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An algebraic method has been developed which allows one to engineer several energy levels including the
low-energy subspace of interacting spin systems. By introducing ancillary qubits, this approach allows k-body
interactions to be captured exactly using two-body Hamiltonians. Our method works when all terms in the
Hamiltonian share the same basis and has no dependence on perturbation theory or the associated large spectral
gap. Our methods allow problem instance solutions to be embedded into the ground energy state of Ising spin
systems. Adiabatic evolution might then be used to place a computational system into its ground state.
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This work considers an important problem. Given a
Hamiltonian comprised solely of one-body and two-body
terms, from this Hamiltonian, and with the aid of ancillary
qubits, is it possible to construct the ground states of a
Hamiltonian containing k-body terms with respect to a suit-
able subspace? In both the classical and quantum cases, this
problem is particularly important when considering the
physical complexity of interacting spin systems evolving into
their lowest energy configuration �1–4� or the equivalent
computational task of determining the ground state �5,6�.

The ground state energy problem has long been consid-
ered in the realm of classical complexity theory with well-
known results appearing in work such as �1,5�. The extension
to quantum complexity classes was prompted when Kitaev
�6�, inspired by ideas from Feynman �7�, showed that the
ground state energy problem of the five-local �that is, five-
body� random field quantum spin model was complete for
the quantum analog of the class NP. Thus it was shown that
the five-local Hamiltonian was quantum-Merlin-Arthur-
complete �QMA-complete� and the quest to determine the
complexity of various spin models began �8–15�.

Ideas from the theory of quantum computation have also
led to the use of ground state properties of quantum systems
for computation �3,16,17�. This is known as the adiabatic
model of quantum computation �3,16�—in which a driving
Hamiltonian is slowly replaced, most often with a commut-
ing Hamiltonian with a ground state spin configuration rep-
resenting a problem instance solution.

At the heart of the construction of the QMA-completeness
proofs lies the development of methods to engineer low-
energy effective Hamiltonians, which approximate k-body
interactions, using at most two-body terms �10–12�. To date,
all known methods require the introduction of a large spec-
tral gap, where the magnitude of the gap improves only an
approximate low-energy effective Hamiltonian. It would be
desirable if one could �i� remove the spectral gap dependence
by capturing the low-energy effective subspace exactly and
�ii� develop a systematic method to engineer multiple energy
subspaces, including any ground state.

The present paper addresses both of these problems.
Somewhat surprisingly, it is possible to remove dependence
on the large spectral gap by allowing the state of the ancil-
lary mediator qubits �facilitating the coupling� to follow the
state of the qubits being coupled. In application, care is taken
to ensure that the active role of the mediator qubits is appro-
priate for any given application. In many cases, this new
approach allows ground states of k-body interactions to be
captured exactly using two-body interactions; under the re-
striction that all terms in the Hamiltonian share the same
basis.

Structure. The remainder of this paper begins with a short
Introduction, followed by Sec. II, which explains how the
ground states of three-body Hamiltonians can be used to em-
bed any Boolean function �and for that matter, any switching
circuit�. Section III reduces the three-local Hamiltonians
used in Sec. II to the case of two-local Hamiltonians: In
addition, we prove Theorem III.1, which states the existence
of an efficient method to construct Hamiltonians that simu-
late Boolean functions containing k-variable couplings �i.e.,
x1∧x2∧ ¯ ∧xk�. In Sec. IV we construct two-body Hamilto-
nians that exactly capture the ground space of k-body Hamil-
tonians of the form J�1 � �2 � ¯ � �k. Section IV also con-
tains a proof of Theorem IV.1, which states the existence of
a method to construct several energy subspaces of a given
Hamiltonian—a necessity for certain applications.

In addition to the main body of the present paper, Appen-
dix A presents a proof of a tailored variant of the projection
Lemma �8,10,17�. This is followed by Appendix B which
explains Karnaugh maps—key to an algebraic reduction
method relied on during several derivations. We make use of
standard quantum computing notation and background infor-
mation �6,8� as well as that for discrete functions and circuits
�18,19�.

I. INTRODUCTION

Let us represent an Ising spin with index i by the variable
si� �+1,−1�. One could also represent variable si in terms of
binary variable xi� �0,1� as si=1−2xi, which we will denote
as �xi�. A single spin system can be acted on by linear com-*jacob.biamonte@comlab.ox.ac.uk
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binations of operators taken from the set �1 , ���, where the
identity operator �1� can be scaled to ensure positive-
semidefiniteness and the operator � has eigenvectors �0� and
�1� with respective eigenvalues +1 and −1. The energy levels
of the Hamiltonian operator 1

2 �1+�i� �1
2 �1−�i�� correspond-

ing to the states �0� and �1� are 1 and 0 �0 and 1�. Addition of
the operator 1

2 �1+�i� � 1
2 �1−�i�� adds an energy penalty to the

state �0� ��1�� and can be thought of as negation �assignment�
of variable xi.

