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The security of a standard bidirectional “plug-and-play” quantum key distribution �QKD� system has been
an open question for a long time. This is mainly because its source is equivalently controlled by an eaves-
dropper, which means the source is unknown and untrusted. Qualitative discussion on this subject has been
made previously. In this paper, we solve this question directly by presenting the quantitative security analysis
on a general class of QKD protocols whose sources are unknown and untrusted. The securities of standard
Bennett-Brassard 1984 protocol, weak+vacuum decoy state protocol, and one-decoy state protocol, with un-
known and untrusted sources are rigorously proved. We derive rigorous lower bounds to the secure key
generation rates of the above three protocols. Our numerical simulation results show that QKD with an
untrusted source gives a key generation rate that is close to that with a trusted source.
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I. INTRODUCTION

Quantum key distribution �QKD� �1–3�, when combined
with the one-time pad algorithm, provides unconditional
communication security. The unconditional security is rigor-
ously proved based on fundamental physics principles such
as quantum no-cloning theorem and Heisenberg’s uncertainty
principle �4� rather than unproven computational complexity
assumptions. The unconditional security of QKD has been
proven even when implemented on imperfect practical setups
with coherent laser sources and semi-realistic models �5,6�.

Unconditional security of quantum cryptography is differ-
ent from “absolute security.” “Unconditional” in the security
proof of QKD means that we are not making any assumption
about Eve’s technology, except that quantum mechanics is
correct. However, we do have to make assumptions on Al-
ice’s and Bob’s sides to ensure the security. The concept of
unconditional security in QKD is discussed in details in �7�.

Recently, the ideas of device-independent security proofs
of QKD and security from causality constraints have been
proposed �8–10�, but a complete proof of unconditional se-
curity along those lines is still missing. Moreover, any such
device-independent security proofs, even if successfully con-
structed in the future, will not be applicable practical QKD
systems due to the well-known detection efficiency loophole.
This loophole can be filled under the fair sampling assump-
tion. Unfortunately, the fair sampling assumption can be in-
valid in practical QKD setups due to some imperfections,
such as the detection efficiency mismatch. Indeed, the detec-
tion efficiency mismatch opens a back door for several prac-
tical attacks, including the faked states attack �11,12� and the
time-shift attack �13�. The latter attack has even been experi-
mentally demonstrated on a commercial QKD system �14�,
thus highlighting the weakness of practical QKD systems.

It is very important to develop security proofs with test-
able assumptions, and test the assumptions both theoretically
and experimentally. For example, the assumption of phase
randomization is often made in security proofs of practical
setups. However, the phases of signals are not naturally ran-
domized in practice. Fortunately, the validity of the phase-

randomization assumption can be confidently guaranteed by
actively randomizing the phase of each signal, which has
only been demonstrated in a recent experiment �15�. See,
however �16�, for a security proof that does not require the
phase randomization assumption.

The validity of the coherent state assumption is also ques-
tionable. For example, it is common to use pulsed laser di-
odes as sources in QKD experiments. These laser diodes are
driven by pulsed electrical currents. When the driving cur-
rent is switched on, it will take a short while before the
laser’s gain reaches its stabilizing threshold. During this tran-
sition period, the output from the diode cannot be viewed as
coherent state. Therefore, it is not rigorous to consider the
entire pulse as a coherent state.

A more severe problem comes from the standard bidirec-
tional �so-called “plug-and-play”� design �17�, which is
widely used in commercial QKD systems. In this particular
scheme, bright pulses are generated by Bob �a receiver�
rather than Alice �a sender�. The pulses will travel through
the channel, which is fully controlled by Eve �an eavesdrop-
per�, before entering Alice’s laboratory to get encoded and
sent back to Bob. Eve can perform arbitrary operation on the
pulses when they are sent from Bob to Alice. In the worst
case, Eve can replace the original pulses by her own sophis-
ticatedly prepared optical signals. Such an attack is called the
Trojan horse attack �18�. Therefore, it is highly risky to as-
sume that Alice uses a coherent state source in the security
analysis of “plug-and-play” QKD systems.

Previously, a qualitative argument on the security of the
bidirectional QKD system was provided in �18�. The intu-
ition is to show that by applying heavy attenuation, an input
state with arbitrary photon number distribution can be trans-
formed into an output state with Poisson-like distribution.
However, it is challenging to quantify how close to the Pois-
sonian state the output state is.

We start from another intuition: We look into the actual
photon number distribution created by the internal loss of
Alice’s local laboratory. The phase randomization can trans-
form arbitrary input state into a classical mixture of number
states �18�. By modeling the internal loss inside Alice’s local
laboratory as a beam splitter, for each particular input photon
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number, the photon number of output state obeys binomial
distribution. Note that this is not a binomial-like, but a rig-
orous binomial distribution. The analysis of binomial distri-
bution is in general more difficult than that of Poisson dis-
tribution. However, in this way we can quantitatively and
rigorously analyze its security.

The discovery of decoy methods can dramatically im-
prove the performance �by means of higher key rate and
longer transmission distance� of coherent laser based QKD
systems �19–26�. The decoy method has been experimentally
demonstrated over long distances �27–34�.

In decoy state QKD, each bit is randomly assigned as a
signal state or one of the decoy states. Each state has its
unique average photon number. These states can be prepared
by setting different internal transmittances � in Alice’s local
laboratory. For example, if a bit is assigned as a signal state,
the internal transmittance for this bit will be �S. If a bit is
assigned as a decoy state, the internal transmittance for this
bit will be �D��S. Normally �D��S.

In previous analysis on decoy state QKD �20–22,26�, one
important assumption is that the yield of n-photon state Yn in
signal state is the same as Yn in decoy state, i.e., Yn

S=Yn
D.

Here Yn is defined as the conditional probability that Bob’s
detectors generate a click given that Alice sends out an
n-photon signal. This is true because in the analysis of
�20–22,26� Eve knows only the output photon number n of
each pulse. Another fundamental assumption is that the
quantum bit error rate �QBER� of n-photon state en in signal
state is the same as en in decoy state. i.e., en

S=en
D. Note that,

once Eve knows some additional information about the
source, the above two fundamental assumptions will fail
�35�.

We emphasize that in the case of “plug-and-play” QKD,
Eve knows both the input photon number m and the output
photon number n. Therefore, she can perform an attack that
depends on the values of both m and n. In Sec. VI A and
Appendix A, we show explicitly that Yn

S�Yn
D and en

S�en
D in

this case. The parameters that are the same for both the sig-
nal state and the decoy states are Ym,n �the conditional prob-
ability that Bob’s detectors click given that this bit enters
Alice’s laboratory with photon number m and emits from
Alice’s laboratory with photon number n� and em,n �the
QBER of bits with m input photons and n output photons�.

