-body Hamiltonians is employed to
calculate the electron-impact excitations of intercombination transitions in the Kr6+ ion as benchmarks in the
quest for accurate representation of the target and collisional states in multivalence-electron ions. The effective
Hamiltonian in relativistic multireference many-body perturbation theory accurately accounts for short-range
many-body interactions unaccounted for by limited configuration-interaction representations of the basis states.
The R-matrix method is successfully applied to the near-threshold electron impact excitation of the 4s2 1S
→4s4p 3P intercombination transition in the zinclike krypton �Kr6+� ion, where the observed disagreement
between the experimental absolute total cross sections dominated by dielectronic resonances and those pre-
dicted by using the Breit-Pauli and Dirac R-matrix methods reveals an inadequacy of the extant R-matrix
close-coupling calculations in compact configuration-interaction representation of target states.
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I. INTRODUCTION

Electron–atomic-ion collision is a fundamental process in
astrophysical and laboratory plasmas �1,2�. Of particular im-
portance is the electron-impact excitation of atomic ions
since accurate predictions form the basis of plasma tempera-
ture and density diagnostics �1,3–5�. Recent energy-loss
merged electron-ion beams �6–8� and electron-beam ion trap
�EBIT� experiments �9,10� for measuring differential and to-
tal cross sections have provided important experimental
benchmarks for theoretical methods employed to calculate
electron-ion excitation processes. Among these methods, the
R-matrix version of the close coupling �CC� theory is the
most efficient and successful for simulating low-energy col-
lision processes �11–24�. Theoretical calculations of
electron-impact excitations must provide the large amount of
data needed to interpret laboratory and astrophysical plas-
mas. The role of the precious electron-impact excitation ex-
periments is to provide a benchmark by which to compare
the levels of accuracy of the theoretical methods �6�.

Experimental measurements of total cross sections for
electron-impact excitations of a state involving a change of
electron spin are still a rarity in atomic physics �6,7,9�. Ban-
nister et al. �6� reported the first measurements of absolute
total cross sections for such a collision, the near-threshold
electron impact excitation of the 4s2 1S→4s4p 3P intercom-
bination transition in Kr6+, which is dominated by strong
near-threshold dielectronic resonances. The electron impact
excitation of the intercombination transition is significantly
more complicated than any of the systems previously studied
because the large number of core electrons, particularly a full
3d core, with two valence electrons, makes it extremely dif-

ficult to accurately describe the target and resonance states
�25�. These target and resonance levels have large level shifts
due to relativistic many-body effects, which must be fully
incorporated to account for the nearly 1 eV fine structure
splitting between the 4s4p 3P2,1,0

o as well as other excited
levels. Extant many-body methods cannot adequately ad-
dress the problem of several electrons in the valence shell
�26�. Consequently, fully converged results for this reso-
nance process have not been achieved to date, even with the
use of the Breit-Pauli and Dirac Hamiltonians in the
R-matrix CC calculations �25�.

Electron impact excitations in multivalence-electron ions,
such as those of the intercombination transition in Kr6+,
serve as benchmarks in the quest for a higher level of theory
for high-accuracy cross-section calculations, and therefore
present an important testing ground for the development of
electron-atom collision theory. The need for accurate predic-
tion of electron-impact excitation cross sections and apparent
differences between experiment and extant theoretical pre-
dictions for multielectron ions warrant continued theoretical
refinement �27,28�. In particular, improved calculations re-
quire accurate treatment of the short-range many-body inter-
action �27�, or dynamic correlation, along with relativity
with high-accuracy relativistic many-body theories �29–34�.
Building on our earlier successes in highly accurate relativ-
istic many-body calculations for the spectra of multivalence-
electron systems �26,35�, we have generalized the Dirac
R-matrix algorithm �12,36,37�, and developed a relativistic
R-matrix CC method based on our relativistic multireference
many-body perturbation theory �MR-MBPT� �38�. The
method accurately accounts for static and dynamic correla-
tions, and thus enables accurate prediction of the electron
impact excitations, including the effects of resonances, chan-
nel coupling, and relativity. The unification of the relativistic
MR-MBPT and R-matrix CC theories addresses the problem*yishikawa@uprrp.edu
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of electron-atom collision processes that follows the earlier
success of our relativistic many-body perturbation theory
�26,35� for atomic structure and spectroscopy.