In the case of two Ising spins, a complete basis of con-
figurations is �00�, �01�, �10�, and �11�. Let us add scaled
sums of a coupling term to our Hamiltonian: ��i� j. One can
think of adding the operator 1

2 �1−�i� j� as a logical equality
operation �i.e., the characteristic function xi⇔xj is true� and
the operator 1

2 �1+�i� j� as a logical inequality operation �i.e.,
xi⇔xj is true� between spins. For example, assume we act
on a dual spin system with the Hamiltonian for inequality:
the ground space is in span��01� , �10��, so any vector that
corresponds to two spin variables being equal �e.g.,

span��11� , �00�� =
def

span���x��y��x=y , ∀ x ,y� �0,1��� receives
an energy penalty.

We have shown how to set single spin variables and how
to apply equality and inequality operations between two
spins. These operations, however, do not form a convenient
logical system �20�. This will be done next, in Secs. II and
III, by defining Hamiltonians with ground state spin configu-
rations representing logical operations such as the AND �∧�
gate, the OR �∨� gate, etc. We know that these dual arity
operations require at least three spins as xi�xj =z�. What we
need is to find a way to set the low-energy subspace of three
spins si, sj, and z� to be, for instance, the logical AND of the
spins si∧sj =z�. This assignment turns out to be possible
working in the energy basis of a Hamiltonian equipped with
a commuting local field and coupling term, such as an Ising
Hamiltonian �21�:

HIsing = 	
i

hi�i + 	

i,j�

Jij�i� j . �1�

Impressive demonstrations using qubits based on Josephson
junctions �22–24� make an adiabatic �3,16� realization of
ground state logic gates using variants of the Hamiltonian �1�
a foreseeable possibility.

II. GROUND STATE SPIN LOGIC

Consider some Hamiltonian H acting on a Hilbert space
H that is a sum of the vectors spanned by the subspace L and
the orthogonal component of L written as L�, thus H=L�

+L. The lowest eigenvalue of H will be denoted as ��H�.

Now let �L=
def

�1−L� be defined as a projector onto L. Then
�LH�L is the restriction of H to the subspace L—let us
write this restriction as �H�L.

To develop the logic, consider the Hamiltonian Hprop such
that �Hprop�L=0 and �Hprop�L� ����2�Hin�� where Hin is a
perturbation later used to set the circuits inputs, the norm � · �
is the magnitude of the Hamiltonians largest eivenvalue, and
� is the spectral gap between the L� and L subspaces. We

are faced with the task of ensuring that �Hprop�L is a zero
eigenspace when L spans the truth table of the logical opera-
tion of interest �e.g., L=span��x1��x2���x1�x2��∀ x1 ,
x2� �0,1���. Let L be the low-energy subspace representing
the truth table in the binary observables. Explicitly, in the
case of logical AND, L=span��000� , �010� , �100� , �111�� �or-
dered �x1x2��z��, where z�=x1∧x2�, which is a zero eigens-
pace of Hprop and L�=span��001� , �011� , �101� , �110�� �z�

�x1∧x2� will be all eigenspaces of at least � �25�.
One can add a perturbation, Hin, to set the circuits inputs.

We will write this as a projector onto the n long binary bit
vector x. This one-local projector has the form

�x =
def

�x��
x�� = �1

2

	

i=1

n

�1 + �− 1�1−xi�i� .

Now upper bound �Hin� �for all two input and single output
gates �26�� as �H��2. This implies that the spectral gap � is
greater than 2. By noticing that ∀ j ,k

H�sj� = ��sj�, H�sk
�� = ��sk

��

and


sj�H�sk
�� + 
sk

��H�sj� = 0,

where �sj��L and �sk��L�, one recovers the strict equality,
���Hin�L�=��H� �see Lemma II.2�.

Using combinations of these ground state logic gates, we
will perform computations. For example, write the Hamil-
tonian with a low-energy subspace in

span��x1x2���y���y� = x1 ∧ x2, ∀ x1,x2 � �0,1�� �2�

as H∧�x1 ,x2 ,y�� and, with y� defined in Eq. �2�, write the
Hamiltonian with a low-energy subspace in

span��x3y����z���z� = y� ∧ x2, ∀ x3 � �0,1��

as H∧�x3 ,y� ,z��. Then the proposition x1∧x2∨x3=z� is con-
structed as a sum of terms:

H = H∨�x1,x2,y�� + H∧�x3,y�,z��

Hprop

+ Hin �3�

and the circuits input, Hin, is yet to be defined �see Fig. 1�.
The qubit with label z� is now equal to x1∧x2∨x3 and y� is a

