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We have numerically examined optimization of the experimentally achievable shapes of mid-infrared fem-
tosecond laser pulses to construct elementary quantum gates using molecular rovibrational states of a single
molecule. Instead of optimizing the electric field by optimal control theory, the method generally used in
theoretical studies of coherent control, the transmittance and the phase shift of conventional pulse shapers were
optimized in the frequency domain by a genetic algorithm. The target molecular system we examined was the
rotation-vibration states of CO in the X�1�+� ground electronic state. Although the existence of the rotational
degrees of freedom makes the quantum gate operation complicated, high fidelity of over 0.95 was achieved for
one-rovibrational-qubit systems, which indicates that a molecular quantum computer may be feasible for at
least one-qubit calculations on a diatomic molecule. On the other hand, two-qubit calculations are more
difficult to achieve in a single CO molecule using rotational and vibrational degrees of freedom as different
qubits. The importance of the control of the rotational in addition to the vibrational wave packet in order to
realize a molecular quantum computer is discussed.
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I. INTRODUCTION

Coherent control of molecules by means of wave packet
manipulation has been investigated theoretically in the last
two decades, and its experimental realization has been
achieved by tailored ultrashort laser pulses �1�. One of the
potential applications of coherent control of molecules by
shaped ultrashort laser pulses is quantum computation. Mol-
ecules have many vibrational �v� and rotational �J� degrees
of freedom that are nearly orthogonal to each other. If one
can use such internal states in a single molecule as multiple
qubits, molecular qubits might have an advantage in terms of
scalability. Technically, quantum gate operations by tailored
ultrashort laser pulses are more difficult than coherent con-
trol of chemical reactions. In the latter, one needs to realize
only a specific target state by controlling the wave packet.
For such a control, stimulated Raman adiabatic passage
�STIRAP� �2–4� is a simple but powerful technique, because
it achieves 100% population transfer in a specific transition
�5,6�. On the other hand, the former requires unitary trans-
formation among multiple states involving time reversal
transitions, which makes the control more difficult �7,8�. For
example, the NOT gate operation ��1�↔ �0��, which is one of
the simplest one-qubit gates, requires simultaneous realiza-
tion of forward ��1�← �0�� and backward ��1�→ �0�� transi-
tions between two states. Such control cannot be achieved by
STIRAP, since the time ordering of the pulse sequence is
very important in the STIRAP process, which results in a
one-way control only. At the moment, manipulation by
shaped ultrashort pulses is the only method to realize desired
unitary transformations for quantum gate operations.

The Deutsch-Jozsa algorithm �9�, which is one of the el-
emental algorithms in quantum computation, has been exam-

ined both theoretically and experimentally using electronic
excited states of Li2 �10� and I2 �11� manipulated by arbi-
trarily shaped laser pulses. Experimentally, manipulation of
wave packets in electronic excited states via “rotational-
vibronic” transitions from the ground electronic state is less
difficult compared with that in the electronic ground state via
“rovibrational” transitions because of its large transition mo-
ment and the availability of shaped pulses in the visible re-
gion. Recently, techniques of arbitrary pulse shaping in the
mid- and near-infrared regions have also been established
�12–17�, which make it possible to apply control in the elec-
tronic ground state of molecules �18�.

Manipulation of wave packets in the electronic ground
state is more appropriate for quantum gate operations be-
cause of its long decoherence time ��100 ms�. De Vivie-
Riedle and co-workers proposed that the normal modes of
molecular vibrations manipulated by the shaped mid-ir pulse
can be used as qubits �19�. Quantum gate operations by
shaped mid-ir pulses with two vibrational normal modes
have been examined theoretically for acetylene �20–24� and
MnBr�CO�5 �25�. Babikov also investigated quantum gate
operations using OH molecules theoretically �26�. In these
works, the shapes of mid-ir pulses were optimized by opti-
mal control theory �OCT� to realize quantum gate operations
with high fidelity under the assumption that the effect of
rotational degrees of freedom is negligibly small. As rota-
tional motion of molecules, however, always couples with
vibrational motion in real systems, the effect of the rotation
of molecules should not be ignored in calculations of mo-
lecular quantum gate operations �27�. Yamashita and co-
workers have considered the effect of rotation explicitly, and
investigated the optimal control of “rovibrational” wave
packets for quantum computation using shaped pulses
�28,29�. Their optimized shaped pulses contained frequencies
from the mid-ir to the microwave region. Since shaped ul-
trashort laser pulses have not been experimentally realized in*momose@chem.ubc.ca
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the microwave and far-infrared regions yet, experimental re-
alization of these shaped pulses is not possible at this mo-
ment.

In this study, we have numerically investigated the shapes
of ultrashort mid-ir pulses which manipulate rovibrational
wave packets, and examined the feasibility of applying
vibrational-rotational states of a single molecule to one- and
two-qubit quantum gate operations. We restricted ourselves
to experimentally achievable pulses in order to examine ex-
perimental feasibility. In typical pulse shaping methods, a
transform-limited laser pulse is manipulated in both ampli-
tude and phase in the frequency domain using liquid crystal
spatial light modulator �LC-SLM� �30� or acousto-optic
modulator �AOM� �31� devices. Therefore, we optimized the
amplitude and phase of mid-ir pulses in the frequency do-
main. For the optimization, we adopted a genetic algorithm
�GA� �32� rather than the commonly used OCT. The OCT is
a rapidly convergent iteration method �33–35�, in which the
laser field is optimized in the time domain in order to achieve
a target transition with a large transition probability while
minimizing the laser pulse intensity �7,36–39�. The OCT,
however, is not appropriate to obtain pulse shapes that are
attainable in practical experiments, where pulse shapes are
restricted by the bandwidth and amplitude of the input pulse
as well as the spectral resolution and dynamic range of pulse
shaping devices in the frequency domain. Such restrictions
cannot be easily implemented in OCT algorithms, and few
works have been reported to implement the spectral con-
straint �40,41�. On the other hand, since the GA is an inde-
terministic algorithm and does not require any mathematical
and physical information from the previous iteration step in
order to obtain solutions in the next iteration step, we can
easily impose experimental restrictions on each step in order
to optimize laser fields �42�.