In the present study, the recently developed relativistic
R-matrix CC method, based on the effective many-body
Hamiltonians �38� for accurate representation of the
N-electron target and �N+1�-electron scattering Hamiltonian
matrices, is applied to the electron impact excitation of
4s2 1S→4s4p 3P2,1,0

o intercombination transition in Kr6+ in
order to assess the accuracy of the theory. The method is
successfully applied to benchmark measurement of the near-
threshold electron impact excitation, where experimental ab-
solute total cross sections �6� have not satisfactorily matched
those from the extant R-matrix close-coupling calculations in
compact configuration-interaction �CI� representation of tar-
get states. A primary goal of this study is to provide many-
body theoretical underpinnings for accurate description of
electron-impact excitation processes.

II. METHOD

To obtain an explicit expression for scattering amplitude
and cross section, the CC approximation employs a CI ex-
pansion for the �N+1�-electron wave function of collision
system �N-electron target plus incident electron�, in which
those states most strongly coupled to the initial and final
states are included in the finite expansion. If the configura-
tion space is partitioned into two regions separated by the
R-matrix boundary Ra, the total scattering wave function for
the �N+1�-electron collision complex in the internal region
may be expressed as

�K
N+1 = �

ij

cijKA��i
N,uij� + �

q=1
dqK�q

N+1, �1�

where �i
N is the wave function of the N-electron target state

i, �uij� is the R-matrix basis for the scattering electron, and
��q

N+1 ;q=1,2 , . . . ,M�� is a set of square-integrable functions
that represent the bound channels constructed by adding a
valence electron to the target states. The ��q

N+1� are also re-
ferred to as the correlation functions, included to compensate
for loss when the orthogonality with bound spinors of �uij� is
imposed and to add some short-range many-body effects
�22,41�. The ��i

N�, ��q
N+1�, and R-matrix basis �uij� are con-

structed from bound and free Dirac four-spinors. The bound-
ary is chosen so that the magnitude of the radial spinors of
the bound electrons of the target is vanishingly small and
exchange between incident electron and target electrons out-
side the R-matrix sphere is negligible. The coefficients cijK
and dqK are determined variationally, by diagonalizing the
�N+1�-electron Hamiltonian HN+1 matrix in the R-matrix
close-coupling theory,

HKK�
N+1 = ��K

N+1	HN+1	�K�
N+1
 . �2�

The N- and �N+1�-electron Hamiltonians �in atomic
units� for the development of our relativistic R-matrix algo-
rithm is taken to be the so-called no-pair Dirac-Coulomb-
Breit �DCB� Hamiltonian �39,40�

HDCB
� = �

i

�

hD�i� + L�
i�j

� � 1

rij
+ Bij�0��L �3�

with Bij�0� the frequency-independent Breit interaction. Here
hD�i� is the Dirac one-electron Hamiltonian, �=N and N+1,
respectively, for the N- and �N+1�-electron systems, and L is
a projection operator onto the positive energy space spanned
by the N-electron configuration-state functions �CSFs� con-
structed from the positive-energy eigenfunctions of the
Dirac-Fock self-consistent field �SCF� equation �40�.

A. Effective Hamiltonian for accurate representation of the
target states

In the extant R-matrix CC expansion �Eq. �1��, the
N-electron target wave function �i

N is approximated by a
finite CI expansion in the multielectron CSFs. Unless a large-
scale expansion is employed, the CI representation of the
N-electron target states fails to account for the bulk of dy-
namic correlation �26�. The residual dynamic correlation cor-
rections unaccounted for in the CI expansion constitute a
significant fraction of the theory-experiment deviation in the
excitation and ionization energies. In this subsection, an ef-
fective Hamiltonian in the relativistic MR-MBPT for the
N-electron target states is introduced to correct for the re-
sidual dynamic correlation in the CI representation of the
target wave function.

In order to account for strong configuration mixing among
the ground and excited levels, the multireference configura-
tion interaction method �MR-CI� is introduced in an ex-
tended subspace PCI

�+� of positive-energy space. N-electron
eigenfunctions of the no-pair DCB Hamiltonian are approxi-
mated by a linear combination of MCI configuration-state
functions, ��I

�+���IJ�� ; I=1,2 , . . . ,MCI��PCI
�+�, constructed

from the one-particle positive-energy spinors computed in
matrix multiconfigurational Dirac-Fock self-consistent field
calculations �34�. Varying the configuration-state coefficients
�CIK� leads to the determinantal CI equation. The eigenfunc-
tions �	K

CI��KJ��� of the CI equation form a subspace PCI
�+�

of the positive-energy space D�+�. The frequency-dependent
Breit interaction, normal mass shift �NMS�, and specific
mass shift �SMS� are evaluated as the first-order corrections
using the eigenvectors �	K

CI��KJ��� from the MR-CI.
The N-electron DCB Hamiltonian HDCB

N is decomposed
into two parts, unperturbed Hamiltonian H0

N and perturbation
V, following Møller and Plesset �42,43�,

HDCB
N = H0

N + V . �4�

The subset, ��I
�+���IJ�� ; I=1,2 , . . . ,MCI��PCI

�+�, with
which we expand the CI wave function 	K

CI��KJ��, defines
an active subspace PCI

�+� spanned by 	K
CI��KJ�� and its MCI

−1 orthogonal complements, �	K
CI��KJ�� ;K=1,2 , . . . ,MCI�.