In brief, there is more information available to Eve once
she controls the source. The security analysis for decoy state
QKD in this case is much more challenging.

In this paper, we analyze the most general case: We con-
sider the source as controlled by Eve. Therefore, the source
is completely unknown and untrusted. Rather surprisingly,
we show that even in this most general case, the security of
the QKD system can be analyzed quantitatively and rigor-
ously. We also show that the decoy method can still be used
to enhance the performance of the system dramatically when
the source is unknown and untrusted. For the first time, we
show quantitatively that the security of “plug-and-play”
QKD system is understandable and achievable. Moreover,
we show what measures are necessary to ensure the security
of the QKD system, and rigorously derive a lower bound of
the secure key generation rate. Our numerical simulation re-
sults show that QKD with an untrusted source gives a key

generation rate that is close to that with a trusted source.
It is important to implement QKD with testable assump-

tions. In this paper, we showed that the coherent source as-
sumption can be removed. Nonetheless, we still keep a few
standard assumptions including single mode assumption,
phase randomization assumption, etc., in our security proof.
To ensure that our assumptions of single-mode and phase
randomization are satisfied in practice, we propose specific
experimental measures for Alice to implement. More con-
cretely, we propose that Alice uses a strong filter to filter out
other optical modes and uses active phase randomization to
achieve phase randomization. It would be interesting to see
the security consequence of removing, say, the single mode
assumption. However, this is beyond the scope of this work.

This paper is organized in the following way: in Sec. II,
we propose some measures that should be included in the
QKD setup, and a key term—“untagged bit”—is defined; in
Sec. III, we study the experimental properties of the un-
tagged bits; in Sec. IV, the photon number distribution for
untagged bits is analyzed; in Sec. V, we prove the security of
practical QKD system with unknown and untrusted source,
and explicitly show the equation for the key generation rate;
in Sec. VI, we prove the security of two decoy state
protocols—the weak+vacuum protocol and the one-decoy
protocol—with unknown and untrusted sources; in Sec. VII,
numerical simulation results are shown; in Sec. VIII, we
present our conclusion and discuss future directions.

II. MEASURES TO ENHANCE THE SECURITY

Here we will use three measures, which were briefly men-
tioned in �18�, to enhance the security of the system. A gen-
eral system that has applied these measures is shown in Fig.
1. There are various sources of losses inside Alice’s appara-
tus. Here we model all the losses as a � / �1−�� beam splitter.
That is, the internal transmittance of Alice’s local laboratory
is �. We assume that Alice can set � accurately via, say,
variable optical attenuator. In other words, for any photon
that enters the encoding arm, it has a probability � to get
encoded and sent out from Alice.

�1� We pointed out and demonstrated in �14� that the side
channel can be exploited by Eve to acquire additional infor-
mation. To shut down these side channels, we need to place
a filter �filter in Fig. 1� which works in spectral, spatial, and
temporal domains. In other words, only pulses of the desired
mode can pass through the filter. Therefore, we can use
single mode assumption for each signal. Incidentally, the
single mode assumption may not hold for an open-air QKD
setup. This is because �1� the free space will not suppress the
propagation of higher modes and �2� the collection system at
Bob’s side can only collect part of the beam sent from Alice.

�2� The phase randomization is a general assumption
made in most security proofs on practical setups �5,6,20�. It
can disentangle the input pulse from Eve by transforming it
into a classical mixture of Fock states �n=0

� pn�n��n� �18�. Its
feasibility has been experimentally demonstrated �15�. Alice
should apply the phase randomization on the input optical
signals. In Fig. 1, this is accomplished by the phase random-
izer.
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�3� We need to monitor the pulse energy to acquire some
information about the photon number distribution. By ran-
domly sampling a portion of the pulses to test the photon
numbers, we can estimate some bounds on the output photon
number distribution as shown in the following sections. In
Fig. 1, this is accomplished by the optical switch and the
intensity monitor.

Suppose that 2K pulses entered Alice’s local laboratory,
within which K pulses were randomly chosen by the optical
switch in Fig. 1 for testing photon numbers �these pulses are
called “sampling bits”�, and the rest of the K pulses were
encoded and sent to Bob �these pulses are called “coding
bits”�. Define the pulses with photon number m� ��1
−��N , �1+��N� as “untagged” bits, and pulses with photon
number m� �1−��N or m� �1+��N as “tagged” bits. Note
that the definitions of “untagged” and “tagged” here are dif-
ferent from those in �5�. From random sampling theorem
�see Ref. �36�� we know that the probability that there are
less than K� tagged sampling bits and more than ��+��K
tagged coding bits is asymptotically less than e−O��2K�. �
should be chosen under the condition that �2K�1. There-
fore, there are no less than �1−�−��K untagged coding bits
with high fidelity.

In the following discussion, we will focus on these �1
−�−��K untagged bits. Of course, there can also be some
untagged bits in the rest ��+��K bits, but neglecting these
out-of-scope untagged bits just makes our analysis conserva-
tive.

N and � can, in principle, be arbitrarily chosen. However,
some constraints will be applied to optimize the key genera-
tion rate. We will discuss the optimal choice later.

III. PROPERTIES OF THE UNTAGGED BITS

In QKD experiments, the two most important measurable
outputs are the gain �37� and the QBER. In our analysis, we
are more interested in the gain and the QBER of the un-
tagged bits. This is because the input photon numbers of the
untagged bits are concentrated within a narrow range, mak-
ing it much easier to analyze the security.

However, Alice cannot in practice perform quantum non-
demolition �QND� measurement on the photon number of
the input pulses with current technology. Therefore, she does
not know which bits are tagged and which are untagged. As
a result, the gain �37� Q and the QBER E of the untagged
bits cannot be measured experimentally. Here Q is defined as
the conditional probability that Bob’s detector clicks given
that Alice sends out an untagged bit and Alice and Bob use
the same basis; E is defined as the conditional probability
that Bob’s bit value is different from Alice’s given that Bob’s
detector clicks, Alice sends out an untagged bit, and Alice
and Bob use the same basis.

In an experiment, Alice and Bob can measure the overall
gain Qe and the overall QBER Ee. The subscript e denotes
the experimentally measurable overall properties. Moreover,
they know the probability of that certain bit to be tagged or
untagged from the above analysis. Although they cannot
measure the gain Q and the QBER E of the untagged bits
directly, they can estimate the upper bounds and lower
bounds of them. The upper bound and lower bound of Q are

Q̄ =
Qe

1 − � − �
, �1�

Q = max	0,
Qe − � − �

1 − � − �

 .