The present paper is organized as follows. In Sec. II, we
summarize the theoretical aspects of the quantum gate opera-
tions and the genetic algorithm we employed in the present
calculation. Optimized pulse shapes for typical quantum gate
operations in one- and two-qubit systems are given in Sec.
III together with the wave packet propagation induced by the
optimized pulses. In Sec. IV, some conclusions and future
perspectives are given.

II. THEORY

A. Molecular qubit system

In the present calculation, rovibrational eigenstates in the
ground electronic state X�1�+� of a carbon monoxide �CO�
molecule are considered as qubits. We assume that we pre-
pare ultracold molecules that occupy only the �v=0,J=0�
state before the manipulations. This assumption is important
for the initialization of the qubit system. Since we treat a
diatomic molecule in this paper, we use its vibrational degree
of freedom �v� as qubit states for a one-qubit calculation. For
two-qubit calculation, we consider the vibrational degree of
freedom �v� as one qubit and the rotational degree of free-
dom �J� of the same molecule as another qubit, and examine
the feasibility of using different degrees of freedom on a
single molecule for quantum gate operations. Throughout

this study, we fix the projection quantum number M of the
total angular momentum J to be M =0, since the rovibra-
tional state is initialized to the state with J=M =0.

Figure 1 shows the rotational-vibrational energy levels of
a CO molecule. Only the levels accessible from the
�v=0,J=0� state by mid-ir photons are shown. In the case of
infrared transitions within the X�1�+� state of CO, transitions
of v+1, J−1↔v, J �called the P branch in spectroscopic
notation� and v+1, J+1↔v, J �called the R branch� are only
allowed by the one-photon process. Therefore, it is practical
to assign the rovibrational states of �v=0,J=0� and
�v=1,J=1� as qubits �q1�= �0� and �1�, respectively, for a
one-qubit system, and the �v=0,J=0�, �v=0,J=2�,
�v=1,J=1� and �v=1,J=3� states as qubits �q1q2�= �00�,
�01�, �10�, and �11�, respectively, for a two-qubit system,
when we manipulate these states by mid-ir radiation only.
One may think that the definition of, for example,
�v=0,J=0�, �v=0,J=1�, �v=1,J=0�, and �v=1,J=1� as qu-
bits of �q1q2�= �00�, �01�, �10�, and �11�, respectively, for a
two-qubit system, is better and more convenient than our
definition in order to avoid unnecessary confusion. Actually
such a definition has been employed in previous works �29�.
The disadvantage of the latter definition, however, is that the
states �v=0,J=1� and �v=1,J=0� are not accessible from the
�v=0,J=0� state using mid-ir pulses. Therefore, in order to
realize quantum gate operations with the latter definition, one
needs shaped pulses in both mid-ir and microwave frequency
regions as discussed by Shioya et al. �29�. Such shaped
pulses are difficult to realize at the present stage.

When we construct a one-qubit system with the
�v=0,J=0� and �v=1,J=1� rovibrational states, the former
state couples with only the �v=1,J=1� state by a one-photon
process in the mid-ir region, but the latter state couples with
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FIG. 1. �Color online� Schematic diagram of rovibrational states
in the X�1�� ground electronic state of CO. Only the levels acces-
sible from the �v=0,J=0� state by mid-ir photons are shown. The
thick solid �green�, thick dashed �red�, thin solid �blue�, and thin
dashed �black� lines correspond to the transitions whose frequencies
are shown by arrows with the same colors and styles in Figs. 6 and
8. The symbols R�J� and P�J� represent the spectroscopic rotation
for the transitions v+1,J+1↔v ,J and v+1,J−1↔v ,J, respec-
tively. The number next to each double arrow shows the transition
frequency in units of cm−1.
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four rovibrational states �v=0,J=0�, �v=0,J=2�,
�v=2,J=0�, and �v=2,J=2� as shown in Fig. 1. Therefore,
one has to suppress the transitions between the �v=1,J=1�
state and the �v=0,J=2�, �v=2,J=0�, and �v=2,J=2� states
by shaping the mid-ir pulses in order to achieve high fidelity
in quantum gate operations. For a two-qubit system, there are
many more transitions that have to be suppressed. Therefore,
the difficulty of quantum gate operations using rovibrational
states on a single molecule grows drastically as we increase
the number of qubits.