The residual space in the positive-energy subspace is
O�+�=D�+�−PCI

�+�, which is spanned by CSFs
��L

�+���IJ�� ;L=MCI+1,MCI+2, . . .�.
Application of the Rayleigh-Schrödinger perturbation

theory provides order-by-order expressions of the perturba-
tion series. The matrix elements of the effective Hamiltonian
up to the first-order may now be expressed as
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�Hef f
�0+1�N�IJ = ��I

�+���IJ��	HDCB
N 	�J

�+���JJ��
;

I,J = 1,2, . . . ,MCI, �5�

with the eigenfunctions �K
CI��PCI

�+��=�I=1
MCICKI

CI�I
�+� and ei-

genvalue EK
�0+1��=EK

CI�. The matrix elements of the second-
order term in the effective Hamiltonian may also be ex-
pressed as

�Hef f
�2�N�IJ = �

L=MCI+1

O
�+�

��I
�+�	V	�L

�+�
��L
�+�	V	�J

�+�

EJ

CSF − EL
CSF . �6�

The eigenvalue equation for the N-electron target states may
be expressed as

�Hef f
�0+1�N + Hef f

�2�N��K
N,ef f = EK

�0+1+2��K
N,ef f . �7�

Here �K
N,ef f are the eigenvectors of the effective Hamil-

tonian, and �Hef f
�2�N�IJ=1 /2��Hef f

�2�N�IJ+ �Hef f
�2�N�JI�, which is Her-

mitian �44�. The eigenstates of the effective Hamiltonian are
employed for the target description in the CC expansion �Eq.
�1��. The intermediate coupling is naturally accounted for in
the MR-MBPT to construct the effective Hamiltonian.

B. Effective Hamiltonian for (N+1)-electron collisional system

To construct the effective Hamiltonian for the collisional
system, the �N+1�-electron configuration space is partitioned
into two manifolds: the bound-channel manifold of CSFs
��q

N+1 ;q=1,2 , . . . ,M�� and scattering-channel manifold
�A��i

ef f ,uij��. Then the �N+1�-electron effective Hamil-
tonian can be written in matrix form,

HKK�
N+1 = 
Hbb Hbc

Hcb Hcc
� . �8�

Following the same procedure described in the previous sec-
tion, the bound-bound Hbb block of the �N+1�-electron ef-
fective Hamiltonian can be expressed by its matrix elements:

�Hbb�qq� = ��q
N+1	HDCB

N+1 	�q�
N+1


+ �
L=M�+1

��q
N+1	V	�L

N+1
��L
N+1	V	�q�

N+1


Eq
CSF − EL

CSF . �9�

The off-diagonal block Hbc involving the target state is ex-
pressed in terms of the eigenfunctions �K

ef f of the N-electron
target effective Hamiltonian,

�Hbc�q�ij� = ��q
N+1	HDCB

N+1 	A��i
ef f,uij�
 . �10�

The continuum-continuum block Hcc is expressed as

�Hcc��ij��i�j�� = �A��i
ef f,uij�	HDCB

N+1 	A��i�
ef f,ui�j��
 . �11�

The diagonal matrix elements of the continuum-continuum
block Hcc may be expressed in two parts. The first part con-
tains only the energy contributions from the Dirac spinors of
the bound electrons and is equal to the target state energy
Ei

�0+1+2� in this channel. The second part contains the remain-
ing, one-electron integrals involving the R-matrix continuum
basis spinors. Because of the weak interaction of the con-

tinuum electron with the target electrons, this part is nearly
equal to the kinetic energy 
ij of the scattering electron,

�Hcc��ij��ij� = Ei
�0+1+2� + 
ij + �
ij . �12�

Here �
ij represents the energy terms arising from the inter-
action of the continuum electron with target electrons. The
crucial difference between the previous studies and the
present reformulation lies in the description of the target and
�N+1�-electron collisional states by effective many-body
Hamiltonians that accurately account for electron correlation.
Accurate representations of the target states and bound chan-
nels are implemented using the effective Hamiltonians in
relativistic MR-MBPT.

