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Coherent operations with individual trapped Yb* ions are demonstrated that are robust against variations in
experimental parameters and intrinsically indeterministic system parameters. In particular, pulses developed

using optimal control theory are demonstrated with trapped ions. Their performance as a function of error
parameters is systematically investigated and compared to composite pulses. Such pulses are basic building

blocks for single and multiqubit quantum gates.
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I. INTRODUCTION

In order to experimentally implement a device capable of
performing fault-tolerant universal quantum computation
(QC), quantum gate operations involving one or multiple qu-
bits have to be carried out with demandingly high accuracy
(e.g., Refs. [1,2]). According to recent theoretical investiga-
tions, the experimentally required accuracy of quantum gates
for fault-tolerant universal quantum computation no longer
seems daunting or even prohibitive [2]. But still, the desired
error probability per gate (EPG) should be as small as pos-
sible in order to keep the experimental overhead necessary
for quantum computation within a feasible limit. Thus a low
error probability is prerequisite for scalable fault-tolerant
QC.

Any quantum algorithm can be decomposed into a se-
quence of unitary operations applied to individual qubits
(single-qubit gate) and conditional quantum dynamics with
at least two qubits [3]. Multiqubit gates (involving two or
more qubits) are synthesized by applying a sequence of el-
ementary unitary operations on a collection of qubits. Each
of these elementary operations is often similar, or identical,
to what is needed for single-qubit gates, and therefore each
operation has to be implemented with an error probability
well below the tolerable EPG characterizing the full gate
operation.

If electrodynamically trapped ions are used as qubits, then
a unitary operation amounts to letting ions interact with elec-
tromagnetic radiation with prescribed frequency, phase, am-
plitude, and duration of interaction in order to implement
quantum gates. Recently, impressive experimental progress
was demonstrated in entangling up to eight ions, and per-
forming two-qubit quantum gates [4—6]. Architectures allow-
ing for scalable QC with trapped ions have been proposed
(e.g., [7]), and building blocks necessary for achieving this
ambitious goal are currently being investigated using various
types of ions.

The error budget, for instance, of the geometrical phase
gate demonstrated in Ref. [6] is dominated by the frequency
and amplitude uncertainty of the laser light field. These er-
rors are also responsible for a part of the EPG of the
controlled-NOT gate reported in Ref. [5]. If an “ion spin mol-
ecule,” that is, trapped ions coupled via a long range spin-
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spin interaction, is to be used for quantum information pro-
cessing, then the exact transition frequency of a particular
ionic qubit depends on the internal state of other ions [8].
Therefore, here too, it is important to have quantum gates at
hand that are insensitive to the detuning of the radiation driv-
ing the qubit transition.

Here, we demonstrate single qubit gates and rotations on
the Bloch sphere that serve as building blocks for gates with
trapped ions that are robust against experimental imperfec-
tions over a wide range of parameters. In particular it is
shown that errors caused by an inaccurate setting of either
frequency, amplitude, or duration of the driving field, or of a
combination of these errors are tolerable (in terms of a de-
sired accuracy of quantum gates) when a suitable sequence
of radiation pulses is applied instead of, for instance, a single
rectangular 7r pulse. Thus an essential prerequisite for scal-
able quantum computation with trapped ions is demon-
strated.

II. OPTIMAL CONTROL THEORY PULSES

Optimal control methods make it possible to design pulses
that are not only robust with respect to frequency detunings
but simultaneously also with respect to the amplitude of the
irradiation [9-12]. In general, robust single qubit gates
should work for arbitrary input states. Such pulses are called
class A [or unitary rotation (UR)] pulses. In Ref. [13], it was
demonstrated that robust UR pulse with nutation angle 6 can
be constructed in a straight forward way from robust class B
[or point-to-point (PP)] pulses with angle 6/2. For example,
a /2 PP excitation pulse designed to rotate a vector from
the z axis to the —y axis can be used to construct a 7 UR
pulse effecting a 7 rotation around the x axis for any initial
state. The composite 7= UR pulse consists of the phase-
inverted 77/2 PP pulse (with the algebraic signs of all phases
inverted), followed by the time-reversed /2 PP pulse [13].
Hence, PP pulses are not only interesting for applications
where the initial (or final) spin state is known (e.g., for initial
preparation of superpositions or readout), but also serve as
basic building blocks for the construction of robust UR
pulses [12,13]. Here, we demonstrate the performance of op-
timal control-based shaped PP pulses [9,10] for 7/2 and 7
rotations of trapped ions. In addition, composite UR pulses
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are implemented that are either designed to tackle off-
resonance errors, or designed to tackle pulse amplitude errors
[14]. In nuclear magnetic resonance quantum logic experi-
ments, conventionally optimized shaped pulses have fre-
quently been used, for example, to implement frequency se-
lective rotations [15].