The upper bound and lower bound of EQ can be estimated as

EQ =
QeEe

1 − � − �
, �2�

EQ = max	0,
QeEe − � − �

1 − � − �

 .

To get tighter bounds on Q and EQ, we need to minimize �,
which means that � should be made large so as to minimize
the amount of tagged bits. See, however, discussion after
Eqs. �4�.
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FIG. 1. �Color online� A schematic diagram of the setup that coped with the three measures as suggested: Filter is used to guarantee the
single mode assumption; phase randomizer is used to guarantee the phase randomization assumption; optical switch and intensity monitor are
used to randomly sample the photon number of input pulses. All of the internal losses inside Alice’s local laboratory are modeled as a
� / �1−�� beam splitter. That is, any input photon has � probability to get encoded and sent from Alice to Bob, and 1−� probability to be
discarded into the garbage. M and N are the random variables for input photon numbers and output photon numbers, respectively. Note that
in a standard “plug-and-play” setup, the actual source is inside Bob’s local laboratory. However, Eve can replace the pulses sent by Bob with
arbitrary optical signals. This is equivalent to the general case in which Eve controls the source.
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IV. PHOTON NUMBER DISTRIBUTION OF UNTAGGED
BITS

Consider an untagged bit with input photon number
m� ��1−��N , �1+��N�. The conditional probability that n
photons are emitted by Alice’s laboratory given that m pho-
tons enter Alice’s laboratory obeys binomial distribution as

Pn�m� = 	m

n

�n�1 − ��m−n �0 	 � 	 1� . �3�

For untagged bits (i.e., m� ��1−��N , �1+��N�), we can
show that the upper bound and lower bound of Pn�m� are

Pn = �
�1 − ���1−��N if n = 0,

	�1 + ��N
n


�n�1 − ���1+��N−n if 1 	 n 	 �1 + ��N ,

0 if n � �1 + ��N ,
�

�4�

Pn = �
�1 − ���1+��N if n = 0,

	�1 − ��N
n


�n�1 − ���1−��N−n if 1 	 n 	 �1 − ��N ,

0 if n � �1 − ��N ,
�

under Condition 1,

�1 + ��N� � 1. �5�

Condition 1 suggests that the expected output photon number
of any untagged bit should be lower than 1. This is easy to
implement experimentally. For example, for N=106, Alice
can simply set �=10−7 so that the expected output photon
number is 0.1. Most reported Bennett-Brassard 1984 �BB84�
implementations satisfy Condition 1.

To get tighter bounds on Pn�m�, we need to minimize �.
However, as we discussed below Eq. �2�, minimizing � will
lower the amount of untagged bits �i.e., there will be fewer
pulses that contain photon number m� ��1−��N , �1+��N� as
the bound becomes narrower�, thus loosening the bounds on
the gains and QBERs of untagged bits. As a summary, there
is a trade-off between the tightness of the bounds of Pn�m�
and the tightness of the bounds of Q and EQ. The optimal
choice of � depends on the properties of specific system, and
can be obtained numerically.

V. GENERALIZED GOTTESMAN-LO-LÜTKENHAUS-
PRESKILL RESULTS WITH UNTRUSTED SOURCE

From the work of Gottesman-Lo-Lütkenhaus-Preskill
�GLLP� �5�, the secure key generation rate of standard BB84
protocol �1� is given by

R 

1

2
− Qef�Ee�H2�Ee� + Q��1 − H2	QeEe

Q�

�� , �6�

where 1/2 is the probability that Alice and Bob use the same
basis, Qe and Ee are obtained experimentally, f��1� is the
bidirectional error correction inefficiency �38�, and

� = 1 −
PM

Q
, �7�

where PM =�n=2
� Pn�m� is the probability of output multipho-

ton signals. Recall that if the input photon number m= �1
+��N, we have

Pn��1 + ��N� = 
Pn if n = 0,

Pn if n 
 1.
�

Therefore, P0+�n=1
� Pn=1. The upper bound of PM is PM

=�n=2
� Pn=1− P0− P1, and the lower bound of � is

� = 1 −
PM

Q
.

The lower bound of Q� is thus given by

Q� = Q − PM = Q + P0 + P1 − 1, �8�

where Q can be obtained via Eq. �1�.
Plugging Eq. �8� into Eq. �6�, we have the key generation

rate per bit sent by Alice, given that an untrusted source is
used, as

R 

1

2
− Qef�Ee�H2�Ee� + �Q + P0 + P1 − 1�

��1 − H2	 QeEe

Q + P0 + P1 − 1

�� . �9�

The numerical simulation of the above analysis is presented
in Sec. VII.

VI. COMBINING WITH DECOY STATES

Decoy method �19–25� significantly improves the perfor-
mance for QKD systems with coherent state source. Here,
we will show that the idea of decoy states can also be useful
when the source is unknown and untrusted.

A. Weak+vacuum protocol

Among all the decoy state protocols, the weak+vacuum
protocol is the most popular one. It is shown to be the opti-
mal protocol in the asymptotic case �22�. “Asymptotic” here
means infinitely long source data sequence. The weak
+vacuum protocol has been used in most experimental decoy
state QKD implementations �28–32�.

In weak+vacuum protocol, there are three states: The sig-
nal state �for which the internal transmittance of Alice is �S�,
the weak decoy state �for which the internal transmittance of
Alice is �D��S�, and the vacuum state �for which the inter-
nal transmittance of Alice is 0�. We consider that only the
signal state is used to generate the final key, while the decoy
states are solely used to test the channel properties.

The error correction will consume

rEC = Qe
Sf�Ee

S�H2�Ee
S� �10�

bit per signal sent from Alice, where Qe
S and Ee

S are the over-
all gain and overall QBER of signal state, H2 is binary
Shannon function.
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The probability that Alice sends out an untagged signal
which is securely transmitted to Bob is

rPA = �1 − � − ��Q1
S�1 − H2�e1

S�� , �11�

where Q1
S and e1

S are the gain and the QBER of single photon
state in untagged bits. This is because Alice and Bob can, in
principle, measure the input photon number m and the output
photon number n accurately and therefore post-select the un-
tagged bits with n=1. They can then use these post-selected
single photon untagged bits to generate the secure key. In
practice, QND measurements on m and n by Alice are not
feasible with current technology. However, Alice and Bob
know the probability of a certain bit to be untagged. They
can use random-hashing method to perform privacy amplifi-
cation to distill the secure key. Similar technique was used in
�5�.