C. Computation

The large and small radial components of the bound Dirac
spinors were expanded in sets of even-tempered Gaussian-
type functions �GTFs� that satisfy the boundary conditions
associated with the finite nucleus �45�. The GTFs that satisfy
the boundary conditions associated with the finite nucleus
are automatically kinetically balanced �45�. Even-tempered
basis sets of 26s24p22d20f G spinors �G for “Gaussian”�
were employed for up to angular momentum L=3, 18 G
spinors for L=4–5, and 15 G spinors for L=6–11. The order
of the partial-wave expansion Lmax in second-order perturba-
tion theory expansion �Eqs. �6� and �9��, the highest angular
momentum of the spinors included in the virtual space, is
Lmax=11. The nuclei were simulated as spheres of uniform
proton charge with radii �bohr� R=2.2677�10−5A1/3, where
A�amu� is atomic mass.

The state-averaged MCDFB SCF procedure �26� for the
ground and low-lying excited J=0–3 target states in the Zn-
like ion was carried out optimizing the average of the ener-
gies of the 14 even- and odd-parity CSFs arising from the
4s2, 4s4p, 4p2, and 4s4d configurations. Intermediate cou-
pling is built in through the MCDFB SCF process. This
single set of orthonormal spinors, determined by the
MCDFB SCF, was subsequently employed to construct the
CSFs for both the N-electron target and �N+1�-electron col-
lisional systems. Subsequent complete active space �CAS�
CI included all the relativistic CSFs arising from the nonrel-
ativistic configurations, 4sm4pn4dp with m+n+ p=2 of the
n=4 manifold. A total of 35 CSFs of J=0–4→, 19 even-
parity and 16 odd-parity CSFs, thus produced were included
in the CAS CI calculations, and each of the 35 eigenstates
was subjected to additional refinement to account for the
residual dynamic correlation by solving the 35�35 matrix
eigenvalue equation of the effective Hamiltonian �Eq. �7��.
All electrons have been included in the MR-MBPT perturba-
tion theory calculations to determine accurately the effects of
relativity and electron correlation. Radiative corrections, the
Lamb shifts, were estimated for each bound state by evalu-
ating the electron self-energy and vacuum polarization fol-
lowing an approximation scheme, as discussed by Indelicato,
Gorceix, and Desclaux �46�.

The matrix elements of the Hbb and Hbc blocks of the
�N+1�-electron effective Hamiltonian were constructed with
the bound channel functions ��q

N+1 ;q=1,2 , . . . ,M�� gener-
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ated by adding a n=4 valence electron to all the target CSFs.
This leads to the three valence-electron n=4 CAS configu-
rations, 4sm4pn4dp with m+n+ p=3, for the bound channel.
A total of 149 CAS CSFs of J=1 /2−11 /2, 72 even-parity
and 77 odd-parity CSFs, thus produced, were included in the
evaluation of the bound-bound Hbb block of �N+1�-electron
effective Hamiltonian matrix, with the MR-MBPT refine-
ment accounting for the residual dynamic correlation.

To achieve accurate description of the low-energy
electron-impact excitation processes using the effective
Hamiltonian approach, the Dirac atomic R-matrix codes
�DARC� �36� were significantly modified. A relatively small
set of continuum basis �uij� sufficed to describe low-energy
scattering processes. We chose 35 continuum basis functions
for each 
 value of the continuum-electron angular momen-
tum for the moderately large R-matrix boundary of 17.0
atomic units, where the valence spinors have vanishingly
small amplitudes of �10−8. In our effective Hamiltonian ap-
proach, the R-matrix boundary is chosen for all target va-
lence spinors to have vanishingly small amplitudes so that
exchange and correlation effects are negligible outside the
boundary. The Buttle correction is made as it is implemented
in DARC.

III. RESULTS AND DISCUSSIONS

A. Term energies of the 30-electron target and 31-electron
collisional systems

In Table I, the available experimental term energies com-
piled in the National Institute of Standards and Technology
�NIST� Atomic Spectra Database �47� are compared with the
effective many-body Hamiltonian and CAS CI calculations
for the lowest 24 target states. The term energies computed
by diagonalizing the 35�35 effective many-body Hamil-
tonian matrix deviate from experiment on the order of
100 cm−1 �0.01 eV�. The effective Hamiltonian in relativis-
tic MR-MBPT accurately accounts for nondynamic and dy-
namic correlations along with relativistic and QED effects,
and yield the term energies with near spectroscopic accuracy.
In marked contrast, the term energies computed by using the
35-CSF CAS CI deviate from experiment by up to
�4000 cm−1, rendering the CAS-CI R-matrix CC calcula-
tions inaccurate, because the CI fails to account for the bulk
of dynamic correlations. A large-scale CI, including at least
the 3d-electron excitations in CSFs, would be necessary to
correct for the missing dynamical correlation and improve
the description of the term energies. The results underscore
the importance of treating the valence-core correlation with
the MR-MBPT term �Eq. �6�� in the effective Hamiltonian
for achieving the near spectroscopic accuracy.