FIG. 1. Illustrating the mapping between circuits �with Boolean
variables xi� and spins �si� for the example given in Eq. �3�. One can
use any number of methods to embed logical networks �18� into the
ground space of Hamiltonians.
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temporary variable that is equal to x1∧x2, as seen in Table I.
A small perturbation, Hin, can be added to set any of the

qubits to specified values. For example, to set the input as
x1=1, x2=0, and x3=0 one adds the perturbation Hin
= �0�
0�1+ �1�
1�2+ �1�
1�3. If, alternatively, we were to let
Hin= �0�
0��, which acts on the circuits output z�, then the
low-energy subspace would be spanned by all vectors where
the output z� is �1� �27�. As seen from Table II, this subspace
is in

span��001��1��0�, �011��1��0�, �101��1��0� ,�

��110��1��1�, �111��1��1�� ,

where we adhere to the ordering �x1x2x3��z���y��. If instead
we were to add the perturbation Hin to the qubit labeled �y��,
the ground space would be spanned by ��110��1��1� ,
�111��1��1��.

To complete our reduction, the three-local Hamiltonians,
just described, will be reduced in the next section to two-
local Hamiltonians. Before continuing to our two-local re-
duction, let us state Lemma II.2 and Theorem II.1—the proof
of which is implied by the results of this section. Here we
choose a finite set 	 of one-output Boolean functions as the
basis. Then, an 	-circuit works for a fixed number of Bool-
ean input variables and consists of a finite number of gates,
where each gate is defined by its type taken from 	. �For
additional background information on Boolean functions and
switching circuits see the freely available standard reference
�18�.�

Theorem II.1. Let f be a switching function given as the
map f : �0,1�k→ �0,1�m for finite k and m. Now let there be
an asynchronous 	-circuit computing f . Then there exists an
	-circuit embedding into the ground space of a three-local
Hamiltonian, H3, such that �i� the norm of the Hamiltonian
�H3� is constant and, in particular, independent of the size of
f , the 	-circuit, as well as k and m. �ii� The 	-circuit em-
bedding is upper bounded by a number of qubits
O�1�—reducible to the number of classical gates required on
the same lattice.

An important technical tool used in our construction is a
variant of the projection Lemma �8,10,17�—proven in Ap-
pendix A. Let us denote H as a Hilbert space of interest and
let H1 be some Hamiltonian. Consider a subspace L�H
such that a Hamiltonian H2 has the property that L is a 0
eigenspace and L� is an eigenspace of at least ���2�H1��.
Consider the Hamiltonian H=H1+H2, the projection lemma
says that the lowest eigenvalue of H, ��H�, is the lowest
eigenvalue of H1 restricted to the subspace L—that is
���H1�L�. Thus by adding H2 one adds a penalty �propor-
tional to �� to any vector in L�. To state the projection
lemma �strict equality� we state the following.

Lemma II.2. Let H=H1+H2 be the sum of two Hamilto-
nians operating on some Hilbert space H=L+L�. Denote
L=span���sj��∀ j� and L�=span��sk

��∀k� for finite j,k. Con-
sider the restriction �H2�L=0 and �H2�L� ����2�H1��. Then,
if ∀ j ,k H�sj�=��sj� �∀ k H�sk

��=��sk
���, 
sj�H�sk

��
+ 
sk

��H�sj�=0 the following equality holds: ��H�=���H1�L�.

III. TWO-LOCAL REDUCTION

The main result of this section can be found in Table III.
To develop this table we used the algebra of multilinear
forms �19� and the Karnaugh map method from discrete
mathematics �28�—which we review in Appendix B.

We consider multilinear forms that are maps f from the
Booleans numbers to the reals, where the inputs and outputs
are of finite size. For instance, the multilinear form for AND

�OR� is simply f∧=x1∧x2 �f∨=x1+x2−2x1∧x2�. Hence one
can express the Boolean equation f =x1∧x2∨x3 with the
polynomial f =x1∧x2+x3−x1∧x2∧x3. Let us first write the
vector of integers:

cT = �c0,c1,c2,c3,c4,c5,c6,c7,� , �4�

representing the outputs of a multilinear function f over the
three Boolean input arguments x1, x2, and x3. We wish to
construct a canonical representation for any multilinear func-
tion of three variables in terms of the vector c from Eq. �4�.
We will represent the negation of the variable x as x̄ �or using
the notational equivalent ¬x� and canonically expand Eq. �4�
as a sum of products:

TABLE II. Ground state truth table generated for the Hamil-
tonian �3�. The function output, z�, is equal to x1∧x2∨x3. It is
instructive to think of the variable y� as a coupler that follows the
variables x1 and x2 as y�=x1∧x2.

