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A continuous positive operator-valued measurement �POVM� is described for the polarization state of a
single photon propagating in a known spatiotemporal mode. This POVM is shown to be the maximum-
likelihood quantum measurement for estimating that polarization state. Moreover, the maximum-likelihood
polarization estimate derived from this POVM enables uniformly optimal measure-and-prepare state transmis-

sion via classical communication—at the F̄=2 /3 classical limit on average teleportation fidelity—for any pure
state of polarization. When two continuous-POVM polarimeters are used to detect the singlet state of a pair
photons that are in distinct spatial modes, the conditional probability density for one polarimeter’s output given
the other’s encompasses the quantum interference patterns seen in standard singlet-state polarization analysis.
For single-photon illumination, a 1 :M optical splitter followed by a collection of M projective polarization
measurements, whose bases are uniformly distributed over the Poincaré sphere, yields observation statistics
that converge in distribution to those of the continuous-POVM polarimeter as M→�.
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I. INTRODUCTION

The polarization state of a single photon propagating in a
known �guided or unguided� spatiotemporal mode provides a
convenient physical instantiation of the qubit abstraction.
The prototypical single-photon polarization measurement
employs wave plates, a polarizing beam splitter, and a pair of
single-photon detectors to realize the projective measure-
ment onto a particular orthonormal basis. Linear optics quan-
tum computing �1� uses such measurements in the computa-
tional basis. Quantum key distribution systems that
implement the Bennett-Brassard 1984 protocol �2� with po-
larization states require projective polarization measurements
for both the H /V and �45° bases. It is a direct consequence
of the no-cloning theorem �3� that no quantum measurement
can perfectly determine the totally unknown polarization
state of a single photon. Indeed, when a projective measure-
ment is used to perform measure-and-prepare state transmis-
sion of such a polarization qubit via classical communica-
tion, the resulting average fidelity—assuming that qubit was
drawn from a uniform distribution over the Poincaré

sphere—achieves the F̄=2 /3 classical performance limit on
teleportation fidelity. However, with any fixed polarization-
measurement basis, the teleportation fidelity for a particular
pure-state input will vary from 1/2 to 1 as that state explores
all possibilities. The “optimal polarimeter,” from Ref. �4�,
uses a 1:2 optical splitter followed by H /V and �45° polar-
ization measurements. Its average measure-and-prepare tele-
portation fidelity, for a totally unknown single-photon input

state, is again F̄=2 /3, and its teleportation fidelity for a par-
ticular pure-state input varies from 1/2 to 3/4.

The preceding polarization measurements have discrete
outcomes, e.g., binary for H /V polarization analysis and qua-
ternary for H /V plus �45° polarization analysis. Other work
on single-photon polarimetry has also been limited to dis-
crete outcomes, e.g., Brandt’s POVM for unambiguous dis-
crimination between a pair of nonorthogonal polarization
states �5�, and the prescriptions provided by Ahnert and
Payne for implementing polarization POVMs �6�. In this pa-

per, however, we will introduce a continuous POVM for
single-photon polarimetry. We will show that this POVM is
the maximum-likelihood quantum measurement for estimat-
ing the unknown polarization state of a single photon. More-
over, we will show that the maximum-likelihood estimate
derived from this POVM enables uniformly optimal
measure-and-prepare state transmission via classical
communication—at the F=2 /3 classical limit—for any pure
state of polarization. We also consider what happens when
two continuous-POVM polarimeters are used to detect the
singlet state of a pair photons that are in distinct spatial
modes. Here we will show that the probability density for
one polarimeter’s output, conditioned on that from the other,
encompasses the quantum interference patterns seen in stan-
dard polarization analysis of this entangled state. For single-
photon illumination, a 1 :M optical splitter followed by a
collection of M projective polarization measurements, whose
bases are uniformly distributed over the Poincaré sphere, will
be shown to yield observation statistics that converge in dis-
tribution to those of the continuous-POVM polarimeter as
M→�. For finite M, this arrangement realizes the square-
root measurement for distinguishing between the 2M single-
photon pure states associated with the M polarization bases
being measured, assuming they are all equally likely to oc-
cur. Furthermore, this square-root measurement is in fact the
minimum probability of error quantum receiver for that
2M-ary quantum detection problem.