In Table II, available experimental term energies for the
lowest 36 levels in Kr5+ are compared with those calculated
by using the 148-CSF CAS CI and the effective many-body
Hamiltonian methods. The deviation from experiment of the
CAS CI energies reaches up to 5000 cm−1 �0.6 eV�. The
term energies calculated with the effective many-body
Hamiltonian deviate from experiment on the order of
100 cm−1 for most of excited levels. The experimental en-
ergy levels that deviate from theory by more than 1000 cm−1

are suspect. The calculated 4p3 2P3/2,1/2
o levels deviate sig-

nificantly, the 2P3/2
o by as much as 6000 cm−1, from experi-

ment. It is likely that these two levels are mistakenly inverted
in the line identification. The experimental 4s4p4d 2D3/2,5/2

o

levels deviate significantly from theory, and their line iden-
tifications are suspect.

In their CC study on low-energy electron collisions with
magnesium, Bartschat et al. �27� noted that the quasi-two-
electron system indeed possesses strong correlation effects in
both the N-electron target and �N+1�-electron collisional
systems. Therefore they emphasized that it is absolutely es-
sential to not rely on a target description with only good
relative energies and oscillator strengths and that significant
effort must be put into the optimization of the absolute ener-
gies using correlated orbitals with respect to the Mg2+ core.
The effective many-body Hamiltonian based on the relativ-
istic MR-MBPT theory accounts for both nondynamic and
dynamic correlation corrections. Thus the method can ac-
count for the absolute energy difference between the
N-electron target and �N+1�-electron collisional systems.
The experimental ionization energy 78.49�0.01 eV is in
very good agreement with the MR-MBPT theoretical predic-
tion of 78.45 eV, reflecting the accuracy in the total energy
difference between the Kr5+ and Kr6+ ions.

TABLE I. Comparison with experiment �47� of the calculated
term energies �cm−1� of zinclike Kr �Kr6+�. Percentage deviations
from the experimental values are given in parentheses.

State Expt. CAS-CI MR-MBPT

4s2 1S0 0 0�0.00� 0�0.00�
4s4p 3P0

o 117390 113344�3.45� 117768�0.32�
4s4p 3P1

o 120095 116052�3.37� 120484�0.32�
4s4p 3P2

o 126553 122307�3.36� 126951�0.31�
4s4p 1P1

o 170835 174197�1.97� 170455�0.22�
4p2 3P0 274932 272801�0.78� 275131�0.07�
4p2 3P1 279414 276929�0.89� 279615�0.07�
4p2 3P2 288190 284866�1.15� 288446�0.09�
4p2 1D2 279715 275945�1.35� 280360�0.23�
4p2 1S0 321794 325719�1.22� 322768�0.30�
4s4d 3D1 349973 346229�1.07� 350384�0.12�
4s4d 3D2 350417 346684�1.07� 350843�0.12�
4s4d 3D3 351116 347389�1.06� 351559�0.13�
4s4d 1D2 379488 382023�0.67� 379276�0.06�
4p4d 3F2

o 468479 476801

4p4d 3F3
o 472174 480597

4p4d 3F4
o 476898 485492

4p4d 1D2
o 481577 488473

4p4d 3D1
o 497531 501724

4p4d 3D2
o 497123 501743

4p4d 3D3
o 499341 504993

4p4d 3P0
o 501757 506621

4p4d 3P1
o 502846 507395

4p4d 3P2
o 503754 508142

YASUYUKI ISHIKAWA AND MARIUS J. VILKAS PHYSICAL REVIEW A 77, 052701 �2008�

052701-4



B. Electron-impact excitation cross sections

Figure 1 displays the electron-impact excitation cross sec-
tions for the 4s2 1S→4s4p 3P excitation from 35-state CAS
CI and effective many-body Hamiltonian R-matrix CC cal-
culations. In the CC expansion, all 35 n=4 CAS CSFs in the
target description and 149 CAS CSFs for the �N+1�-electron
bound channels were included. The contributions from each
of the fine-structure levels 4s4p 3P2,1,0

o , as well as the sum of
all individual contributions—the total cross section—from
the effective Hamiltonian R-matrix calculation are displayed
in the right four panels. The cross sections from the CAS CI