�x1x2x3� �z�� �y��

�000� �0� �0�
�001� �1� �0�
�010� �0� �0�
�011� �1� �0�
�100� �0� �0�
�101� �1� �0�
�110� �1� �1�
�111� �1� �1�

TABLE I. Left column: possible assignments of the variables x1,
x2, and z�. Center column: illustrates the variable assignments that
must receive an energy penalty ��. Right column: truth table for
H∧�x1 ,x2 ,z��=3z�+x1∧x2−2z�∧x1−2z�∧x2, which has a null
space L�span���x1x2��z���z�=x1∧x2 , ∀x1 ,x2� �0,1��.

x1 x2 z� z�=
?

x1∧x2 H∧�x1 ,x2 ,z��

0 0 0 
000�H∧�000�=0 0

0 0 1 
001�H∧�001��� 3�

0 1 0 
010�H∧�010�=0 0

0 1 1 
011�H∧�011��� �

1 0 0 
100�H∧�100�=0 0

1 0 1 
101�H∧�101��� �

1 1 0 
110�H∧�110��� �

1 1 1 
111�H∧�111�=0 0
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f�x1,x2,x3� = c0x̄1x̄2x̄3 + c1x̄1x̄2x3 + c2x̄1x2x̄3 + c3x̄1x2x3

+ c4x1x̄2x̄3 + c5x1x̄2x3 + c6x1x2x̄3 + c7x1x2x3.

�5�

This expansion �5� forms a basis for the space of three-
variable Hamiltonians, but to realize any of the eight terms
requires three-body couplings. This motivates us to write a
second canonical expansion, found from a change of vari-
ables in Eq. �5� and by expanding each term into its positive
polarity form:

f�x1,x2,x3� = a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x1x3

+ a6x2x3 + a7x1x2x3. �6�

This Eq. �6� also forms a basis for the space of realizable
Hamiltonians of three-spins. In this suggestive form, how-
ever, we can truncate Eq. �6� past second order and consider
the subclass of Hamiltonians that can be realized by setting
a7=0.

Out of the 16 possible functions of two-input and one-
output variable, it can be proven that only two are not real-
izable using three-spins. These are the two-local penalty
Hamiltonians for XOR ��� and EQV ��� �29�, which are each
possible to realize by adding a single mediator qubit �as seen
in Table III�.

We will explain in detail how the positive-semidefinite
AND penalty Hamiltonian, H∧, is derived. We anticipate that
the details of our approach will aid others faced with Hamil-

tonian constructions. Let L be the null space of H∧ and let all
higher eigenspaces be given as L�. The penalty Hamiltonian
has a null space, L, spanned by the vectors ��x1x2���z���z�
=x1∧x2 , ∀x1 ,x2� �0,1��. Denote � as an energy penalty ap-
plied to any vector component in L�. Our goal is to develop
a Hamiltonian that adds a penalty of at least � to any vector
that does not satisfy the truth table of the AND gate—that is,
we want to add an energy penalty to any vector with a com-
ponent that lies in L�.

In order to make the penalty quadratic, one first constructs
the Karnaugh map illustrated in Fig. 2�c� for the case
x1∧x2=z�. This is done by examining Table I. In the right-
most column, all possible assignments for the variables x1,
x2, and z� are shown. The Karnaugh map is constructed by
examining the second column. Whenever the variable z� is
not equal to the AND of the variables x1 and x2, a penalty of
at least � must be applied, which ensures that vectors in the
ground space satisfy �x1��x2��x1∧x2�. Any vector that must
receive an energy penalty of � is depicted in the Karnaugh
map with a dot �·�.

Begin by noticing that any vector associated with cube
number 4 must receive an energy penalty, so the 1-local field
corresponding to the qubit with label z� must be at least
�—adding the term p1z� to the Hamiltonian, with the con-
straint p1��. Cube 3 must also receive an energy penalty of
at least �, adding the term p2x1∧x2 to the Hamiltonian H∧.
With both penalties applied, vectors corresponding to cube 7
must be brought back to the null space—accomplished by
subtracting the quadratic energy rewards r1z�∧x1 and

TABLE III. Logical gadgets �Sec. III�: The span of the zero energy ground space �L� of these gadget
Hamiltonians represent the truth table of a given switching function in the spin variables �as, for instance, the
AND function: L=span���x1x2��z���z�=x1∧x2 , ∀ x1 ,x2� �0,1���. This table includes all 16=22n

possible Bool-
ean functions with n=2 inputs.

Function Two-local Hamiltonian H�x1 ,x2 ,z��= Ground state �ordered: �x1��x2��z���

0=z�
1
2 �1−�3� span���x1x2��0�� ∀x1 ,x2� �0,1��

1=z�
1
2 �1+�3� span���x1x2��1�� ∀x1 ,x2� �0,1��

x̄1∧ x̄2=z�
1
4 �3+�1+�2−2��+�1�2−2�1��−2�2��� span��001� , �010� , �100� , �110��

x̄1∧x2=z�
1
4 �3+�1−�2+2��−�1�2+2�1��−2�2��� span��000� , �011� , �100� , �110��

x1∧x2=z�
1
4 �3−�1−�2+2��+�1�2−2�1��−2�2��� span��000� , �010� , �100� , �111��

x1∧ x̄2=z�
1
4 �3−�1+�2+2��−�1�2−2�1��+2�2��� span��000� , �010� , �101� , �110��

x1∨x2=z�
1
4 �4+�1+�2−2��+2�1�2−3�1��−3�2��� span��000� , �011� , �101� , �111��

x1∨ x̄2=z�
1
4 �4+�1−�2−2��−2�1�2−3�1��+3�2��� span��001� , �010� , �101� , �111��

x̄1∨ x̄2=z�
1
4 �4−�1−�2+2��+2�1�2−3�1��−3�2��� span��001� , �011� , �101� , �110��

x̄1∨x2=z�
1
4 �4−�1+�2−2��−2�1�2+3�1��−3�2��� span��001� , �011� , �100� , �111��

x1⇔z�
1
2 �1+�1�3� span���0x21� , �1x20�� ∀x2� �0,1��

x2⇔z�
1
2 �1−�2�3� span���x100� , �x111�� ∀x1� �0,1��

x1⇔z�
1
2 �1−�1�3� span���0x20� , �1x21�� ∀x2� �0,1��

x2⇔z�
1
2 �1+�2�3� span���x101� , �x110�� ∀x1� �0,1��

x1 � x2=z� 4+�1�2+ ��1+�2���+2�1−�1−�2−����4−�2

−��−�4

span��0000� , �0111� , �1011� , �1101��

x1�x2=z� 4−�1�2+ ��1−�2���+2�1−�1+�2−����4+�2

−��−�4

span��0100� , �0011� , �1111� , �1001��
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r2z�∧x2 from H∧. A system of equations for the Hamiltonian

H∧�x1,x2,z�� = p1z� + p2x1 ∧ x2 − r2z� ∧ x1 − r2z� ∧ x1 �7�

can be solved to set the rewards �r’s� and the penalties �p’s�.
This system is derived from the fact that the term x1x2x3,
corresponding to cube 7, must have zero energy: 0= p1+ p2
−r1−r2 and is subject to the conditions that p1, p2�� and
�r1+r2�� p1. For convenience, let �=1 and then determine
values for the coefficients in Eq. �7� and thus derive the
two-body Hamiltonian �for AND�:

H∧�x1,x2,z�� = 3z� + x1 ∧ x2 − 2z� ∧ x1 − 2z� ∧ x2. �8�

If one desires to invert an input variable, one simply applies
the transform: x̄i→ �1−xi�. For example, the Hamiltonian ap-
plying the penalty H∧�x̄1 ,x2 ,z�� is

3z� + �1 − x1� ∧ x2 − 2z� ∧ �1 − x1� − 2z� ∧ x2. �9�

To write this Hamiltonian in terms of spin variables, first
change each variable, xi, to its �matrix� operator form by the
replacement xi→ �0�
0�i. The change to spin variables is then
accomplished by the replacement: �0�
0�i→ 1

2 �1−�i�. After
these substitutions one arrives at the Hamiltonian �10� which
is isomorphic ��� to Eq. �9�.

H∧�x̄1,x2,z�� � H∧�− s1,s2,s��

= 1
4 �3 + �1 − �2 + 2�� − �1�2 + 2�1��

− 2�2��� . �10�

We now have the necessary machinery in place to state two
theorems �III.1 and III.2�. In the first, we are concerned with
a situation that arises in several applications. That is, one
often needs to couple three Boolean variables �AND product�,
as x1∧x2∧x3, using only two-local Hamiltonians. From our
reduction, it is possible to efficiently construct any k-local
product term, x1∧x2∧ ¯ ∧xk, of this type. We prove this in
Theorem III.1. We then present Theorem III.2, which is a

two-local variant of Theorem II.1—the proof of which fol-
lows directly from the results of this section.

Theorem III.1. Let fk be a k-local multilinear form and let
there be a Hamiltonian Hk acting on the Hilbert space Hk
such that fk�Hk. Then there exists a two-local multilinear
form, f2, and corresponding Hamiltonian, H2, acting on
the Hilbert space H2 �where Hk�H2�, with the same
low-energy subspace of H2 in span��x���y��y
= fk�x� , ∀x� �0,1�n , ∀y� �0,1�m��H. The number of me-
diator qubits required to realize H2 is upper bounded by
O(size�fk�). In addition, the spectral gap of H2 is bounded by
the spectral gap of Hk.