III. EXPERIMENTAL SYSTEM: TRAPPED Yb* IONS

The two level quantum mechanical system used as qubit
is realized on the |0)=S,,(F=0)<S,,(F=1,mz=0)=|1)
transition in a single '"'Yb* ion. The Bohr frequency of the
ion is denoted w,. The ion itself is confined in a miniature
Paul trap (diameter of 2 mm) and driven by microwave ra-
diation with frequency w close to 277X 12.6 GHz and Rabi
frequency ) =27 X 10 kHz. The time evolution of the qubit
is virtually free of decoherence, that is, transversal and lon-
gitudinal relaxation rates are negligible, and is determined in
a rotating frame after the rotating wave approximation, by
the semiclassical Hamiltonian H= % S0+ %Q(0'+e‘iq’+ o_e'®).
Here, 0. are the atomic raising and lowering operators, o, is
a Pauli matrix, and 6= wy— w is the detuning of the applied
radiation with respect to the atomic transition. Imperfect
preparation of the |0) state by optical pumping limits the
purity of the initially prepared state such that the initial den-
sity matrix (before coherent interaction with microwave ra-
diation) is given by p;=a;|1){(1|+a,|0){0| with typical values
a;=0.1 and ay=0.9. Imperfect detection efficiency also lim-
its the upper bound of the fidelity measured.

The ion is produced from its neutral precursor by photo-
ionization using a diode laser operating near 399 nm. Laser
light near 369 nm driving resonantly the S;,F=1 P,F
=0 transition in Yb" is supplied by a frequency doubled Ti-
:sapphire laser, and serves for cooling and state selectively
detecting the ion. A diode laser delivers light near 935 nm
and drives the Ds,+«>[3/2],, transition to avoid optical
pumping into the metastable D5, state during the cooling
and detection periods (for details see Ref. [16]). To quantify
errors in the detuning we will use the scaled detuning f
=6/}, whereas errors in pulse area shall be represented by
g=A0/0, where AG=6¢ -6 with the desired pulse area 6
=[1Qadt and the actual pulse area 6 when T or () are not set
perfectly.

The fidelity of the qubit state |6,,, ,,)=cos(6,,/2)|0)
+e(%n) sin(6,,/2)|1) that is obtained after applying a micro-
wave pulse is given by F=[(0, ¢|0,,, b,»|* with |6, ¢) being
the state that would be obtained, if the pulse were perfect.
Thus, for a #=m pulse the fidelity is given by F,
=|sin(6,,/2)|*. Impure initial preparation (a;>0) limits the
maximum fidelity that can be obtained with a 7 pulse to
F a=ap—aj.

In order to determine the fidelity of the state obtained
after a gate that is supposed to leave the qubit with a well
defined phase ¢ (e.g., a 7w/2 pulse), the phase ¢,, needs to be
determined in addition to 6,,. A Ramsey-type experiment al-
lows for measuring both angles: First an ideal Ramsey se-
quence is carried out (i.e., two successive ideal 7r/2 pulses
with varying phase ® of the second pulse) yielding interfer-
ence fringes in the population of state |1), a, as a function of
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®. Then, the first 77/2 pulse is replaced by a possibly non-
ideal pulse sequence leaving the qubit in state |6,,, ¢,,), and
again interference fringes are recorded. Now the population
a,(®) detected in state |1) is given by Eq. (1), and from a fit
of the data using

a,(®)=1/2[1 +sin(6,,)cos(p,, + D)] (1)

one obtains 6, and ¢,,.

The expected performance of the optimal control-based,
composite, and rectangular pulses, respectively, is simulated
by numerical simulation of the time evolution of the density
matrix of a two level system. The simulated results shown
below assume ideal initial preparation and final read-out (i.e.,
100% efficiency of both processes) of the qubit without lon-
gitudinal or transverse damping. The simulations also pro-
vide the possibility to visualize the time evolution of the
qubit’s state on the Bloch sphere.