R-matrix calculations are given in the left panels for com-
parison. Convergence in the partial wave expansion occurs
for summation up to J=15 /2 in the R-matrix calculations.
Calculations of the low-energy electron-impact excitation
cross sections did not require the partial-wave summation to
very high-J values. The electron impact excitations of the
spin-forbidden 4s2 1S→4s4p 3P transitions are dominated
by resonances, as shown in earlier studies �25�. The excita-
tion to the 4s4p 3P1

o fine-structure level is the dominant ex-
citation process near the threshold. The excitation to the
4s4p 3P0

o fine-structure level, however, makes a substantial
contribution, providing the threshold of the excitation pro-
cess. Much of the computational effort went into mapping
out the resonances. To resolve the resonances in the 1.0–1.35
Ry incident electron energy region, a very fine monotonic
energy mesh of 2 meV was employed because the resonance
region is crowded with very narrow and closely spaced reso-
nances. With the fine energy mesh, we were able to resolve
closely spaced resonances. The convoluted curves, however,
did not show any noticeable difference.

A close examination of Fig. 1 reveals differences between
the cross sections from the 35-state CAS-CI R-matrix calcu-
lations and those from the 35-state effective-Hamiltonian
R-matrix calculations. The threshold resonances in the
�1.1 Ry incident electron energy computed with the
CAS-CI R-matrix method are uniformly shifted to lower en-
ergies, reflecting its failure to predict the 4s4p 3P2,1,0

o energy
levels accurately. The 4s4p 3P2,1,0

o energies computed with
the CAS CI are too low, by as much as 4000 cm−1, com-
pared with the experimental term energies, rendering deter-
mination of the resonance locations very inaccurate and un-
reliable. Therefore in an earlier study �25� it was necessary to
repeat the CI-based R-matrix calculations a number of times,
each time adjusting the separation between the threshold en-
ergies of the upper levels to which the strongest of these
resonant states are attached. In marked contrast, the 35-state
effective many-body Hamiltonian R-matrix CC calculations
predict the Kr6+ and Kr5+ energy levels accurately, and thus
provide accurate threshold resonances. The target energies
from the effective Hamiltonian are of near spectroscopic ac-
curacy, to within 200–400 cm−1, and capable of predicting
the excitation threshold to within 0.05 eV accuracy. There is
also a significant difference in the excitation cross sections
near the 1.10–1.20 Ry and in the 1.25–1.35 Ry regions. In
the latter, the cross sections from the CAS CI R-matrix cal-
culations are less pronounced than those computed with the
effective-Hamiltonian R-matrix method. The resonance
structures in the 1.10–1.20 Ry region are also significantly
different between the two.

To investigate which groups of 4�4�� target states con-
tribute to the two major resonances centered within 1.1–1.2
Ry, R-matrix calculations were carried out by excluding sev-
eral groups of target states. In the present study, the calcu-
lated total cross sections were convoluted with a 0.20 eV full
width at half maximum �FWHM� Gaussian function to com-
pare with the experimental data �6� as well as with the pre-
vious theoretical results �25�. For this purpose, 14- and 26-
state R-matrix CC calculations were carried out in addition to
the 35-state full CAS calculations. The 14-state CC expan-
sion included the CSFs arising from the 4s2, 4s4p, 4p2, and

TABLE II. Comparison with experiment �47� of the calculated
term energies �cm−1� in galliumlike Kr �Kr5+�. Percentage devia-
tions from experiment are given in parentheses.

State Expt. CAS-CI MR-MBPT

4s24p 2P1/2
o 0 0 0

4s24p 2P3/2 8110 7598�6.31� 8157�0.58�
4s4p2 4P1/2 107836 100979�6.36� 108238�0.37�
4s4p2 4P3/2 111193 104080�6.40� 111574�0.34�
4s4p2 4P5/2 115479 108262�6.25� 115880�0.35�
4s4p2 2P3/2 141672 138325�2.36� 142067�0.28�
4s4p2 2D5/2 142727 139304�2.40� 143093�0.26�
4s4p2 2S1/2 170084 173014�1.72� 170203�0.07�
4s4p2 2P1/2 180339 185151�2.67� 179705�0.35�
4s4p2 2P3/2 183817 188949�2.79� 183299�0.28�
4s24d 2D3/2 222122 224805�1.21� 222300�0.08�
4s24d 2D5/2 223040 225432�1.07� 223183�0.06�
4p3 2D3/2