Proof. To construct such a Hamiltonian, we will employ
an inductive argument and consider a single �out of w�
k-local term, hk=x1∧x2∧ ¯ ∧xk, that couples k�3 Boolean
variables. We will now show the existence of a two-local
reduction requiring �k−2� mediator qubits to embed hk into
the ground state of a two-local Hamiltonian. Consider the
two-local coupling z�∧x3 and add the Hamiltonian that
forces an energy penalty whenever z� is not the Boolean AND

of the variables x1 and x2. The two-local Hamiltonian is writ-
ten as

H∧�x1,x2,z�� + z� ∧ x3 � 1
4 �4 − �1 − �2 + 3�� + �3 + �1�2

− 2�1�� − 2�2�� + ���3� ,

where H∧ is found in Table III, and z� is a temporary vari-
able. In words, the variable z� is coupled to x3 and the pen-
alty, H∧, forces z� to be equal to the Boolean product of x1
and x2—thereby creating the desired coupling with respect to
the subspace spanned by �x1x2x3�, ∀i� �1,2 ,3� ,xi� �0,1�.
For a k-local term x1∧x2∧ ¯ ∧xk, this procedure is recur-
sively repeated k−2 times. The reduction requires w�k−2�
qubits to capture the low-lying eigenspace of Hk with H2.�

Theorem III.2. Let f be a switching function with a fixed
number of inputs k and outputs m. Let there be an asynchro-
nous 	-circuit computing f over the basis �¬ , � ,∧�. There
exists an 	-circuit embedding into the ground state of a two-
local Hamiltonian, H2, such that �i� the norm of the Hamil-
tonian �H2� is constant and, in particular, independent of the
size of f , the 	-circuit, k as well as m. �ii� The 	-circuit
embedding is upper bounded by a number of qubits
O�k�-reducible to the number of classical gates required on
the same lattice.

IV. THREE-LOCAL GADGET

We are concerned with constructing the ground state of
the operator J�1 � �2 � �3—which is a different task than
coupling �that is, the AND product� three Boolean variables
x1∧x2∧x3. Without loss of generality, let us consider con-
struction of the target Hamiltonian

Htarget = Y + J�1 � �2 � �3, �11�

where Y is diagonal in the � basis. We will write the spec-
trum of �1 � �2 � �3, in canonical �Boolean counting� order,
as �1,−1,−1,1 ,−1 ,1 ,1 ,−1� �30�. Now the low-energy,
���1 � �2 � �3�=−1, eigenspace is given as
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FIG. 2. Karnaugh maps: �a� Two-local �positive polarity� inter-
actions circled �e.g., q1x1x2+q2x1∧z�+q3x2∧ f�� and �b� linear
�positive polarity� fields circled �e.g., l1x1+ l2x2+ l3x3�. The interac-
tions in cubes �a� and �b� form a basis for the space of realizable
��3 qubit� positive-definite logical gadget Hamiltonians express-
ible as H�x1 ,x2 ,z��=k0+ l1x1+ l2x2+ l3x3+q1x1∧x2+q2x1∧z�

+q3x2∧z�, where ∀ i, k0 , li ,qi�0. �c� A Karnaugh map illustrating
�with ovals� the linear and quadratic terms needed to set the null
space of the Hamiltonian �8� to be in span���x1x2��y���y�

=x1∧x2 , ∀ x1 ,x2� �0,1��.
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L = span��001�, �010�, �100�, �111��

and the high-energy, +1, eigenspace as

L� = span��000�, �011�, �101�, �110�� .

Over the complex field, the tensor product ��� of two ele-
ments is simply their complex multiplicative �·� product.
With respect to the canonical order, the spin variables for
this operator �11� form the product z�=s1 ·s2 ·s3, where
∀i ,si� �+1,−1�, and so we consider the group homomor-
phism �−1, +1, ·�� �1,0 , ��, where � denotes modulo 2
sum �XOR�;

z� = x1 � x2 � x3, ∀ x1,x2,x3 � �0,1�3.

In what follows, we will present a general framework to
construct the ground state of any operator in the � basis and
apply this approach to produce a three-local gadget requiring
three mediator qubits. We will then focus our attention on
optimization of this new three-local gadget, which is shown
to be possible to realize using only two mediator qubits.

Let us state an overview of our approach. To capture both
the low- and high-energy spectrum, while preserving the
spectral gap, one will first write down a penalty Hamiltonian
for the three-variable function z�, which acts on the Hilbert
space H. This function, z�, outputs logical 0 for any input
vector in L, and for all vectors in L� the function outputs
logical 1. We will next add a small perturbation to the output
z�—thereby breaking the low-energy degeneracy and allow-
ing us to capture the spectrum of Eq. �11� exactly, with re-
spect to the subspace

L + L� = span���x1x2x3�� ∀ x1,x2,x3 � �0,1�� � H .

Three-local gadgets with three mediator qubits. From
Table III we know that each XOR function requires an extra
qubit, and so three mediator qubits are required to create the
desired coupling. Let us write the Hamiltonian that applies
the XOR penalty to the variables x1 and x2 as
H��x1 ,x2 ,y� ,m1� and the Hamiltonian that applies the XOR

penalty to the variables x3 and y� as H��x3 ,y� ,z� ,m2�. Now
order the variables as �x1x2x3��z���y�m1m2�, where m1 and m2
are mediator qubits and y� is a temporary variable that is not
read. To split the spectrum into its respective low-energy �L�
and high-energy �L�� subspaces we add the perturbation V
=J��0�
0�− �1�
1��, which acts on the qubit z�. This allows
one to construct the Hamiltonian �11�, with the desired spec-
trum since the commutator �Y ,J�1 � �2 � �3�=0 shows that
Y only adds energy shifts and not level mixing—see Lemma
II.2.