IV. MEASUREMENT TECHNIQUE

The basic measurement sequence (labeled sequence A)
for determining the fidelity as a function of f and g of a
shaped pulse that ideally gives a rotation with 6= is as
follows: (i) A single ion is prepared in the |0) state by optical
pumping through illumination with 369 nm light for 20 ms.
(ii) A microwave shaped pulse with controlled error, that is,
known values of f and g, is applied. (iii) Again, the ion is
illuminated for 5 ms with 369 nm light for state-selective
detection. (iv) The ion is laser cooled by applying microwave
and laser radiation simultaneously.

This sequence comprising steps (i)—(iv) is then repeated
(sequence B), except that in step (ii), for direct comparison,
the shaped pulse is replaced by a rectangular pulse that
would give 6=, if f=0=g. Then, (i)—(iv) is repeated again
(sequence C) with an ideal (i.e., f=0=g) 7/2 rectangular
pulse in step (ii) (that is supposed to yield equal probabilities
for detecting state |0) and |1), respectively) to check whether
the experimental setup performs as it should (in particular
the state-selective detection). Finally, (i)—(iv) is repeated a
fourth time (sequence D) leaving out step (ii) in order to
monitor the initial preparation in terms of the coefficient a.
Typically, the full procedure (sequences A-D) outlined here
is repeated 700 times for a given pair of f and g values.

When measuring the performance of shaped pulses and
pulse sequences that ideally yield a rotation of #=/2 and,
for instance, ¢p=—1/2, then the basic sequence A’ is as de-
scribed above, except that in step (ii) two ideal (f=0=g) 7/2
pulses are applied, the second one with variable phase @
(this yields Ramsey fringes as a reference). Then, sequence
B’ is performed by replacing the first 7r/2 pulse in step (ii)
by a shaped pulse with controlled error. Sequence C’ is ob-
tained by replacing the first 77/2 pulse in (i) with a rectan-
gular pulse subject to the same errors as the shaped pulse in
B’. Sequences A'—C' are repeated 20 times while increasing
the value of ® by 27/20. Then sequences C and D are ap-
pended and the complete procedure is repeated 50 times. As
an example, Fig. 1 illustrates how angles 6,,, ¢,, were deter-
mined for a specific pair of f and g values.

A completed measurement returns two grids of fidelities
with the points on each grid defined by different values of f
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FIG. 1. (a) Ramsey interference fringes from sequence A’ and
(b) from sequence B’ (f=-1, g=0). A fit (indicated by a solid line)
of the experimental data using Eq. (1) gives 6,,=3.92*0.05, ¢,,=
-0.418=0.11 (see text).

and g. One grid corresponds to a simple pulse (obtained from
sequences B or C’), that is, the amplitude as a function of
time has a rectangular shape with the desired pulse area 6
=(¢. This pulse results in a perfect rotation by an angle 6
only for f=0 and g=0. The second grid of fidelities corre-
sponds to a shaped or composite pulse (obtained from se-
quence A or B’). In the experimental results shown below,
crossing points between gridlines represent measurement
points. The shaded areas are obtained by linear interpolation
between points.

V. OPTIMAL CONTROL-BASED PULSES: RESULTS

The optimal control-based pulses demonstrated here were
designed for off-resonant errors described by —-1<f<1,
power variations up to *=40%, Rabi frequency Q=27
X 10 kHz, and are made of 0.5 us steps. In each step, in
general, amplitude and phase of the radiation is changed. As
an example the time evolution of phase and amplitude of a
pulse consisting of 645 individual steps is shown in Fig, 2
[10] (rotation of O=/2, ¢=—m/2). A tabulated version of
this pulse can be found in Ref. [17]. Also shown in Fig. 2 is
the numerically simulated evolution of the qubit’s state for
scaled amplitude deviation g=0 and scaled detuning f=
—0.5 on the surface of the Bloch sphere as a time trace start-
ing at =0 on the south pole of the Bloch sphere.

The experimentally determined fidelity F of this shaped
pulse as a function of f and g is displayed in Fig. 3. For
reference, Fig. 3 also shows the experimental fidelity ob-
tained from a simple rectangular 77/2 gate for the same pa-
rameter range.