The key generation rate in standard BB84 protocol is
therefore given by

R 

1

2
�rPA − rEC�



1

2
�− Qe

Sf�Ee
S�H2�Ee

S� + �1 − � − ��Q1
S�1 − H2�e1

S��� ,

�12�

where 1/2 is the probability that Alice and Bob use the same
basis.

Qe
S, Ee

S, �, and � can be determined experimentally. Our
main task is to estimate Q1

S and e1
S.

In previous analysis on decoy state QKD �20–22,26�, one
important assumption is that the yield of n-photon state Yn in
signal state is the same as Yn in decoy state. i.e., Yn

S=Yn
D.

Here Yn is defined as the conditional probability that Bob’s
detectors generate a click given that Alice sends out an
n-photon signal. This is true because in the analysis of
�20–22,26� Eve knows only the output photon number n of
each pulse. However, as we will show below, this assump-
tion is no longer valid in the case that the source is controlled
by Eve.

The key point is that Eve knows both the input photon
number m and the output photon number n when she controls
both the source and the channel. Therefore, she can perform
an attack that depends on the values of both m and n. In this

case, the parameter that is the same for these states is Ym,n,
the conditional probability that Bob’s detectors click given
that this bit enters Alice’s laboratory with photon number m
and is emitted from Alice’s laboratory with photon number n.
In this case, Yn is given by �see Appendix A for details�

Yn = �
m

P��m�n�Ym,n, �13�

where P��m�n� is the conditional probability that the signal
enters Alice’s local laboratory with photon number m given
that it is emitted from Alice’s laboratory with photon number
n. Note that P��m�n� is dependent on the internal transmit-
tance of Alice’s apparatus �. Since �S��D, we know that
Yn

S�Yn
D.

Another fundamental assumption for previous decoy state
security studies �20–22� is that the QBER of n-photon state
en is the same for signal state and decoy state, i.e., en

S=en
D.

Unfortunately, from a similar analysis as above, we can show
that en

S�en
D if Eve controls the source. The parameter that is

the same for the signal state and the decoy states is em,n.
As a brief summary, in decoy state QKD, if the source is

in Alice’s local laboratory and is solely accessible to Alice
�that is, the source is trusted�, we have Yn

S=Yn
D and en

S=en
D,

whereas if the source is out of Alice’s local laboratory and is
accessible to Eve �that is, the source is untrusted�, we have
Ym,n

S =Ym,n
D and em,n

S =em,n
D .

The dependence of Yn and en on different states �signal
state or one of the decoy states� is a fundamental difference
between decoy state QKD with untrusted source and decoy
state QKD with trusted source. In the latter case, the inde-
pendence of Yn and en on different states is a very powerful
constraint on Eve’s ability of eavesdropping. However, this
constraint is removed once the source is given to Eve.

Eve’s control over the source removes the two fundamen-
tal assumptions in �20–22�. Eve is given significantly greater
power, and the security analysis is much more challenging.
However, rather surprisingly, it is still possible to achieve the
unconditional security quantitatively even if the source is
given to Eve. This is mainly because we are only focusing on
the untagged bits, whose input photon numbers are concen-
trated in a relatively narrow range. Therefore, we are still
able to estimate Q1

S and e1
S.

Proposition 1. The lower bound of Q1
S for untagged bits is

given by

Q1
S � Q1

S = P1
S

QDP2
S − QSP2

D + �P0
SP2

D − P0
DP2

S�QV −
2�N�1 − �D�2�N−1P2

S

��1 − ��N + 1�!
P1

DP2
S − P1

SP2
D �14�

under Condition 2,

�S

�D
�

�1 + ��N − 2

�1 − ��N − 2
	 �1 + ��N − 2

2�N

2�N/��1−��N−2�	 �1 + ��N − 2

�1 − ��N − 2

e2

2�N

1/2��1−��N−2�

. �15�
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Here QS, QD, and QV are the gains of untagged bits of the
signal state, the decoy state, and the vacuum state, respect-
fully. Their bounds can be estimated from Eqs. �1�. The
bounds of the probabilities can be estimated from Eqs. �4�.
Note that Condition 2 is easy to meet. For example, in the
numerical simulation in Sec. VII, we choose N=106 and �

=0.01. In this case we can calculate Condition 2 as
�S

�D

�1.104, which is very reasonable to meet experimentally.
Actually, �S /�D is usually greater than 2 in previous decoy
state QKD implementations �27–34�.

Proof. See Appendix B.
Proposition 2. The upper bound of e1

S for untagged bits is
given by

e1
S 	 e1

S =
ESQS − P0

SEVQV

Q1
S , �16�

in which ES and EV are the QBERs of untagged bits of the
signal and the vacuum states, respectively. ESQS and EVQV

can be estimated from Eqs. �2�. P0
S can be estimated by Eqs.

�4�. Q1
S is given by Eq. �14�.

Proof. See Appendix C.
Plugging Eqs. �14� and �16� into Eq. �12�, we can easily

calculate the overall key generation rate of weak+vacuum

decoy state QKD protocol given the source is under Eve’s
control.

B. One-decoy protocol (asymptotic case)

The one-decoy protocol is the simplest decoy state proto-
col. In the one-decoy protocol, there are only two states: a
signal state and a weak decoy state. It can be viewed as a
simplified version of the weak+vacuum protocol since it
does not have the vacuum state.

The one-decoy protocol is of practical interest, particu-
larly due to the difficulty of preparing perfect vacuum state.
It has also been widely used in experiments �27,33,34�.

Here, we will show that the one-decoy protocol is also
applicable when the source is under Eve’s control in the
asymptotic case. The asymptotic case means that Alice sends
infinitely long bit sequence �K���.

In the one-decoy protocol, there is no vacuum state.
Therefore, we cannot measure Qe

V or Ee
V, which means we

cannot use Eqs. �1� to estimate QV in Eq. �14� or use Eqs. �2�
to estimate EVQV in Eq. �16�. Nonetheless, we can still esti-
mate Q1

S and e1
S.

Proposition 3. In absence of the vacuum state, a lower
bound of Q1

S and an upper bound of e1
S for untagged bits are

given by

Q1
S = P1

S

QDP2
S − QSP2

D + �P0
SP2

D − P0
DP2

S�
ESQS

P0
SEV −

2�N�1 − �D�2�N−1P2
S

��1 − ��N + 1�!

P1
DP2

S − P1
SP2

D , �17�

e1
S =

ESQS

Q1
S ,

respectively, under Condition 2 in the asymptotic case. Here
QS and QD are the gains of untagged bits of the signal state
and the decoy state, respectively. Their bounds can be esti-
mated from Eqs. �1�. ES is the QBER of untagged bits of the
signal state. ESQS can be estimated from Eqs. �2�. EV=0.5 in
the asymptotic case. The bounds of the probabilities can be
estimated from Eqs. �4�.