II. CONTINUOUS-POVM POLARIMETRY AND
MAXIMUM-LIKELIHOOD STATE ESTIMATION

Consider a fully-polarized single photon that is
propagating—for notational convenience—as a uniform
plane wave in the +z direction. Two equivalent representa-
tions for its polarization state are as follows. The first is the
x ,y representation

�i� = ��x� + ��y� , �1�
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where �x� and �y� denote x-polarized and y-polarized single-
photon states and � ,� are complex numbers satisfying ���2
+ ���2=1. The second is the Poincaré-sphere representation

r = �r1

r2

r3
� = �2 Re�����

2 Im�����
���2 − ���2

� , �2�

where r1 , r2 , r3 are real numbers satisfying r1
2+r2

2+r3
2

= ����2+ ���2�2=1. Except for a physically irrelevant absolute
phase, Eq. �2� can be inverted to yield iT	�� ,�� as a func-
tion of r. In particular, for any i we can say that

�i�
i� = �i�r��
i�r�� , �3�

as the aforementioned absolute phase cancels out in the pro-
jector. It is then trivial to verify, e.g., using the x ,y basis, that

�
P

dr
�i�r��
i�r��

2�
= Î , �4�

where P denotes the Poincaré sphere and Î is the identity
operator for the Hilbert space of polarization states of a
+z-going single photon. Thus,

d�̂�r� 	
�i�r��
i�r��

2�
dr, for r � P �5�

are a continuum of Hermitian operators that resolve the iden-
tity operator for the polarization-state Hilbert space. These
operators constitute our continuous POVM for single-photon
polarization measurements. When this POVM is applied to a
photon whose polarization state is �i0�, the outcome is a
Poincaré-sphere vector r. The probability density for getting
a particular r is then

p„r��i0��� =
�
�i0�i�r���2

2�
=

1 + r0
Tr

4�
, for r � P , �6�

where r0 is the Poincaré-sphere point corresponding to i0.
It is easy to check that p(�r��i0�) is a proper probability

density function on r�P for all r0�P, i.e., it satisfies

p„r��i0��… � 0 and �
P

drp„r��i0��… = 1. �7�

It turns out that this POVM is the maximum-likelihood quan-
tum measurement for estimating the unknown polarization of
a single photon, as we now will show. The necessary and
sufficient conditions that the maximum-likelihood POVM
must obey are well known �7�:

�̂ 	 �
P

dr Ŵ�r�d�̂�r� , �8�

must be Hermitian, where

Ŵ�r� 	
�i�r��
i�r��

4�
, �9�

��̂ − Ŵ�r��d�̂�r� = d�̂�r���̂ − Ŵ�r�� = 0, �10�

and

�̂ − Ŵ�r� � 0. �11�

From Eqs. �8� and �9�, plus the completeness relation for the
continuous-POVM polarimeter, we find that

�̂ =
Î

4�
, �12�

from which Eqs. �10� and �11� are easily verified.
The maximum-likelihood estimate of r0, given that the

continuous-POVM polarimeter’s output is r is therefore

r̂0ML
	 arg maxr�P�p�r��i0���� = r . �13�

Taking �i�r̂0ML
�� to be the output state of a measure-and-

prepare system for transmitting the qubit �i0� by classical
communication, we find that the resulting fidelity is

F = �
P

dr�
�i�r̂0ML
��i0��2p�r̂0ML

��i0��� , �14�

=�
P

dr
1 + rTr0

2
p�r��i0��� , �15�

=�
P

dr
�1 + rTr0�2

8�
= 2/3,for all r0 � P . �16�

Thus, unlike the discrete-outcome polarimeters mentioned in
Sec. I, continuous-POVM polarimetry enables measure-and-
prepare transmission of single-photon polarization states
with performance that uniformly achieves the classical limit
of 2/3 on average teleportation fidelity.