Three-local gadgets with two mediator qubits. Let us
present an alternative approach to realizing a three-local gad-
get which requires only two mediator qubits. To construct the
gadget Hamiltonian, consider the two-local coupling z4

�s3 and
add the Hamiltonian that forces a penalty whenever z4

� is not
equal to the EQV of variables x2 and x3. The two-local Hamil-
tonian is written as H��x1 ,x2 ,z4

��+z4
�s3, where H� is found in

Table III, and z4
� is a temporary variable. The Hamiltonian

�12� captures the desired spectrum for ��2�J�.

H =
�

2
�4 + �2�3 + ��2 + �3��4 + 2�1 − �2 − �3 − �4��5

− �2 − �3 − �4� + J�1�4

s1z4
�

.

�12�

The ground space of the Hamiltonian �12� is given as

L = span��001��00�, �010��11�, �100��11�, �111��01��

and the first excited space as

L� = span��000��01�, �100��00�, �110��00�, �110��10�� ,

where the qubits are in ascending order: qubit 4 represents
the Boolean EQV of qubits 2 and 3, while qubit 5 is the
mediator qubit needed to construct the EQV function.

We will now state then prove Theorem IV.1 which allows
one to construct not only the ground state, but several levels
of the low-lying energy subspace of k-body interactions us-
ing only two-body Hamiltonians.

Theorem IV.1. Let Hk be a k-local Hamiltonian diagonal in
any basis � and let this Hamiltonian act on the Hilbert space
Hk. Assert that Hk has a bounded norm, and let the strictly
increasing list �E1 ,E2 , . . . ,Ek� denote the eigenenergies of Hk
formed by combing degeneracies, and label the correspond-
ing eigenspaces as �L1 ,L2 , . . . ,Lk�, respectively. Then there
exists a two-local Hamiltonian, H2, with a low-lying spec-
trum isomorphic to that of Hk. Moreover, H2 is equivalent to
Hk with respect to a subspace spanned by �L1 ,L2 , . . . ,Lk�. In
particular, there exists a two-local reduction capturing the k
energy subspaces �L1 ,L2 , . . . ,Lk� in the low-energy sub-
space Hk.

Proof. Let us review the general method to construct
ground states. First, determine L, the low-energy subspace,
and let Eg denote the ground state energy. One will next
write a function, z�= f�x1 ,x2 , . . . ,xn�, that outputs 0 for all
input vectors in L, and for all other vectors the function will
output 1. The ground state will be realized with respect to a
subspace spanned by the qubits labeled �x1��x2� , . . . , �xn�. To
capture the desired ground space, a perturbation �V
=Eg�0�
0�� is added, which only acts on the qubit z�. Assume
that we are instead interested in capturing several energy
subspaces, with energies �E1 ,E2 , . . . ,Ek�, and let us label
these spaces as �L1 ,L2 , . . . ,Lk�, respectively. We will con-
struct a function with k outputs and repeat the process out-
lined above—this time acting on each respective jth function
with the perturbation V=	 j=1

k Ej�0�
0� j. �

V. CONCLUSION

In this study, we have adapted a range of classical alge-
braic reduction methods to the construction of the low-lying
energy subspace of k-local Hamiltonians using two-local
Hamiltonians. Our methods do not rely on perturbation
theory or the associated large spectral gap. We have exam-
ined explicit constructions of various useful k-local to two-
local conversion Hamiltonians—including both those needed
to embed logical functions as well as couple spin variables.
We have found constructions of these Hamiltonians which
are optimal in the number of introduced ancillary qubits. For
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ease of reference, our results are summarized in Tables III
and IV. In Theorem IV.1 we presented a method to construct
several levels, including the ground state, of the low-lying
energy subspace of k-body interactions using two-body
Hamiltonians. Our methods have several applications in
adiabatic quantum algorithm design and quantum complexity
theory.
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APPENDIX A: PROJECTION LEMMA

We will now prove Lemma II 2 which is discussed in Sec.
II. Consider first the case that ��H�����H1�L�. Denote by
�
��L the minimizing eigenvector of �H1�L with eigenvalue
���H1�L�. Since H2�
�=0,



�H�
� = 

�H1�
� + 

�H1�
� = ���H1�L� .

Now consider actually minimizing over all vectors ��� of unit
length:

min
����L+L�

�
��H���� � 

�H�
� = ���H1�L� ,

proving a right-hand side. To show the lower bound on ��H�
write any unit vector �v��H=L+L� as �v�=��s�+
�s��
where �s� ��s��� is in L �L��, � ,
�R, � ,
�0, and �2

+
2=1. So

��H� = ��H1 + H2� � �2
s�H1�s� + �
�
s�H1�s�� + 
s��H1�s��

+ 
2
s��H1�s�� + �
2.