Proof. See Appendix D.
Plugging Eqs. �17� into Eq. �12�, we can easily calculate

the overall key generation rate of one-decoy protocol given
the source is under Eve’s control.

VII. NUMERICAL SIMULATION WITH COHERENT
SOURCE: ASYMPTOTIC CASE

In the asymptotic case, Alice sends infinitely long bit se-
quence �K���. Therefore we can consider ��0.

A. Calculating �

For any �� �0,1�, we can calculate � by

� = 1 − �
�N + �N� − 
�N − �N�� , �18�

where 
 is the cumulative distribution function of the photon
number for the input pulses.

Most QKD setups are based on coherent sources, which
means that the input photon number m obeys Poisson distri-
bution. It is natural to set N to be the average input photon
number. For a Poisson distribution centered at N, its cumu-
lative distribution function is given by


p�x� =
���x + 1�,N�

�x�! ,

where ��x ,y� is the upper incomplete � function
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��x,y� = �
y

�

tx−1e−tdt .

It is complicated to calculate 
p�x� numerically, particularly
for large x. Therefore, in numerical simulation, we approxi-
mate the Poisson distribution by a Gaussian distribution cen-
tered at N with a variance �2=N. Note this is an excellent
approximation for large N. The Gaussian cumulative distri-
bution function is given by


g�x� =
1

2�1 + erf	 x − N
�2N


� , �19�

where

erf�x� =
2

��
�

0

x

e−t2dt

is the error function. Notice that erf�x� is an odd function,
from Eqs. �18� and �19�, we have

� = 1 − �
g�N + �N� − 
g�N − �N��

= 1 −
1

2�erf	 �N
�2N


 − erf	− �N
�2N


� = 1 − erf	�N

2
�
 .

�20�

B. Simulating experimental outputs

If the photon number of an input pulse obeys Poisson
distribution with average photon number N, the photon num-
ber of the output signal also follows Poisson distribution
with average photon number N�.

For a QKD setup with channel transmittance � �=e−�l,
where � is the loss coefficient and l is the distance between
Alice and Bob�, Bob’s quantum efficiency �Bob, detector in-
trinsic error rate edet, and background rate Y0, the gain and
the QBER of the signals are expected to be �22�

Qe = Y0 + 1 − exp�− ��BobN�� , �21�

Ee =
e0Y0 + edet�1 − exp�− ��BobN���

Qe
.

The experimental outputs are clearly determined by Alice’s
internal transmittance � which needs to be set before the
experiment. In our simulation, the optimal values for �S and
�D are selected numerically via exhaustive search.

With these simulated experimental outputs, we can calcu-
late the lower bound of key generation rate from Eqs. �1�,
�2�, �4�, �9�, �12�, and �14�–�21�.

C. Simulation results

Our simulation is based on the parameters reported by
�39� as shown in Table I.

We choose to set N=106, which is very reasonable: If the
wavelength is 1550 nm and the pulse repetition rate is 1
MHz, the average input laser power will be �0.128 �W, or
−38.9 dBm. Even if the channel loss from the source to

Alice is 40 dB ��200 km telecom fiber�, the required aver-
age output power from the source is �1.28 mW, which can
be easily provided by many commercial pulsed laser diodes.
We choose � to be 10 standard deviations as �=0.01.

The simulation result for GLLP protocol is shown in Fig.
2. We can see that the key generation rate with an untrusted
source is very close to that with a trusted source. Their dif-
ference is almost negligible, and is only visible by magnify-
ing the tail �see the inset�.

The simulation result for weak+vacuum protocol is
shown in Fig. 3. We can see that the key generation rate with
an untrusted source is still very close to that with a trusted
source. By simply comparing the maximum transmission
distances, we can see that the difference is merely 5 km for
weak+vacuum decoy state protocol.

The simulation result for one-decoy protocol is shown in
Fig. 4. We can see that the key generation rate with an un-
trusted source is still very close to that with a trusted source.
The difference of maximum transmission distances is merely
8 km.

The above results are surprisingly good because we did
not assume any a priori knowledge about the source in the
security analysis. In other words, Alice and Bob do not know
the fact that the source is Poissonian and therefore they can-
not assume any photon number distribution.

One important reason for achieving this high performance
is that we applied heavy attenuation on the input pulses. Note
that the input pulse has �106 photons, while the output
pulse has less than one photon on average. The internal at-
tenuation of Alice’s local laboratory is greater than −60 dB.

TABLE I. Simulation parameter from Goggy, Yuan, and Shields
�39�.

�Bob � Y0 edet

4.5% 0.21dB/km 1.7�10−6 3.3%
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FIG. 2. �Color online� Simulation of GLLP protocol for N
=106 and �=1%. Citing Gobby, Yuan, and Shields �GYS� �39� data.
Inset: the magnified tail. The two cases �with a trusted source and
with an untrusted source� give very similar results. We need to
magnify the tail �see the inset� to see the slight advantage gained by
using a trusted source. We calculated the ratio of the key generation
rate with an untrusted source over that with a trusted source. The
ratios are 98.0%, 97.7%, and 75.3% at 0 km, 20 km, and 40 km,
respectively.
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We know that heavy attenuation will transform arbitrary pho-
ton number distribution into a Poisson-like distribution.

As we mentioned before, � can be arbitrarily chosen.
However, choosing � too large or too small will make the
security analysis less optimal �i.e., conservative�. Examples
are given in Fig. 5. We can clearly see that inappropriate
choice of � can deteriorate the performance of the system.
The one-decoy protocol with untrusted source is particularly
sensitive to the value of �.

The analytical optimization of � can be complicated.
Here, we only study this problem numerically. We calculated
the maximum possible transmission distances for different �.
The results are shown in Fig. 6. We can clearly see that there
is an optimal choice of �. Note that our analysis is valid for
arbitrary value of �. The optimal value of � will give us the
optimal �while still being rigorous� estimate on the security
of the system. Alice and Bob do not need to choose a certain
value of � before the experiment. They only need to find an
optimal value of � during the data post-processing.

The flat top in the curve of Fig. 6 suggests the insensitiv-
ity of the maximum transmission distance on � in a wide
range. We can see that the maximum transmission distance

changes only 8% within the range of � from 5 standard de-
viations to 100 standard deviations. Therefore in practice,
one can simply set � to be a few standard deviations and
achieve near-optimal results.