III. CONTINUOUS-POVM POLARIMETRY
OF THE SINGLET STATE

To explore another aspect of continuous-POVM polarim-
etry, suppose that a source produces a pair of photons A and
B that are in the singlet state

�	�AB =
�x�A�y�B − �y�A�x�B

2
, �17�

and that continuous-POVM polarimeters are used to measure
each photon’s polarization state. Using rA and rB to denote
the outcomes of these measurements, we have that

p�rA,rB��	�AB�� =
�AB
	���i�rA��A�i�rB��B��2

�2��2 =
1 − rA

TrB

�4��2 ,

�18�

for rA ,rB�P. By integrating Eq. �18� over rB, we obtain the
marginal probability density function for the rA measure-
ment. As expected, from the physics of the singlet state, it is
a uniform distribution

p��rA��	�AB� =
1

4�
, for rA � P . �19�

Similarly, integrating Eq. �18� over rA yields the uniform
distribution for the rB measurement
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p��rB��	�AB� =
1

4�
, for rB � P . �20�

Equations �18� and �19� lead to the following distribution for
rB conditioned on knowledge of rA,

p��rB�rA, �	�AB� =
1 − rA

TrB

4�
, for rB � P . �21�

Equation �21� encompasses the quantum interference fringes
seen in standard singlet-state polarization analysis. To illus-
trate that this is so, suppose that photons A and B are first
passed through lossless polarizers and then illuminate a pair
of ideal single-photon detectors, as shown in Fig. 1.

With the polarizers for photons A and B set to transmit

iA = cos�
A��1

0
� + sin�
A��0

1
� �22�

and

iB = cos�
B��1

0
� + sin�
B��0

1
� , �23�

respectively, as functions of their orientation angles 
A and

B, the probability that photon B will be detected, given the
photon A was detected is given by

Prob��B detected�A detected� =
1 − cos�2�
A − 
B��

2
.

�24�

Equation �24� shows the ideal singlet-state behavior; see Fig.
2. We get a sinusoidal fringe pattern with 100% visibility that
peaks—at 100% conditional probability—when 
A−
B
= �� /2, and has perfect nulls when 
A−
B=0, ��. Experi-
mental demonstration of this fringe pattern requires that a
sequence of singlet states be measured—for a given �
A ,
B�
pair—until the empirical frequency of a B detection, condi-
tioned on an A detection, stabilizes to a nearly constant
value. This same process must then be repeated for a set of
�
A ,
B� values that span the fringe pattern, e.g., by keeping

A fixed and varying 
B from −� /2 to � /2.

Now, using the fact that

rA�iA� = � sin�2
A�
0

cos�2
A�
� and rB�iB� = � sin�2
B�

0

cos�2
B�
� , �25�

are the Poincaré-sphere vectors associated with iA and iB, Eq.
�21� gives us the following result for the continuous-POVM
polarimeter’s conditional probability density function

p„�rB�iB��rA�iA�, �	�AB… =
1 − cos�2�
A − 
B��

4�
, �26�

which contains the same 100%-visibility sinusoidal fringe
pattern as obtained from the standard singlet-state polariza-
tion analysis.

Now suppose that elliptical polarization had been chosen
for the standard approach—by inserting lossless quarter-
wave plates in front of each polarizer—so that the photon
detections corresponded to the polarization vectors

iA = cos�
A��1

0
� + sin�
A��0

i
� �27�

and

iB = cos�
B��1

0
� + sin�
B��0

i
� . �28�

Because the singlet-state is invariant to polarization-basis
transformations, this new setup still yields
Prob��B detected�A detected� given by Eq. �24�. Once again,
the same elliptical-polarization fringe pattern is seen in the
continuous-POVM polarimeter’s conditional probability den-
sity function for the B polarimeter’s measurement outcome
to be rB

T�iB�= �0 sin�2
B� cos�2
B��, conditioned on knowl-
edge that the A polarimeter’s outcome was rA

T�iA�
= �0 sin�2
A� cos�2
A��.