B. Quantum gate operations

Since any unitary transformation in the Hilbert space can
be decomposed into a product of a controlled-NOT �CNOT�
gate of a two-qubit system and a unitary transformation of a
one-qubit system, it is only necessary to obtain electric fields
that achieve the gate operations of CNOT and representative
examples of unitary transformations in order to show the
feasibility of quantum gate operations using molecular rovi-
brational states. By employing the GA described in Sec. II C,
we obtained pulse shapes that realize the Hadamard �H�, NOT

�X�, and Pauli-Z �Z� gates that are described by the following
matrix forms:

H =
1
�2

�1 1

1 − 1
	, X = �0 1

1 0
	, and Z = �1 0

0 − 1
	 ,

�1�

respectively, for a one-qubit system �0� and �1�. We also ex-
amined the CNOT gate written in the basis of �00�, �01�, �10�,
and �11� as follows:

UCNOT =

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0
� . �2�

In Eq. �2�, we treated the vibrational and rotational states as
the control �q1� and target �q2� bits, respectively, based on
the definition of qubits described in the previous section. In
the optimization of the electric field, we evaluated the fol-
lowing transitions simultaneously in each quantum gate op-
eration. They are

�0� ↔
1
�2

��0� + �1��, �1� ↔
1
�2

��0� − �1��

for the Hadamard gate, �3a�

�0� ↔ �1� for the NOT gate, �3b�

�0� ↔ �0�, �1� ↔ − �1� for the Pauli-Z gate, �3c�

and

�00� ↔ �00�, �01� ↔ �01�, �10� ↔ �11�

for the CNOT gate. �3d�

Double-sided arrows show the time-reversible transitions,

and both pathways should be achieved simultaneously by a
single pulse. For example, for the NOT gate calculation, we
calculated wave packet propagation under a shaped pulse
from both the �0� and �1� states, and optimized the pulse
shape so that �0�→ �1� and �1�→ �0� transformations can be
achieved simultaneously by the same pulse.

As Tesch and de Vivie-Riedle �23� pointed out, the phase
correction should be taken into account in the optimization to
achieve all transitions of each quantum gate in phase. For
instance, the CNOT gate requires the following transition for
the superposition state,

�00� + �01� + �10� + �11� → ��00� + �01� + �11� + �10��ei�,

�4�

where � is the phase evolution of the total system during the
CNOT gate. In order to evaluate the phase correction as well
as the population transfer in quantum gate operations, we
have calculated the fidelity �8,29� defined as

F =
1

Z2�

k=1

Z

��k�t → ����k��2

, �5�

where ��k�t→��� is the wave packet created for a transition
k in a specific quantum gate generated after the interaction
with a shaped pulse, ��k� is the wave function of the target
state ideal for the transition k, and Z is the number of tran-
sitions evaluated in the quantum gate. The fidelity becomes
unity if the quantum gate operations are completely realized
in both population transfers and phase changes.

C. Optimization method

In order to find the optimal electric field for a specific
quantum gate operation, we employed the genetic algorithm
implemented for the shaping of femtosecond laser pulse by
Zeidler et al. �43�. We imposed a condition on the optimiza-
tion such that the optimized shaped pulse must be generated
from a transform-limited pulse that can be obtained by con-
ventional laser systems. The electric field of the input pulse
was modeled as

E��� = E0 exp�− 2 ln 2�� − �c

	�
	2�exp�i
���� , �6�

where E0 is the peak intensity of the field, �=2�� is the
angular frequency, and �c=2��c is the center frequency
which resonates with the v=1↔v=0 vibrational transition
of CO, �c=64.4 THz �2147 cm−1�. The phase of the input
pulse in Eq. �6� was set to be 
���=0, that is, the transform-
limited pulse. The full width at half maximum �FWHM� of
the angular frequency 	�=2�	� of the input pulse depends
on the laser system. We assumed the width of 	�=3 THz
�100 cm−1� which corresponds to a time width of
	t=147 fs for the FWHM. As for the integrated input laser
intensity �pulse energy� I=c
0�d��E����2, we assumed
intensities of 5−30 �J /pulse �the peak intensity of
1−10 TW /cm2 for a transform-limited pulse with
	t=147 fs focused down to 50 �m in diameter�, which are
the maximum intensities available by commercial laser sys-
tems in the mid-ir region at the present.
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We also imposed a condition that shaped pulses are the
ones obtainable by conventional pulse shapers. Any conven-
tional pulse shaper has a spectral resolution ��. The trans-
mittance �0� f�� j��1� and phase shift �0�
��� j��2�� at
frequency � j for � j =�c� j �� �j=0, �1, . . . , �N� applied
by a shaper are the parameters to be optimized by the GA,
which yields the output spectrum

E��� j� = E0
�f�� j�exp�− 2ln2�� j − �0

	�
	2�exp�i
��� j�� .

�7�

We therefore have 4N+2 parameters to be optimized in a GA
loop. In practice, the output shaped spectra obtained using a
LC-SLM shaper are discrete. On the other hand, the spectra
shaped by an AOM are convoluted by the frequency reso-
lution of the AOM. In the present calculation, we have taken
into account the spectral resolution of the shaper for the case
of an AOM shaper, and interpolated the discrete spectra by
employing the cubic spline interpolation method �44�.