VIII. CONCLUSION

In this paper, we present the rigorous quantitative security
analysis of a QKD system with an unknown and untrusted
source. This analysis is particularly important for the security
of a standard “plug-and-play” system. We showed that,
rather surprisingly, even with an unknown and untrusted
source, unconditional security of a QKD system is still
achievable, with and without the decoy method. Moreover,
we explicitly give the experimental measures that must be
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FIG. 3. �Color online� Simulation of weak+vacuum decoy state
protocol for N=106 and �=1%. Citing GYS �39� data. The two
cases �with a trusted source and with an untrusted source� give very
close results. We calculated the ratio of the key generation rate with
an untrusted source over that with a trusted source. The ratios are
77.3%, 76.8%, and 73.6% at 0 km, 50 km, and 100 km,
respectively.
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FIG. 4. �Color online� Simulation of one-decoy protocol for N
=106 and �=1%. Citing GYS �39� data. The two cases �with a
trusted source and with an untrusted source� give very close results.
We calculated the ratio of the key generation rate with an untrusted
source over that with a trusted source. The ratios are 68.6%, 67.1%,
and 37.1% at 0 km, 50 km, and 100 km, respectively.
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FIG. 5. �Color online� Top: Simulation results for �=0.4%. Bot-
tom: Simulation results for �=11%. N=106 in both figures. Citing
GYS �39� data.
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FIG. 6. �Color online� Maximum transmission distances of
weak+vacuum protocol for various choices of �.
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taken to ensure the security, and the theoretical analysis that
can be directly applied to calculate the final secure key gen-
eration rate. One can easily extend our analysis to understand
the security of a QKD network, in which the source is often
untrusted.

We have made possible the unconditional security of the
“plug-and-play” QKD system with current technology. The
“plug-and-play” structure has clear advantage over unidirec-
tional structure since it does not require any active compen-
sation on the phase or the polarization. The self-
compensating property of the “plug-and-play” structure
makes it much simpler to implement than the unidirectional
structure, and makes it much quieter �i.e., much lower
QBER�. Most of the commercial QKD systems �40,41� are
based on this simple and reliable structure. However, the lack
of rigorous security analysis has been an obstacle for its de-
velopment for a long time. With our straightforward theoret-
ical and experimental solution, we expect the “plug-and-
play” structure to receive much more attention.

The security of practical QKD systems is a serious issue.
Recently, several quantum hacking works have been reported
�14,42�. It is very important to implement QKD system
based on tested assumptions. There are still several crucial
imperfections that are not analyzed in this paper. For ex-
ample, how can we understand the imperfection due to non-
single-mode �note that this is particularly important for free-
space QKD�? How can we analyze the fluctuation of internal
transmittance �? Also, how can we test the key assumptions
in our analysis, Ym,n

S =Ym,n
D and em,n

S =em,n
D ? These questions

suggest to us a simple fact: Although we are approaching the
unconditional security of practical QKD setup, we are not
there yet.
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APPENDIX A: DERIVATION OF Yn

We set M as the random variable of the input photon
number, N as the random variable of the output photon num-
ber, and C as the random variable of Bob’s detector status
�y=detection�. Yn is then given by the conditional probability

Yn = Pr��C = y�N = n� , �A1�

and Ym,n is given by the conditional probability

Ym,n = Pr��C = y�N = n & M = m� . �A2�

Yn can be expended as

Yn = Pr��C = y�N = n� =
Pr�C = y & N = n�

Pr�N = n�

= �
m=0

�
Pr�C = y & N = n & M = m�

Pr�N = n�

= �
m=0

�
Pr�N = n & M = m�

Pr�N = n�
Pr�C = y & N = n & M = m�

Pr�N = n & M = m�

= �
m=0

�

Pr��M = m�N = n�Pr��C = y�N = n & M = m�

= �
m=0

�

P��m�n�Ym,n.

APPENDIX B: ESTIMATE OF Q1
S

From definition �37�, we know that the gain of untagged
bits is given by

Q = �
m=�1−��N

�1+��N

�
n=0

�

Pin�m�Pn�m�Ym,n,

where Pin�m� is the probability that the input signal contains
m photons �i.e., the ratio of the number of signals with m
input photons over K�, Pn�m� is the conditional probability
that the output signal contains n photons given the input
signal contains m photons, and is given by Eq. �3�.

The gains for signal, decoy, and vacuum states in un-
tagged bits are therefore given by

QS = �
m=�1−��N

�1+��N

�
n=0

�

Pin�m�Pn
S�m�Ym,n, �B1�

QD = �
m=�1−��N

�1+��N

�
n=0

�

Pin�m�Pn
D�m�Ym,n,

QV = �
m=�1−��N

�1+��N

Pin�m�Ym,0,

respectively. Here Pn
S�D��m� is Pn�m� for the signal �decoy�

state. Their bounds can be estimated from Eqs. �4�. QS�D�V

cannot be measured experimentally, but their upper bounds
and lower bounds can be estimated from Eqs. �1�. Note that
�S�D�V should be determined experimentally. In asymptotic
case, �S=�D=�V. If the bit sequence sent by Alice is finite,
�S�D�V may not be exactly the same due to statistical fluctua-
tion.

We know that

Q1
S = �

m=�1−��N

�1+��N

Pin�m�P1
S�m�Ym,1 
 P1

S �
m=�1−��N

�1+��N

Pin�m�Ym,1

= P1
SZ1, �B2�

in which P1
S can be calculated from Eqs. �4�, and Z1 is de-

fined as
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Z1 = �
m=�1−��N

�1+��N

Pin�m�Ym,1. �B3�

If we can set a lower bound on Z1, we will be able to esti-
mate the lower bound of Q1

S.
Z1 clearly arises from the contribution of single photon

signals. A natural strategy is to find an appropriate linear
combination of QS and QD, in which the multiphoton signal
contribution is minimized �while keeping it positive� so that

we can set a lower bound on it as zero. Among all the mul-
tiphoton signals, the two-photon signal has much greater
weight than signals with more photons. Therefore, we will
try to eliminate the two-photon signal contribution first. Note
that we can easily estimate the contribution of vacuum sig-
nals from QV and EV.