Despite the preceding agreement between the quantum
interference patterns seen in standard singlet-state polariza-
tion analysis and those contained in the conditional probabil-
ity densities for continuous-POVM polarimetry, there is a
significant difference between the two approaches. Both, of
course, require that measurements be made on a sequence of

FIG. 1. �Color online� Schematic of the standard experimental
apparatus for singlet-state polarization analysis. QA and QB are loss-
less quarter-wave plates that are absent when the linear polarization
basis is employed. PA and PB are lossless polarizers. DA and DB are
unity quantum efficiency single-photon detectors with no dark
counts.
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FIG. 2. �Color online� Quantum interference fringe pattern
Prob��B detected�A detected� versus �
A−
B� /�, for standard
singlet-state polarization analysis in the linear-polarization basis.
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singlet states to observe the quantum interference fringe. As
noted earlier, the conventional approach also requires that
one of the polarizer angles be varied, during data collection,
to map out the full interference fringe. Because the measure-
ment outcome from continuous-POVM polarimetry has a
continuous probability density function on the Poincaré
sphere, it is a practical impossibility to measure the condi-
tional probability density function p(�rB�iB��rA�iA� , �	�AB) for
any fixed value of rA�iA�, owing to its conditioning event
being a set of measure zero. To avoid this difficulty, we can
exploit the singlet state’s basis invariance by performing
continuous-POVM polarimetry on the component photons of
a sequence of singlets and use that data to estimate
p(�rB�rA , �	�AB) as a function of 2�
	arccos�rA

TrB�. In doing
so we do not have to vary any polarizer settings. as was
necessary in standard singlet-state polarimetry, and we use
all the measurement data, i.e., every observed �rA ,rB� pair is
included. As the number of singlet-state measurements
grows without bound, this procedure will yield, from Eq.
�21�, an increasingly accurate estimate of the conditional
probability density function

p��rB�rA, �	�AB� =
1 − cos�2�
�

4�
, �29�

which encompasses the entire basis-invariant quantum inter-
ference that is inherent in the singlet state.

IV. IMPLEMENTATION

We have introduced a continuous positive operator-valued
measurement for the polarization state of a single photon
propagating in a known spatiotemporal mode. This POVM
enables uniformly-optimal measure-and-prepare state trans-
mission at the classical limit on average teleportation fidelity.
The use of two such polarimeters permits the entire basis-
invariant quantum interference inherent in the singlet state to
be probed simultaneously. Our final task will be to exhibit an
experimental configuration that can approximate the
continuous-POVM polarimeter. That setup is shown in Fig.
3. The incoming spatial mode, which contains the single
photon whose polarization is to be measured, undergoes 1:M

splitting after which standard projective polarization analysis
is performed on each of the resulting output modes. The
bases for these M projective measurements are chosen to be
uniformly distributed over the Poincaré sphere. We now
show that the measurement statistics from the Fig. 3 setup
converge in distribution to those of continuous-POVM polar-
imetry as M→�.

Let âT= �âx , ây�T be the annihilation operators for the x
and y polarizations of the single photon’s spatiotemporal
mode at the input to the Fig. 3 setup. The 1:M splitter yields
a collection of spatiotemporal output modes whose annihila-
tion operators âm

T = �âmx
, âmy

�T, for 1�m�M, obey

� â1

â2

]

âM

� = U�
â

b̂2

]

b̂M

� , �30�

where U is a unitary matrix whose first column’s entries are
all 1 /M and the spatiotemporal modes associated with the

annihilation operators �b̂m :2�m�M� are all in their
vacuum states. The mth output from this splitter undergoes a
quarter-wave-plate/half-wave-plate polarization transforma-
tion that maps the basis �rm ,−rm� into the x ,y basis, where
the ��rm ,−rm� :1�m�M� bases are chosen to be uniformly
distributed over the Poincaré sphere �8�. When the single-
photon detector Dm clicks, we declare the measurement out-
come to be rm. When the single-photon detector Dm� clicks,
we declare the measurement outcome to be −rm. Because we
have assumed ideal lossless operation in Fig. 3, and because
only one photon enters this apparatus, one and only one of
the photodetectors will click. All that remains is for us to
examine the probability that a particular detector will click
and relate that probability to the corresponding result ex-
pected from continuous-POVM polarimetry.