To allow for a better quantitative comparison between the
two types of pulses, we determine the parameter values for
which the scaled fidelity F/F,, is larger than a reference
value. Here, F,, denotes the maximal experimental fidelity
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FIG. 2. (a) Relative amplitude and (b) phase of an optimal
control-based /2 pulse consisting of 645 individual time steps
[10] (available as supplementary online material) [17]. (c) shows
the simulated time evolution of the pulse on the Bloch sphere, for
g=0 and f=-0.5. At r=0 the state vector starts on the south pole of
the Bloch sphere and reaches the desired state (0=1/2, ¢p=—m/2)
at the end of the pulse.

obtained for a given pulse. For f=0=g the shaped pulse
yields the maximum fidelity F,,=0.900*0.014, and the val-
ues of f and g for which F/F,,>0.90 (F/F,,<0.90) is indi-
cated in Fig. 3(a) by white (black) rectangles. This maximum
value is maintained over a much wider parameter range than
for the rectangular pulse [see Fig. 3(b) with F,,
=0.899 +0.041], thus demonstrating the robustness of the
shaped pulse against experimental errors and intrinsic imper-
fections.

In the right graph of Fig. 3, the results of simulations for
the optimal control theory pulse depicted in Fig. 2 and the
simple pulse are shown. The experimentally observed depen-
dence of the fidelity on the parameters f and g is well repro-
duced by these numerical simulations up to a scaling factor
(the latter is mainly due to experimentally imperfect initial
preparation and detection of the qubit as outlined above).

Figure 4 displays the experimental fidelity obtained by
using a shaped 7 pulse consisting of 445 steps with variable
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FIG. 3. (a) Experimental fidelity F for the optimal control-based (6=7, ¢=—-7) pulse shown in Fig. 2 as a function of scaled detuning
f and relative error in the nutation angle g. The average statistical error of the measured points is ,,=0.023. The center graphic is based on
the same data and a white (black) rectangle indicates F/F,,>0.90 (F/F,,<0.90) with the maximal fidelity F,,=0.900 = 0.014. Finally on the
right graph the results of the simulation generated by the time evolution of the density matrix are shown. (b) Corresponding data for a
rectangular 7/2 pulse (0,,=0.035, F,,=0.899 £0.041). Identical gray scales are used for plotting the experimental data (left column) and

numerically simulated data (right column).

phase and amplitude subject to controlled errors. Again, a
rectangular pulse serves as an experimental reference giving
a maximum fidelity F,,=0.760*0.026 for f=0=g that rap-
idly decreases for increasing |f] or |g|. The shaped pulse, in
contrast, maintains the maximal possible fidelity over a wide
range of parameters as is evident from Fig. 4.

In Fig. 5 the experimental results of another optimal con-
trol theory based = pulse are shown as an example. This
pulse consisted of 835 steps. Again the maximum fidelity
(F,,=0.790 =0.035) shown has been limited by the imper-
fect preparation and detection of the system.

The pulses whose experimental fidelity is displayed in
Figs. 4 (445 steps) and 5 (835 steps), respectively, were de-
veloped to maximize the fidelity in a region with an offset
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range of 20 kHz, that is —1 <f<1 with a Rabi frequency of
10 kHz, and a variation in the amplitude of the radiation
driving the qubit of +/-40%, where each step is 0.5 us long
and can be different in phase or in amplitude [10]. A tabu-
lated version of both these pulses can be found in [17]. From
comparing Figs. 4 and 5 it is evident that the longer pulse
extends the region of parameter space where a high fidelity is
obtained even further. An optimal control-based pulse can
easily (and should) be adapted to a particular experimental
situation (relevant range of errors in experimental param-
eters, sources of decoherence, relevant coherence times). Of-
ten a more restricted area of error resistance than shown in
Fig. 5 is sufficient, and thus optimal control-based pulses can

0.7
-1-0.740.3 0 030.7 1
f

FIG. 4. (a) Experimental fidelity for an optimal control-based 6= pulse (445 steps) [17], 7,,=0.025, F,,=0.821 £0.027, white rect-
angles indicate F/F,,>0.9 and (b) for a rectangular 7 pulse (0,,=0.018, F,,=0.760 = 0.026). The simulated results are shown in the right
column for both the optimal control-based pulse and the rectangular pulse.

052334-4



ERROR-RESISTANT SINGLE-QUBIT GATES WITH...