Here, we briefly review the genetic algorithm we used in
the present calculation. As the parameter sets for iterations,
we introduced P vectors �x1 ,x2 , . . . ,xP�, in which each vec-
tor set consists of 4N+2 parameters as xp
= �x1

p ,x2
p , . . . ,x4N+2

p � for the pth vector. As described above,
2N+1 parameters among the 4N+2 describe the transmit-
tance and the others describe the phase shift at each fre-
quency. Each value xn

p takes a non-negative integer value
between 0 and K−1, where K is the dynamic range of the
pulse shaper. These integers xn

p were converted into the trans-
mittance and phase shift at each frequency such that the
transmittance takes the value of f���n−1�/2−N�=xn

p / �K−1� for
odd numbers of n and the phase shift 
���n/2−N−1�
=2�xn

p /K for even numbers of n. Note that the values of
f�� j� fall between 0 and 1 under such conditions, which
assures that the amplitude of the shaped pulse does not ex-
ceed the input amplitude at each frequency. The phase shifts
are restricted to values between 0 and 2�. Initial sets of the
P vectors for the first iteration loop were generated ran-
domly.

In each iteration, the fidelity of quantum gate operations
was calculated by Eq. �5� numerically for all P vector sets.
Then, the L vectors with the highest fidelity were chosen
among the total P vectors as parent vectors. The P child
vectors for the next generation were generated by mutation
and recombination processes using the L parent vectors. We
did not employ the cloning process, which carries the exact
parent vectors to child vectors. Thus, after generating the P
child vectors, all the parent vectors were disregarded.

From each parent vector xp, we generated M child vectors
by mutation as follows. Each vector element was changed by
the mutation operator with a probability of Pmut to construct
a child vector yq as follows:

yn
q = �xn

p + �lmn, rn � Pmut,

xn
p, rn � Pmut.

� �8�

Here, r= �r1 ,r2 , . . . ,r4N+2� is a random number sequence
with 0�rn�1, which was generated each time. The product
�lmn describes the amount of shift from the value xn

p to yn
q.

The factor mn is a normal random number with a Gaussian
probability distribution P�mn�,

P�mn� =
1

�2�
exp�−

mn
2

2
	 , �9�

and is generated whenever a mutation occurs �rn� Pmut�. The
parameter �l is the step length for the lth generation, which
determines the amount of change by a mutation. The param-
eter �l controls the convergence speed and the convergence
properties. As suggested by Zeidler et al. �43�, in order to
achieve fast convergence, the step length at the lth genera-
tion loop was changed by the ratio of the number of success-
ful vectors, Nsuc, created by the mutation in the previous
�l−1�th generation to the number of vectors created by mu-
tation, Ntot �=ML�. Successful vectors are those whose fidel-
ity is better than that of their parent vector. Numerically, the
step length for the lth generation was calculated by

�l = � �l−1q �� � �c� ,

�l−1/q �� � �c� ,
� �10�

where �=Nsuc /Ntot, �c�0��c�1� is a threshold value that
determines whether the step length is increased or decreased,
and 0�q�1 is a contraction factor. The threshold value �c,
contraction factor q, and step length at the first generation,
�1, determine the convergence behavior in the calculation,
and should be carefully determined for each case.

The other P−ML child vectors were generated by a re-
combination procedure. Two parent vectors xq� and xq�
�q��q�� were chosen from the L parent vectors at random.
As the recombination scheme, we adopted the multiple
crossover method which provides a child vector yq as fol-
lows:

yn
q =�xn

q�, rn � 0.5,

xn
q�, rn � 0.5,

� �11�

where r= �r1 ,r2 , . . . ,r4N+2� is a random number sequence of
0�rn�1 generated for each vector.

In the actual simulation, we employed the following pa-
rameters. The input pulse to the shaper was assumed to be
the Gaussian pulse shape described by Eq. �6� with
	�=100 cm−1. The spectra of the transmittance and phase
shift of the shaper were discretized with a step size of
d�=d� /2�=300 GHz �10 cm−1� in the frequency range of
�250 cm−1 centered at �c=64.4 THz �2147 cm−1�. There-
fore, each vector consists of 102 variables, or N=25. The
dynamic range of the shaper was assumed to be K=64. In
each generation, we created P=48 vectors, calculated the
fidelity of each vector as discussed in Sec. II D, and chose
L=8 vectors with the highest fidelity as parent vectors for the
next generation. We generated M =4 children from each par-
ent vector by mutation, with the probability Pmut=0.2, the
threshold value �c=0.6, the contraction factor q=0.95, and
the step length at the first generation, �1=20.0. The number
of total child vectors generated by the mutation was 32. An-
other 16 child vectors were generated by recombination with
multiple crossovers. With these parameters, the optimized
parameters were converged within 100 generations in most
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cases. After 100 generations, we selected the vector with the
best fidelity as the optimal parameter set, and calculated the
optimal electric field by Eq. �7�.

D. Evaluation of optimal electric fields

To evaluate the vectors in each generation, we have cal-
culated the fidelity in Eq. �5� using a wave packet propagated
under the electric field in Eq. �7�. The calculation method for
wave packet propagation employed in the present study was
described in our previous paper �27�. Briefly, the time depen-
dence of the molecular wave function ��t� is given by the
Schrödinger equation as

i�
d��t�

dt
= H�t���t� = �H0 + H1�t� + H2�t����t� . �12�

Here, H0 is the zeroth-order molecular rovibrational Hamil-
tonian, and H1�t� and H2�t� represent the interaction between
molecule and laser field via the dipole moment and polariz-
ability, respectively. Since we consider the case where the
femtosecond pulse contains a resonant frequency of the vi-
brational transition, the term of the first-order dipole interac-
tion H1 is dominant compared with the polarizability term
H2. If the laser pulse does not contain a resonant frequency,
the contribution of the dipole interaction term is rapidly di-
minished due to time averaging. In such a case, the second-
order interaction via polarizability becomes more important.
The Hamiltonians H0, H1�t�, and H2�t� were constructed by
the use of experimentally reported spectroscopic constants to
calculate the eigenenergies of rovibrational states �45�, tran-
sition dipole matrix elements �46�, and polarizabilities of CO
�47�. Details of these terms are derived in our previous paper
�27�.