Suppose that the incoming photon has its polarization
specified by r on the Poincaré sphere. The probability that
this photon clicks detector Dm is

Prob��Dm�r� =
1 + rTrm

2M
, �31�

and likewise we have

Prob��Dm� �r� =
1 − rTrm

2M
, �32�

for the probability that Dm� is the detector this photon clicks.
For M 1, we may assume that the probability density for
continuous-POVM polarimetry of this same photon is ap-
proximately constant over the 2� /M solid-angle regions
whose centers are the 2M possible measurement outcomes
from Fig. 3, i.e., �rm ,−rm :1�m�M�. So, if we perform
continuous-POVM polarimetry and then quantize its out-
come to equal the center point of whichever of these regions
occurred, we find that

FIG. 3. �Color online� Approximate implementation of
continuous-POVM polarimetry. For simplicity, only one of the po-
larization transformation and analysis units is shown. Q1, quarter-
wave plate; H1, half-wave plate; PBS, polarizing beam splitter;
D1,D1

’ single-photon detectors. All linear-optics elements are as-
sumed to be lossless and the detectors are assumed to have unity
quantum efficiencies and no dark counts.
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Prob��rm�r� �
2�

M
p��rm�r� =

1 + rTrm

2M
�33�

and

Prob��− rm�r� �
2�

M
p��− rm�r� =

1 − rTrm

2M
, �34�

where the approximations become exact in the limit M→�.
As claimed, we have shown that the Fig. 3 setup yields mea-
surement statistics that converge in distribution to those of
continuous-POVM polarimetry.

The Fig. 3 configuration, with finite M, has some interest-
ing properties that deserve mention. It implements the dis-

crete POVM ��̂m :1�m�2M� given by

�̂m 	�
�i�rm��
i�rm��

2M
, for 1 � m � M ,

�i�− rm−M��
i�− rm−M��
2M

, for M + 1 � m � M .�
�35�

This discrete POVM is the minimum error probability quan-
tum measurement for distinguishing between the 2M single-
photon pure states ��rm� , �−rm� :1�m�M� when they are all
equally likely to occur, as can be verified by substitution into
the necessary and sufficient conditions for minimum error
probability 2M-ary quantum detection given in Ref. �9�. Fur-
thermore, this POVM is also the square-root measurement
for that quantum detection problem, see, e.g., Ref. �10�.

V. CONCLUSIONS

We have introduced a continuous POVM for measuring
the polarization state of a single photon in a known spa-
tiotemporal mode. This POVM is the maximum likelihood
quantum measurement for estimating that unknown polariza-
tion, and the resulting maximum-likelihood estimate enables
uniformly optimal measure-and-prepare state transmission

via classical communication at the F̄=2 /3 classical limit on
average teleportation fidelity. We have exhibited an idealized
configuration—employing a 1:M optical splitter followed by
a collection of M projective polarization measurements,
whose bases are uniformly distributed over the Poincaré
sphere—that yields measurement statistics which converge
in distribution to those of the continuous-POVM polarimeter.
This configuration is far more extravagant in its use of wave
plates and detectors than the familiar two-detector discrete
polarimeters that are employed, for example, in verifying the
polarization entanglement produced from spontaneous para-
metric down-conversion. Nevertheless, it is theoretically rel-
evant to note that the continuous-POVM polarimeter has at
least a notional realization, given its preferred position as the
maximum likelihood quantum measurement for single-
photon polarization.

In closing, one additional point deserves mention. Our
presentation has focused on the continuous-POVM polarim-
eter as the optimal—in maximum-likelihood sense—
quantum measurement for determining the unknown polar-
ization state of a single photon under the presumption that
said photon is in a pure state. There is an established body of
work �11,12� on maximum-likelihood estimation of the com-
mon density operator of an ensemble of independent, identi-
cally prepared quantum systems when arbitrary POVMs are
made on a sequence of systems drawn from this ensemble.
This theory of ML density-operator estimation can therefore
be used, in conjunction with our continuous-POVM polarim-
eter, to extend our work to estimating the common mixed
state of an ensemble of independent single photons.
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