Equations �4� show that Pn
S	 Pn

S�m�	 Pn
S and Pn

D

	 Pn
D�m�	 Pn

D for untagged bits. Combining them with Eqs.
�B1�, we have

QSP2
D − QDP2

S = �
m=�1−��N

�1+��N

Pin�m��
n=0

�

�Pn
S�m�P2

D − Pn
D�m�P2

S�Ym,n


 �
m=�1−��N

�1+��N

Pin�m��
n=0

�

�Pn
SP2

D − Pn
DP2

S�Ym,n

= �
n=0

�

�Pn
SP2

D − Pn
DP2

S� �
m=�1−��N

�1+��N

Pin�m�Ym,n

= a0 �
m=�1−��N

�1+��N

Pin�m�Ym,0 + a1 �
m=�1−��N

�1+��N

Pin�m�Ym,1

+ �P2
SP2

D − P2
DP2

S� �
m=�1−��N

�1+��N

Pin�m�Ym,2 + �
n=3

�1−��N

a2�n� �
m=�1−��N

�1+��N

Pin�m�Ym,n + a3

= a0 �
m=�1−��N

�1+��N

Pin�m�Ym,0 + a1 �
m=�1−��N

�1+��N

Pin�m�Ym,1

+ �
n=3

�1−��N

a2�n� �
m=�1−��N

�1+��N

Pin�m�Ym,n + a3

= a0Z0 + a1Z1 + �
n=3

�1−��N

a2�n�Z2�n� + a3, �B4�

where

a0 = P0
SP2

D − P0
DP2

S, �B5�

a1 = P1
SP2

D − P1
DP2

S, �B6�

a2�n� = Pn
SP2

D − Pn
DP2

S, �B7�

a3 = − �
n=�1−��N+1

�1+��N

Pn
DP2

S �
m=�1−��N

�1+��N

Pin�m�Ym,n

= − �
n=�1−��N+1

�1+��N

Pn
DP2

SZ3�n� , �B8�

and

Z0 = �
m=�1−��N

�1+��N

Pin�m�Ym,0 = QV, �B9�

Z2�n� = �
m=�1−��N

�1+��N

Pin�m�Ym,n, �B10�

Z3�n� = �
m=�1−��N

�1+��N

Pin�m�Ym,n. �B11�

Note that in Eq. �B4�, when n=2, the term Pn
SP2

D− Pn
DP2

S=0,
which means we have removed the contribution from the
two-photon signals. Our strategy is clear now: The contribu-
tion of vacuum signals �a0Z0� can be easily bounded as a0
can be calculated from Eqs. �B5� and an upper bound of Z0 is
given by Z0=QV, which can be calculated from Eqs. �1�; the
contribution of single photon signals �a1Z1� is to be esti-
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mated while we know the exact value of a1; we need to set
some bounds on the higher order terms �a2 and a3� to com-
plete an estimate of Z1. As we will show below, a1 is nega-
tive under certain condition. Therefore, we should set a
lower bound on the higher order terms to find the lower
bound of Z1.

Lemma 1. a1 is negative under Condition 2a,

�S

�D
�

�1 + ��N − 1

�1 − ��N − 1
.

Proof. By expanding Eq. �B6� we have

a1 = P1
SP2

D − P1
DP2

S

= �1 − ��N�S�1 − �S��1−��N−1 �1 + ��N��1 + ��N − 1�
2

��D
2 �1 − �D��1+��N−2 − �1 + ��N�D�1 − �D��1+��N−1

�
�1 − ��N��1 − ��N − 1�

2
�S

2�1 − �S��1−��N−2

= N2�1 − �2��S
2�D

2 �1 − �S��1−��N−2�1 − �D��1+��N−2

�	 �1 + ��N − 1

2�S
−

�1 − ��N − 1

2�D
− �N
 . �B12�

For Eq. �B12� we can see that a1�0 under Condition 2a:

�S

�D
�

�1 + ��N − 1

�1 − ��N − 1
.

�
Lemma 1�. a0 is negative under Condition 2a.
Proof. We have

a0 = P0
SP2

D − P0
DP2

S

= �1 − �S��1+��N �1 + ��N��1 + ��N − 1�
2

�D
2 �1 − �D��1+��N−2 − �1 − �D��1−��N �1 − ��N��1 − ��N − 1�

2
�S

2�1 − �S��1−��N−2

=
1

2
�1 − �S��1−��N−2�1 − �D��1−��N��1 − �S�2�N+2�1 + ��N��1 + ��N − 1��D

2 �1 − �D�2�N−2 − �1 − ��N��1 − ��N − 1��S
2�

�
1

2
�1 − �S��1−��N−2�1 − �D��1−��N��1 + ��N��1 + ��N − 1��D

2 − �1 − ��N��1 − ��N − 1��S
2�

=
1

2
�1 − �S��1−��N−2�1 − �D��1−��N���1 + ��N − 1�2�D

2 + ��1 + ��N − 1��D
2 − ��1 − ��N − 1�2�S

2 − ��1 − ��N − 1��S
2� � 0.

�B13�

In the last step, we made use of Condition 2a. �

Lemma 2. a2�n� is positive under Condition 2,

�S

�D
�

�1 + ��N − 2

�1 − ��N − 2
	 �1 + ��N − 2

2�N

2�N/��1−��N−2�	 �1 + ��N − 2

�1 − ��N − 2

	 e2

2�N

1/2��1−��N−2�

.

Proof. Expanding Eq. �B7�, note that 3	n	 �1−��N, we have

a2�n� = Pn
SP2

D − Pn
DP2

S

= 	�1 − ��N
n


�S
n�1 − �S��1−��N−n �1 + ��N��1 + ��N − 1�

2
�D

2 �1 − �D��1+��N−2

− 	�1 + ��N
n


�D
n �1 − �D��1+��N−n �1 − ��N��1 − ��N − 1�

2
�S

2�1 − �S��1−��N−2

= �S
2�D

2 �1 − �S��1−��N−n�1 − �D��1+��N−n ��1 − ��N� ! ��1 + ��N�!
2 · n!

�b1�n� − b2�n�� , �B14�
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where

b1�n� =
�S

n−2�1 − �D�n−2

��1 − ��N − n� ! ��1 + ��N − 2�!
� 0,

b2�n� =
�D

n−2�1 − �S�n−2

��1 + ��N − n� ! ��1 − ��N − 2�!
� 0.

To show that a2�n��0, we need to show that b1�n��b2�n�.
Since they are both positive, we could try to show that
b1�n� /b2�n��1,

b1�n�
b2�n�

=
��1 + ��N − n� ! ��1 − ��N − 2�!
��1 + ��N − 2� ! ��1 − ��N − n�!	�S�1 − �D�

�D�1 − �S�

n−2

= �
i=3

n 	 �1 − ��N − i + 1

�1 + ��N − i + 1

�S�1 − �D�
�D�1 − �S�
 .

Define the last term of the product as

d�n� =
�1 − ��N − n + 1

�1 + ��N − n + 1

�S�1 − �D�
�D�1 − �S�

,

which is a decreasing function of n. Note that d�n� is always
positive. Due to the decreasing nature of dn on n, there exists
a real number n0 satisfying the following criterium: For any
n�n0, d�n��1; for any n
n0, d�n�
1. We can easily see
the following facts.