o 276011 269124�2.50� 277105�0.40�
4p3 2D5/2

o 278062 270541�2.70� 278870�0.29�
4p3 4S3/2

o 278787 275184�1.29� 278351�0.16�
4p3 2P3/2

o 303697 302986�0.23� 309344�1.86�
4p3 2P1/2

o 305385 301952�1.12� 303977�0.46�
4s4p4d 4P5/2

o 331956 325965�1.80� 332657�0.21�
4s4p4d 4P3/2

o 338032 332406�1.66� 338918�0.26�
4s4p4d 4P1/2

o 338364 331698�1.97� 338576�0.06�
4s4p4d 4D1/2

o 333936 328645�1.58� 334676�0.22�
4s4p4d 4D3/2

o 333133 327429�1.71� 333863�0.22�
4s4p4d 4D5/2

o 338119 332820�1.57� 339057�0.28�
4s4p4d 4D7/2

o 338447 332688�1.70� 338708�0.08�
4s4p4d 2D3/2

o 343190 340953�0.65� 343280�0.03�
4s4p4d 2D5/2

o 343505 341109�0.70� 343567�0.02�
4s4p4d 2F5/2

o 352547 350265�0.65� 352941�0.11�
4s4p4d 2F7/2

o 359035 352563�1.80� 357367�0.46�
4s4p4d 2P3/2

o 374279 380072�1.55� 374890�0.16�
4s4p4d 2P1/2

o 377255 382725�1.45� 378145�0.24�
4s4p4d 2D3/2

o 390595 401621�2.82� 394299�0.95�
4s4p4d 2D5/2

o 391878 402103�2.61� 394676�0.71�
4s4p4d 2P1/2

o 399488 393118

4s4p4d 2P3/2
o 393018 399844�1.74� 393494�0.12�

4s4p4d 2F7/2
o 398678 409489�2.71� 401011�0.59�

4s4p4d 2F5/2
o 399599 411090�2.88� 402159�0.64�
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4s4d configurations and excluded a total of 12 states of the
4p4d and 4d2 configurations from the n=4 CAS. The 26-
state CC expansion excludes only nine 4d2 CSFs. Figure 2
displays the three computed total cross sections from the
diagonalization of the 35�35 and 149�149 CAS-CI matri-
ces for the target and collisional systems, followed by the
14-, 26-, and 35-state R-matrix calculations. Each of the ma-
jor resonances shown in the figure resulted from convolution
over groups of resonances as can be seen by comparing Fig.
1 with Fig. 2. Figure 2 shows that the total cross sections
from the 26-state and 35-state CAS-CI R-matrix calculations
are nearly equal, indicating the convergence with respect to
the CC expansion length. However, the converged cross sec-
tions have little resemblance to the experimental data.

The failure of the CAS-CI to predict the 4s4p 3P2,1,0
o en-

ergy levels accurately stems from its failure to account for
valence-core correlation. A large-scale CI is a viable alterna-
tive to accurate prediction of the cross sections. Recent stud-
ies have employed a large-scale CI calculation that accounts
for valence-core correlation to describe the resonant states
more accurately: Recent Dirac R-matrix CC calculations
�10,23,41� successfully employed large CI expansions, the
Hamiltonian matrices of size 15 266�15 266 and larger, to
predict strong resonances that appear in the electron impact
excitations in Ne-like ions.

Figure 3 compares with experiment the three computed
total cross sections from the diagonalization of the 35�35

and 149�149 effective many-body Hamiltonian matrices for
the target and collisional systems, followed by the 14-, 26-,
and 35-state R-matrix calculations. Experimental data points
in Ref. �6� were shifted to the LS coupling energy Eav
=15.297 eV, neglecting the energy splitting of the 4s4p 3P
fine-structure levels to force the threshold to agree with the
known spectroscopic value Eav. Therefore, in the present
study, the experimental data points have been shifted to
lower energy, by an amount 0.69 eV, to agree with the estab-
lished 4s4p 3P0

o threshold energy where the onset of the ex-
citation occurs. The upper resonance that appears between
1.15 and 1.20 Ry is dominated by the channels leading to
4s2 1S→4s4p 3P2

o excitation, and the lower one by those
leading to 4s2 1S→4s4p 3P0,1

o excitations. The convoluted
4s2 1S−4s4p 3P electron-impact excitation cross sections
computed by using the 35-state effective Hamiltonian
R-matrix CC are available as supplementary data in Ref.
�48�. The figure shows that increasing CC expansion length
leads to convergence toward the experimental data. The 35-
state effective-Hamiltonian R-matrix CC calculations predict
total cross sections in good agreement with experiment. All
the features in the experimental cross section are reproduced
well by the 35-state effective-Hamiltonian R-matrix CC cal-
culations.