The differential equation �12� was integrated using the
initial state of each transition in the quantum gate operation
described in Eqs. �3a�–�3d� to obtain the propagation of the
rovibrational wave function under the electric field in Eq.
�7�. The calculated wave functions at sufficiently large time t
were used to evaluate the fidelity in Eq. �5� with the target
states of the gate operation. The propagation time step for
solving the differential equation in Eq. �12� was taken as
dt=0.1 fs, which is much smaller than the oscillation period
of the electric field of laser pulses, that is, 16.7 fs for the
pulse with the wavelength at 5 �m.

III. RESULTS AND DISCUSSION

In this section, we first present the optimized electric
fields for one-qubit gate operations obtained by considering
only vibrational degrees of freedom. Then, the optimized
electric fields obtained by considering full rovibrational
states for both one- and two-qubit operations are given. The
purpose of presenting the results for both cases is to discuss
the importance of rotational states in evaluating optimized
pulse shapes for practical purposes.

A. Optimized electric fields for pure vibrational
quantum gates

In this section, we first discuss the optimized electric
fields for quantum gate operations using pure vibrational

eigenstates as qubits. We ignored the rotational degrees of
freedom, and considered the vibrational states of v=0 and 1
as the qubits of �0� and �1�, respectively. Since rotational
excitations are always associated with any vibrational exci-
tation, it is not realistic to ignore the rotational degrees of
freedom. Nevertheless, we intentionally present results for
pure vibrational gates in order to understand the general be-
havior of wave packet dynamics.

In order to solve the Schrödinger equation in Eq. �12�, we
expanded the time-dependent wave function ���t�� in terms
of the vibrational states �v� as

���t�� = 

v

Cv�t��v� , �13�

where Cv�t� is the complex amplitude of the state �v�, which
is the eigenstate of the Hamiltonian H0 in Eq. �12�. We have
included from v=0 up to 6 states in Eq. �13� as the basis sets.
The dipole interaction is described as

H1�t� = − �� · 
��t� = − �
�t� , �14�

where � is the pure vibrational dipole operator and 
�t� is the
electric field of the laser pulse in the time domain, which was
calculated by Fourier transformation of the electric field in
Eq. �7� as 
�t�=�d� E����exp�i�t�. The interaction via the
polarizability is given by

H2�t� = −
1

2

��t� · �� · 
��t� = −

1

2

�t�2� , �15�

where � is the isotropic polarizability operator for pure vi-
brational states.

1. Hadamard gate

First, we examined the Hadamard gate, which is the
fundamental one-qubit gate for algorithms in quantum
computing. The optimized laser field was calculated so
as to achieve the following four transitions: path �a�,
�0�→ ��0�+ �1�� /�2, path �b�, ��0�+ �1�� /�2→ �0�, path �c�
�1�→ ��0�− �1�� /�2, and path �d� ��0�− �1�� /�2→ �1�, simulta-
neously.

Figure 2 presents the optimized electric field to achieve
the Hadamard gate operation, and Fig. 3 shows the popula-
tion and phase evolution of each vibrational state through the
interaction with the optimized electric field displayed in Fig.
2. Figures 2�a� and 2�b� show the spectrum and the temporal
pulse intensity of the shaped pulse, respectively. A laser en-
ergy of 7.5 �J, which has been obtained in previous experi-
mental studies �48–50�, was assumed for the input pulse to
the shaper in this calculation. The temporal pulse width after
the pulse shaper was spread to 4 ps from the initial width of
150 fs. Due to the pulse spreading, the peak intensity of the
input pulse, 2.44 TW /cm2, was reduced to 0.156 TW /cm2,
corresponding to the electric field 
=10.8 MV /cm. The
long duration time ��4 ps� of the pulse was required to
realize the Hadamard gate operation, partly because the de-
excitation of higher �v�2� vibrational states transiently pro-
duced by excitation from the v=1 state takes some time, as
seen in Fig. 3. Here, we treat the transition in the nonpertur-
bative region which is characterized by the Rabi frequency
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�R=�
 /�. In order to deexcite the population from the
higher vibrational state, a 2� pulse with the time duration of
	t=2� /�R is required. This time duration is estimated to be
longer than 2 ps, and therefore a long-duration pulse is re-
quired for the Hadamard gate. Note that the optimized spec-
trum shown in Fig. 2�a� exceeds the input pulse intensity at
2138 cm−1; this was artificially caused by the cubic spline
interpolation employed in the calculation to obtain a smooth
curve between segments in the spectrum. The cubic interpo-
lation is not a linear interpolation method, but uses the sec-

ond derivatives at the discrete sample points. Therefore,
when the second derivative is accidentally large, the interpo-
lated values at certain frequencies can exceed the intensity of
the input pulse. We believe that this numerical error does not
significantly affect the entire behavior of the wave packet
propagation.