�1� If n�n0, we know for sure that b1�n� /b2�n��1,
which means a2�n��0.

�2� If n
n0, b1�n� /b2�n� decreases as n increases. Since
n	 �1−��N, we have

b1�n�
b2�n�

= �
i=3

n 	 �1 − ��N − i + 1

�1 + ��N − i + 1

�S�1 − �D�
�D�1 − �S�



 �
i=3

�1−��N 	 �1 − ��N − i + 1

�1 + ��N − i + 1

�S�1 − �D�
�D�1 − �S�


=
��1 − ��N − 2� ! �2�N�!

��1 + ��N − 2�! 	�S�1 − �D�
�D�1 − �S�


�1−��N−2

=
1

	�1 + ��N − 2

2�N

	

�S�1 − �D�
�D�1 − �S�


�1−��N−2

.

Therefore a2�n��0 under Condition 2b,

�S

�D
� 	�1 + ��N − 2

2�N

1/��1−��N−2�

.

Note that N is usually very large, which means the evaluation
of Condition 2b can be computationally challenging. To sim-
plify this condition, we can make use of Stirling’s approxi-
mation

�2�nn+1/2 exp	− n +
1

12n + 1



� n ! � �2�nn+1/2exp	− n +
1

12n

 ,

which can be simplified to be

nn+1/2e−n � n ! � nn+1/2e−n+1. �B15�

With the help of Eq. �B15�, we can derive a simpler and
stronger version of Condition 2b.

Condition 2. We have

�S

�D
�

�1 + ��N − 2

�1 − ��N − 2
� �1 + ��N − 2

2�N
�2�N/��1−��N−2�� �1 + ��N − 2

�1 − ��N − 2
·

e2

2�N
�1/2��1−��N−2�

.

�
Note that Condition 2 is also stronger than Condition 2a. Therefore Lemma 1 is also true under Condition 2.
Lemma 2�. �n=3

�1−��Na2�n�Z2�n�
0 under Condition 2.
Proof. From Eq. �B10� we can clearly see that Z2�n�
0. �
Lemma 3. We have

a3 � −
2�N�1 − �D�2�N−1P2

S

��1 − ��N + 1�!
.

Proof. Expanding Eq. �B8�, we have

a3 = − �
n=�1−��N+1

�1+��N

Pn
DP2

SZ3�n�


 − �
n=�1−��N+1

�1+��N

Pn
DP2

S �� 0 	 Z3�n� 	 1�


 − 2�NP�1−��N+1
D P2

S �� 0 	 Pn
D � P�1−��N+1

D �
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= − 2�N	 �1 + ��N
�1 − ��N + 1


�D
�1−��N+1�1 − �D�2�N−1P2

S

= − 2�N
1

��1 − ��N + 1�!
�1 − �D�2�N−1P2

S �
i=0

�1−��N

���1 + ��N − i��D�

� −
2�N�1 − �D�2�N−1P2

S

��1 − ��N + 1�!
�� ��1 + ��N − i��D � 1� . �B16�

�

Note that �a3� is in the order of O� 1
N! �. It is very close to 0.

From Eqs. �B4�–�B16� we can conclude that

Z1 


QDP2
S − QSP2

D + a0QV + �
n=3

�1−��N

a2�n�Z2�n� + a3

− a1
�

QDP2
S − QSP2

D + a0QV −
2�N�1 − �D�2�N−1P2

S

��1 − ��N + 1�!
− a1

= Z1

under Condition 2,

�S

�D
�

�1 + ��N − 2

�1 − ��N − 2
	 �1 + ��N − 2

2�N

2�N/��1−��N−2�	 �1 + ��N − 2

�1 − ��N − 2

e2

2�N

1/2��1−��N−2�

.

Therefore, the lower bound of Q1
S is given by

Q1
S 
 P1

SZ1 � P1
SZ1 = P1

S

QDP2
S − QSP2

D + �P0
SP2

D − P0
DP2

S�QV −
2�N�1 − �D�2�N−1P2

S

��1 − ��N + 1�!
P1

DP2
S − P1

SP2
D = Q1

S.

This completes our proof of Proposition 1.

APPENDIX C: ESTIMATE OF e1
S

The derivation of the upper bound of e1
S is relatively sim-

pler than that of the lower bound of Q1
S. Similar as Eq. �B4�

we have

ESQS = �
m=�1−��N

�1+��N

Pin�m��
n=0

�

Pn
S�m�Ym,nem,n,

where em,n is the error rate for signals with m input photons
and n output photons. Rearranging terms, we have

Q1
Se1

S = ES · QS − Q0
Se0

S − �
n=2

�

Qn
Sen

S

	 ESQS − Q0
Se0

S

= ESQS − �
m=�1−��N

�1+��N

Pin�m�P0
S�m�Ym,0em,0

	 ESQS − P0
S �

m=�1−��N

�1+��N

Pin�m�Ym,0em,0

= ESQS − P0
SEVQV. �C1�

The upper bound of e1
S is thus given by

e1
S 	

ESQS − P0
SEVQV

Q1
S 	

ESQS − P0
SEVQV

Q1
S .

This completes our proof of Proposition 2.

APPENDIX D: ONE-DECOY PROTOCOL

In one-decoy protocol, there is no vacuum state. There-
fore, we cannot measure Qe

V or Ee
V. If we still want to esti-

mate Q1
S via Eq. �14� and e1

S via Eq. �16�, we need to estimate
QV in Eq. �14� and EV ·QV in Eq. �16� in another way.

To estimate QV, we can look at Eq. �C1�,

P0
SEVQV 	 ESQS − Q1

Se1
S 	 ESQS 	 ESQS.

Therefore,

QV 	
ESQS

P0
SEV = QV, �D1�

where ESQS can be estimated from Eqs. �2�, P0
S can be esti-

mated from Eqs. �4�, and EV=0.5 in asymptotic case.
Plugging Eq. �D1� into Eq. �14�, we have the expression

of Q1
S with the one-decoy protocol,
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Q1
S � Q1

S = P1
S

QDP2
S − QSP2

D + �P0
SP2

D − P0
DP2

S�
ESQS

P0
SEV −

2�N�1 − �D�2�N−1P2
S

��1 − ��N + 1�!

P1
DP2

S − P1
SP2

D .

As for the estimate of EVQV, we can simply use the following fact: EVQV
0. Therefore, the expression of e1
S in one-decoy

protocol is given by

e1
S 	 e1

S =
ESQS

Q1
S .

This completes our proof of Proposition 3.
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