For real H1, ���, and ���:


��H1��� = 
��H1��� ⇒ �
�
s�H1�s�� + 
s��H1�s��

= 2�

s�H1�s�� .

However, �s� and �s�� are eigenstates of H1 and 
s �s��=0,
hence

��H1 + H2� � ���H1�L� + 
2�� − 2�H1��

is minimized with 
=0 so the projection lemma becomes

���H1�L� � ��H� � ���H1�L� ⇒ ��H� = ���H1�L� .

�

APPENDIX B: KARNAUGH MAPS

The Karnaugh map is a tool to facilitate the algebraic
reduction of Boolean functions. We made use of this tool in
Sec. III during explanation of the specific details required to
construct Tables III and IV. Many excellent texts and online
tutorials cover the use of Karnaugh maps �28�. This appendix
briefly introduces these maps to make the present paper self-
contained.

Karnaugh maps �see Fig. 2 for three examples� are orga-
nized so that the truth table of a given equation, such as a
Boolean equation �f :Bn→B� or multilinear form �f :Bn

→R�, is arranged in a grid form and between any two adja-
cent boxes only one domain variable can change value.

This ordering results as the rows and columns are ordered
according to Gray code—a binary numeral system where
two successive values differ in only one digit. For example,
the 4-bit Gray code is given as

�0000,0001,0011,0010,0110,0111,0101,0100,1100,1101,

1111,1110,1010,1011,1001,1000� .

By arranging the truth table of a given function in this way,
a Karnaugh map can be used to derive a minimized function.

To use a Karnaugh map to minimize a Boolean function
one covers the 1’s on the map by rectangular coverings con-
taining a number of boxes equal to a power of 2. For ex-
ample, one could circle a map of size 2n for any constant
function f =1. Figures 2�a� and 2�b� contain three circles
each—all of two and four boxes, respectively. After the 1’s
are covered, a term in a sum of products expression �18� is
produced by finding the variables that do not change
throughout the entire covering, and taking a 1 to mean that
variable �xi� and a 0 as its negation . Doing this for every
covering yields a function which matches the truth table.

For instance, consider Figs. 2�a� and 2�b�. Here the boxes
contain simply labels representing the decimal value of the
corresponding Gray code ordering. The circling in Fig. 2�a�
would correspond to the truth vector �ordered z� ,x1 then x2�

�0,0,0,1,0,1,1,1�T. �B1�

The cubes 3 and 7 circled in Fig. 2 correspond to the sum of
products term x1x2. Likewise �5,7� corresponds to z�x2 and
finally �7,6� corresponds to z�x1. The sum of products repre-
sentation of Eq. �B1� is simply

f�z�,x1,x2� = x1x2 ∨ z�x2 ∨ z�x1.

Let us repeat the same procedure for Fig. 2�b� by again as-
suming the circled cubes correspond to 1’s in the functions
truth table. In this case one finds z� for the circling of cubes
ladled �4,5,7,6�, x2 for �1,3,5,7�, and x1 for �3,2,7,6� resulting
in the function

TABLE IV. Three-local gadgets. Top �Sec. III�: Hamiltonian
with a low-energy subspace that couples three Boolean variables.
The state of the mediator qubit �� is a function �the AND� of qubits
1 and 2. Bottom �Sec. IV�: Hamiltonian with low-energy subspace
that couples three spin variables for ��2�J�. The ground space, L
=span��001��00� , �010��11� , �100��11� , �111��01�� and the first ex-
cited space, L�=span��000��01� , �100��00� , �110��00� ,
�110��10��—the qubits are in ascending order: qubit 4 represents the
Boolean EQV of qubits 2 and 3, while qubit 5 is the mediator qubit
needed to construct the EQV function.

Three-local coupling Two-local Hamiltonian

Jx1∧x2∧x3
1
4 �4−�1−�2+3��+�3+�1�2−2�1��

−2�2��+J���3�

J�1 � �2 � �3
�
2 �4+�2�3+ ��2+�3��4+2�1−�2−�3−�4��5

−�2−�3−�4�+J�1�4
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f�z�,x1,x2� = x1 ∨ z� ∨ x2.

Our use of Karnaugh maps in Sec. III allows one to visu-
alize cube groups �variable products� that are at most two-
local in size—the highest order terms realizable with two-
local Hamiltonians. In addition, Karnaugh maps help reduce
the number of simultaneous equations that, as seen in Sec.

III, must be solved—see Eqs. �7� and �8�. The Karnaugh
maps shown in Figs. 2�a� and 2�b� illustrate groupings for
quadratic and linear interactions, respectively, corresponding
to two-body terms and one-local fields. In Sec. III, this ob-
servation allowed us to derive two-local Hamiltonians and
prove which Hamiltonians are not possible to construct given
specific numbers of mediator qubits.
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