Figure 2�c� shows the time-resolved power spectrum of
the optimized laser field expressed by the Gabor transforma-
tion, which is defined as

F��,�� = �� dt H�t − �,	�
�t�exp�i�t��2

, �16�

where H�t ,	� is the Blackman window �51�,

H�t,	� = �0.08 cos�4�t

	
	 + 0.5 cos�2�t

	
	 + 0.42 if �t� �

	

2
,

0 if �t� �
	

2
,� �17�
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FIG. 2. �Color online� Optimized laser pulse for the Hadamard
gate using the pure vibrational eigenstates �0� and �1� in the X�1�+�
state of CO as qubits. The pulse shape is shown in �a� the frequency
and �b� the time domain, and �c� as the Gabor transform calculated
by Eq. �16�. Dotted �black� and solid �red� lines show the shape of
the input pulse and the optimized pulse after 100 generations of the
GA, respectively. Dashed �blue� line shows the optimized phase of
the shaped pulse. The bold black lines indicate the transition
frequencies for the v=1↔0 transition �2143 cm−1� and for the
v=2↔1 transition �2117 cm−1�.
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FIG. 3. �Color online� Population transfers and phase changes
by the optimized laser pulse shown in Fig. 2 for the Hadamard gate
using the pure vibrational eigenstates of CO. Rotational degrees of
freedom were ignored. The input pulse energy was 7.5 �J in the
calculation. �a�–�d� display the population changes of paths �a�–�d�
in the Hadamard gate, respectively. �e� shows the phase evolution of
the vibrational eigenstates composing the wave packet in each path.
Note that the phases are shown only when the population of each
v=0 and v=1 state is greater than 5%.
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and 	 determines the time resolution of the two-dimensional
function F�w , t�. Here we have fixed 	=1 ps. An intricate
time-frequency structure of the optimized pulse is displayed
in Fig. 2�c�.

Figures 3�a�–3�d� show the population changes of each
vibrational state for paths �a�–�d�, respectively. By applying
the optimized laser field, the four transitions in paths �a�–�d�
are almost achieved simultaneously, while undesired vibra-
tional climbing is mostly suppressed. During the interaction
with the pulse, the population in the v=2 state increases up
to 20%; this is almost completely suppressed after the inter-
action.

Figure 3�e� shows the temporal phase profiles of the v
=0 and 1 vibrational states for paths �a�–�d�. Note that the
phase is displayed only when the population of the state is
greater than 5%, since the phase cannot be well defined in
less populated states. As shown in Fig. 3�e�, the relative
phase can also be well controlled by the optimized laser
field, while the total phase change by ��� /2. That is, the
transition with phase correlation

�0� + ��0� + �1��/�2 + �1� + ��0� + ei��1��/�2 → ���0� + �1��/�2

+ �0� + ��0� + ei��1�/�2� + �1��ei� �18�

is realized. Eventually, the result indicates that the Hadamard
gate was realized with a fidelity of F=0.9834, which corre-
sponds to a quantum gate efficiency of 98.34%.

Our optimized electric field achieved a fairly high fidelity
of F=0.9834, but there is still a small error in the gate op-
eration. The efficiency of population transition without the
phase factor can be evaluated by the following average tran-
sition probability �29�:

P̄ =
1

Z


k=1

Z

���k�t → ����k��2. �19�

The optimized result shown in Fig. 3 gives the value of P̄
=0.9846, which is almost the same as the fidelity F. There-
fore, the residual error is mainly due to insufficient popula-
tion transfers, but not phase corrections.

2. NOT and Pauli-Z gates

The NOT gate that includes the two transitions path �a�
�0�→ �1� and path �b� �1�→ �0� was also optimized with the
input energy of 10 �J, and obtained the fidelity of F
=0.9938. The optimized results are not shown here in the
figures. The duration time of the optimized laser pulse was
�6 ps, which is longer than that for the Hadamard gate
shown in Fig. 2, and the population was completely inverted
after a number of population exchanges, mainly among v
=0, 1, 2, and 3 states. The NOT gate operation requires a long
interaction time, because 100% population transfer needs to
be achieved. In the case of the Hadamard gate, only 50%
population transfer is required, which makes the duration
time shorter �4 ps� than that of the NOT gate operation.

Figure 4 presents the optimized results for the Pauli-Z
gate that includes the following three transitions: path �a�,
�0�→ �0�, path �b�, �1�→−�1�, and path �c�, −�1�→ �1�. We
illustrated the population transfers and phase changes for

only paths �a� and �b� in Figs. 4�a� and 4�b�, respectively.
The laser energy of 10 �J was assumed to be input to the
shaper in this calculation. The optimized laser field shown in
Fig. 4�c� as a Gabor transform realized the Pauli-Z gate with
a fidelity F=0.9943. In path �a�, the population stayed in the
v=0 initial states mostly during the interaction with the
shaped pulse. On the other hand, the population in the v=1
state was almost transferred to the v=2 or 3 state at −0.5 ps
in paths �b� and �c� �not shown�, and then transferred back to
the v=1 state at about 2 ps. As shown in Fig. 4�b�, and
compared with the phase evolution in path �a� in Fig. 4�a�,
the phase jumped by � at −0.5 ps when the population was
transferred to the v=2 or 3 state. This indicates that popula-
tion transfer to auxiliary levels is necessary at the transient
state in order to achieve a � phase rotation. In the present
case, the higher vibrational states �v=2 or 3� are used as the
auxiliary levels. As shown in Fig. 4�c�, the laser pulse con-
tains only small intensities at the frequency resonant with the
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FIG. 4. �Color online� Optimized result for the Pauli-Z gate
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gate shown in the Gabor transform calculated by Eq. �16�.
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vibrational transition of v=1↔0 �2143 cm−1� at any time,
which keeps the population in the v=0 state in path �a� al-
most constant. On the other hand, the laser pulse contains
relatively large intensities at the frequency resonant with the
v=2↔1 transition �2117 cm−1� between t=−1 and 1 ps.
The strong intensity at 2117 cm−1 induces the transition be-
tween the v=1 initial state and the v=2 auxiliary state in
path �b� to achieve the phase rotation by �. In molecular
vibrational states, anharmonicity makes the transition fre-
quencies of v=0↔1 and v=2↔1 slightly different, which
results in efficient Z gate operation.