-0.7
-1 -07-03 0 03 0.7 1
f

0.7

®) o5
0.3

o 0
-0.1
-0.3

(<>

'~1 -0.7-03 0 0.3 0.7 1
f

PHYSICAL REVIEW A 77, 052334 (2008)

0.7 T T T T T 1
o5 -+ 11—+ — -
0.3,,\,L,\,L,L,

o b Eoi ok
_0‘177\777\777\77
-083k=—-~—-—-—-——- — — o

ww
T e o m—

-0.7
-1-0.70.3 0 0.30.7 1
f

FIG. 5. (a) Experimental fidelity for an optimal control-based 6= pulse (835 steps) [17], 0,,=0.034, F,,=0.790 +0.035, white rect-
angles indicate F/F,,>0.9 and (b) for a rectangular 7 pulse (0,,=0.024, F,,=0.720 = 0.035). The right column shows the simulated results

of the optimal control-based pulse and the rectangular pulse.

be made considerably shorter and/or vary more smoothly in
time than, for instance, shown in Fig. 2.

VI. COMPOSITE PULSES: RESULTS

Now, we compare the performance of these pulses to
some composite pulses that have been devised to be effective
against off-resonance, amplitude, and pulse length errors.
The resulting fidelity grids were measured by sequentially
performing the composite case and the simple case for each
point on the grid, and then repeating 300 times. In terms of
the previously used description, sequence A and sequence B
are performed for each point on the grid, they are followed
by C and D, then the complete measurement procedure is
performed 300 times.

The composite pulse of type compensation for off-
resonance with a pulse sequence (CORPSE) was derived
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with the aim of combatting off-resonant errors [14]. It con-
sists of three pulses where the first and the third pulses have
equal phase values @ and the phase of the second pulse
differs by 7. The nutation angles of the three pulses making
up a m composite pulse are 420°, 300°, 60°. Indeed, as
shown in Fig. 6(a) the CORPSE 7 pulse extends the experi-
mentally determined range of detuning f over which a fidel-
ity F/F,,>0.96 (F,,=0.839 =0.038) is maintained as com-
pared to the rectangular pulse shown in Fig. 6(b). However,
for compensating pulse area errors this pulse sequence is less
effective as is also evident from Fig. 6.

Similarly a /2 pulse shown is the BBl (broadband)
composite pulse comprises a sequence W=180¢p;—3604,
—180g3 [14]. When the desired rotation is R(6), the complete
rotation can be performed as R(6)—W, W—R(6), or (6/2)
—W=R(6/2). The measurement procedure follows the proce-
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FIG. 6. (a) Experimental fidelity for a CORPSE-type composite pulse (6=, 0,,=0.030, F,,=0.853 = 0.038 white rectangles indicate
F/F,,>0.9). The right column shows the simulated results using the same gray scale as the experimentally obtained fidelity. (b) Shows the
same for the corresponding rectangular pulse (F,,=0.839 +0.038, 0,,=0.027).
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FIG. 7. Experimental fidelity for the BB1 R(5)-W-R(%) sequence (§=7,¢=0), F,,=0.924 = 0.008, 0,,=0.023, white rectangles indi-
cate F/F,,>0.90, the simulated values are shown in the right column. (b) Shows the same for the corresponding rectangular pulse, where

F,,=0.936+0.009, 0,,=0.024.

dure outlined above for the shaped /2 pulse. Shown in Fig.
7 are the results of using the BB1 composite pulse R(6/2)
—W=R(6/2) with 6=m/2. The experimental data show that
BB is effective for compensation of errors in both detuning
and pulse area. The parameter range over which error resis-
tant pulses are effective is greater than that of a simple pulse
but is more restricted than with the optimal control-based
shaped pulse shown in Fig. 3.

A comparison of the performance of shaped pulses devel-
oped using optimal control theory with simple rectangular
pulses or composite pulses reveals an evident advantage of
these shaped pulses in terms of robustness against experi-
mental errors and indeterministic system parameters, while
the lengths of both types of pulses are comparable (here,
with =27 X 10 kHz, for instance, the pulse in Fig. 4 takes

223 us compared to 217 us for a CORPSE pulse of Fig. 6).
Here, we demonstrate basic building blocks of unitary gates
that are exemplary for optimal control-based pulses with
trapped ions. We emphasize that such pulses can be made
robust against variation in any desired range of the param-
eters f (detuning) and g (amplitude) as is shown in Refs.
[10,13]. This will make shaped pulses based on optimal con-
trol theory an important tool in order to achieve quantum
gates with trapped ions with low error probability and thus
come a step closer to fault-tolerant quantum computing.
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