In an earlier work, Gorczyca et al. �25� calculated the
electron-impact excitation cross sections for the 4s2 1S
→4s4p 3P transitions in Kr6+ using a 14-CSF CI followed
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FIG. 1. Calculated electron-impact excitation cross section of the 4s2 1S0−4s4p 3P0,1,2
o transition in Kr6+. The cross sections in the left

and right panels represent those computed by the CAS CI and the effective many-body Hamiltonian methods, respectively. The right panels
show the total cross sections of electron-impact excitations to three 3Po fine-structure levels �top three panels on left�.
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by 5-, 8-, and 14-state R-matrix CC calculations. The total
cross section �Fig. 4 in Ref. �25��, while the authors stated
that the agreement with experiment is somewhat fortuitous,
is similar to what we obtained from our 35-state effective
Hamiltonian R-matrix calculation, including the sharp reso-
nance feature near 1.18 Ry. Gorczyca et al. emphasized that
the magnitude of these low-lying resonances are very sensi-
tive to the interaction between the resonant states and that
these interactions are dependent on the separation between
resonances. This mandates accurate relativistic many-body
calculations of the resonance contribution to the cross sec-
tion. This is in contrast to the electron impact excitation of
the 3s2 1S→3s3p 1P transition in Mg-like ions, where the
experimental total cross section �28� of this transition was
readily reproduced by a 71-CSF CI followed by a 31-state
R-matrix CC calculation �49�. The results obtained by Gorc-
zyca et al. �25� explicate the potential sensitivity of R-matrix
CC methods in calculating cross sections for electron impact

excitation of intercombination transitions where resonances
play a dominant role in the excitation. Their work under-
scores the need for theoretical methods that determine reso-
nance locations more accurately in order to improve the ac-
curacy of the calculated cross sections. As the current study
demonstrated, accurate description of valence-core correla-
tion in both the N-electron target and the �N+1�-electron
collision systems is readily achieved by the effective many-
body Hamiltonian, providing a framework for accurate deter-
mination of resonances.

IV. CONCLUSIONS

The electron impact excitation of the intercombination
transition in Kr6+ is significantly more complicated than any
of the systems previously studied because the large number
of core electrons, the existence of a full 3d core in particular,
with two valence electrons, makes it extremely difficult to
accurately describe the target and resonance states. These

0
1
2
3
4
5
6

0

1

2

3

4

0

1

2

Energy (Ry)

1.05 1.10 1.15 1.20 1.25 1.30 1.35
-2

0

2

4

6

8

10

14-state
26-state
35-state
Experiment

3P2

3P1

3P0

C
ro

ss
se

ct
io

n
(1

0-1
6

cm
2 )

FIG. 2. Comparison with experiment of the electron-impact ex-
citation cross sections for the 4s2 1S0−4s4p 3P0,1,2

o excitations in
Kr6+ computed by using the CAS-CI R-matrix CC method with
increasing target-CSF expansion length. The upper three panels
show the cross sections to three 3Po fine-structure levels. Solid,
dashed, and dotted curves correspond, respectively, to 35-state, 26-
state, and 14-state CC expansions. The values have been convoluted
with a 0.20 eV FWHM Gaussian function. In the bottom panel,
experimental cross section �filled circles� �6� is compared with the
total cross sections of electron-impact excitations to three 3Po fine-
structure levels shown in the upper panels. The experimental data
points have been shifted to lower energy by 0.69 eV to agree with
the 4s4p 3P0

o threshold energy.
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FIG. 3. Comparison with experiment of the electron-impact ex-
citation cross sections for the 4s2 1S0−4s4p 3P0,1,2

o excitations in
Kr6+ computed by using the effective Hamiltonian R-matrix CC
method with increasing target-CSF expansion length. The upper
three panels show the cross sections to three 3Po fine-structure lev-
els. Solid, dashed, and dotted curves correspond, respectively, to
35-state, 26-state, and 14-state CC expansions. The values have
been convoluted with a 0.20 eV FWHM Gaussian function. In the
bottom panel, experimental cross section �filled circles� �6� is com-
pared with the total cross sections of electron-impact excitations to
three 3Po fine-structure levels shown in the upper panels.
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target and resonance levels have large level shifts due to
relativistic many-body effects, which need to be fully incor-
porated to account for the nearly 1 eV fine structure splitting
between the 4s4p 3P2,1,0

o as well as the relativistic many-
body shifts in higher excited levels. As such, it provides a
valuable benchmark to test a higher level of electron-atom
collision theory.

In this study, the many-body theoretical underpinnings are
brought to bear on the complex resonance processes in
electron-impact excitation of the intercombination transition.
The benchmark study exemplifies the importance of accurate
representations of target and collisional states using methods
that accurately account for static and dynamic correlations,
as well as relativity. The effective Hamiltonian R-matrix CC
provides accurate prediction of the cross sections for near-
threshold electron impact excitations dominated by a large

number of resonance contributions, underscoring the impor-
tance of determining resonance locations by accurate relativ-
istic many-body methods. The method refines its predecessor
by providing a more accurate framework.
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