The fidelity F and population transfer probability P̄ for
quantum gates using pure vibrational eigenstates for the
X�1�+� state of CO are summarized in Table I, together with
the peak pulse intensities. Fairly good fidelities of over 98%
are achieved for one-qubit quantum gates. An input laser
pulse energy of about 10 �J is enough to realize high fideli-
ties.

B. Optimized electric fields for rovibrational quantum gates

In this section, we present the results for optimized laser
pulse shapes that realize quantum gates using rotational-
vibrational eigenstates. The number of transition pathways
increases when the rotational degrees of freedom are taken
into account, which makes the shaped laser pulse more com-
plicated.

In order to solve the Schrödinger equation in Eq. �12�, we
expanded the time-dependent wave function ���t�� in terms
of the �JM� rotational and �v� vibrational states as follows:

���t�� = 

v



JM

Cv,JM�t��v��JM� , �20�

where Cv,JM�t� is the complex amplitude of the state �v��JM�.
The rotational-vibrational states �v��JM� are the eigenstates

TABLE I. The efficiencies of quantum gate operations with pure
vibrational eigenstates in the X�1�+� state of CO.

Gate F P̄
Input energy

��J�
Peak intensity

�TW /cm2�

Hadamard 0.9834 0.9846 7.5 0.156

NOT 0.9938 0.9943 10 0.202

Pauli-Z 0.9943 0.9943 10 0.183

-6 -4 -2 0 2 4 6
0.0

0.5

1.0

Time (ps)

Po
pu
la
tio
n
|C
v,
J(t
)|2

v=0 v=2
J=0
J=2
J=4

v=1 v=3
J=1
J=3

0 20 40 60 80 100
0.01

0.1

1

Fi
de
lit
y
(1
-F
)

Generation

10 �J
15 �J
20 �J
30 �J
40 �J

(a)

(b)

FIG. 5. �Color online� �a� Population transfers of path �a� in the
Hadamard gate using rovibrational eigenstates with the input pulse
energy of 15 �J. �b� Input energy dependence on the convergence
characterized by 1−F, where F is the fidelity defined in Eq. �5�, as
a function of generation in the GA calculation.

1900 2000 2100 2200 2300 2400
-0.5

0.0

0.5

1.0

0
1
2
3
4
5
6
7
8
9

Input
100th gen.

Wave numbers (cm-1)

Phase
(rad)

/��

-6 -4 -2 0 2 4 6
-0.2

0.0

0.2

0.4

0

2

4

6

8

10

12

14

In
te
ns
ity
(T
W
/c
m
2 ) Phase

(rad)
/
��

Time (ps)

Input (x0.05)
100th gen.

-6 20-2-4 64

Time (ps)

1900

2300

2200

2100

2000

2400
W
av
en
um
be
r(
cm

-1
) (c)

(a)

(b)

0

1

In
te
ns
ity
(a
rb
.u
ni
ts
)

121 ��v)(P

121 ��v)(R

010 ��v)(R

012 ��v)(P

In
te

n
si

ty
(a

rb
.u

n
it

s)

FIG. 6. �Color online� Optimized laser pulse for the Hadamard
gate using the rovibrational eigenstates as qubits. The input pulse
energy to the shaper was 30 �J. The pulse shape is shown in �a� the
frequency and �b� the time domain, and �c� as the Gabor transform
calculated by Eq. �16�. Dotted �black� and solid �red� lines in �a�
and �b� show the shape of the input pulse and the optimized pulse
after 100 generations of the GA, respectively. Dashed �blue� line
shows the optimized phase function of the shaped pulse. The arrows
indicate the transition frequencies involved in this gate operation.
See Fig. 1 for the definition of the colors and styles.
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of the zero-order Hamiltonian H0 in Eq. �12�. In the present
calculations, we have included from v=0 to 6 and J=0 to 8.
The dipole interaction is described as

H1�t� = − �� · 
��t� = − �
�t�cos � = − �
�t�P1�cos �� ,

�21�

where Pl�cos �� is the Legendre polynomial of order l, and �
is the polar angle between the molecular axis and the polar-
ization of the electric field of the linearly polarized light. The
interaction via the polarizability is given by

H2�t� = −
1

2

��t� · �� · 
��t� = −

1

2

�t�2�� +

2�

3
P2�cos ��	 ,

�22�

where � and � are the isotropic and anisotropic polarizabil-
ities, respectively. Detailed expressions for the differential
equation including these interaction terms used to obtain the
rovibrational wave packet are discussed in our previous pa-
per �27�.

The selection rule of 	J= �1 and 	M =0 is derived for
processes induced by the dipole moment, while the selection
rule of 	J= �2,0 and 	M =0 is derived for the interaction
via the polarizabilities �27�. Since there is no interaction that
connects 	M �0, we omit the subscript M in the following
discussion by setting M =0 all the time.

1. Hadamard gate

First, we examined the Hadamard gate. We treated the
rovibrational states �v=0,J=0� and �v=1,J=1� as the qubits
�0� and �1�, respectively. These states are coupled via the
R�0� rovibrational transition. The laser electric field was op-
timized so as to achieve the four paths �a�–�d�, described in
Sec. III A 1. Figure 5�a� shows the population transfer of
path �a� in the Hadamard gate by the optimized electric field.
The laser input energy to the shaper was assumed to be
15 �J in this calculation. After the interaction with the
shaped laser field, the populations in the �v=2,J=0� and
�v=2,J=2� rovibrational states still remain over 10%; this
could not be reduced by a laser field whose input energy to
the shaper was 15 �J. As a result, the populations in the
�v=0,J=0� and �v=1,J=1� states were both about 40% after
the Hadamard gate operation. The fidelity of the operation
shown in Fig. 5�a� was only F=0.7835.

The fidelity could be improved by increasing the input
pulse energy to the shaper. Figure 5�b� shows the input en-
ergy dependence on the convergence speed of the GA and
the quantum gate fidelity F for the Hadamard gate operation
with rovibrational eigenstates. The vertical axis shows 1−F.
When the input pulse energy was as low as 10 �J, the laser
pulse field converged within 40 generations, but the fidelity
for the Hadamard gate did not improve to better than F
=0.7. As the input energy was increased to 30 �J, the fidel-
ity improved to F=0.9518. However, the higher input energy
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FIG. 7. �Color online� Population transfers
and phase changes for the Hadamard gate in-
duced by the laser pulse shown in Fig. 6 using the
rovibrational eigenstates in the X�1�+� state of
CO. The input pulse energy was assumed to be
30 �J in the calculation. �a�–�d� display the
population transitions of paths �a�–�d� in the Had-
amard gate, respectively. �e� shows the phase
evolution of the vibrational eigenstates compos-
ing the wave packet in each path. Note that the
phase is shown only when the population of the
state is greater than 5%.
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of 40 �J gave worse fidelity than that at 30 �J. Our GA
method could not find the best laser field when the input
energy was too strong. Figure 5�b� indicates that there is an
optimal input energy for the quantum gate operation, and the
input pulse energy is also an important input parameter for
the optimization method.

We found that the fidelity for the Hadamard gate became
maximum with the input pulse energy of 30 �J when we
treated the �v=0,J=0� and �v=1,J=1� rovibrational states as
the qubits. This pulse energy is much larger than that of
7.5 �J which gives the fidelity of F=0.9834 for the Had-
amard gate with the pure vibrational state described in Sec.
III A 1. Part of the reason for the high energy requirement
for rovibrational qubits is the J dependence on the
rovibrational transition probability. The transition probabili-

ties for the R�J� and P�J� branches are obtained as
��v� ,J+1��� ·
� �v� ,J��2= P�J+1↔J�� �J+1�2 / �2J+1��2J+3�
and ��v� ,J−1��� ·
� �v� ,J��2= P�J−1↔J��J2 / �2J+1��2J−1�,
respectively, for the M =0 state. Since P�1↔0��1 /3
�0.333 and P�1↔2��4 /15�0.267, three to four times
larger pulse intensity is required for rovibrational quantum
gate operations as compared to the gate operations with pure
vibrational states.

Figure 6 shows the optimized electric field, and Fig. 7
shows the detailed behavior of the population transfers and
phase changes for the Hadamard gate with input energy of
30 �J. The temporal pulse width was stretched to about 8
ps, which is much longer than that for the case of pure vi-
brational qubits shown in Fig. 2. The fidelity of the operation
was F=0.9518. During the interaction time, there are a
couple of population exchanges �oscillation in population�
between the �v=0,J=0� and �v=1,J=1� rovibrational states,
while there is no significant population transfer to higher
rovibrational states as seen in Fig. 7. As given in Fig. 7�e�,
the relative phases were well locked by the optimized laser
field, with the phase evolution of the total system given by
��3� /8. The deviation of the phases between the �v=0,J
=0� and �v=1,J=1� rovibrational states after the wave
packet evolution was 0.025�, which is slightly larger than
that of 0.011� for the pure vibrational qubits shown in Fig.
3�e�.

The behavior of population transfers shown in Fig. 7 is
quite similar to that shown in Fig. 3 for the pure vibrational
qubits, while the electric field shown in Fig. 6 is completely
different from that in Fig. 2. The electric field shown in Fig.
6 is longer and more complicated in the time domain than
that shown in Fig. 2. In the frequency domain, the peak
frequencies are different between Figs. 2 and 6. In the case
of the pure vibrational qubits of �0�= �v=0� and �1�= �v=1�,
the transition frequency of v=1↔0 is 2143 cm−1, while that
of v=2↔1 is 2117 cm−1. The frequency difference due to
the anharmonicity is 26 cm−1, which is larger than the reso-
lution of the pulse shaper of 10 cm−1. The electric field
shown in Fig. 2 contains frequency at 2143 cm−1 with al-
most the maximum intensity, while the amplitude at
2117 cm−1 is almost null. The electric field shown in Fig. 2
is such that the pulse does not excite the unwanted v
=2↔1 transition. In the case of the rovibrational qubits of
�0�= �v=0,J=0� and �1�= �v=1,J=1�, the transition fre-
quency between the two levels is 2147 cm−1. Other transi-
tions which are accessible from these two levels are P�2� v
=1↔0, R�1� v=2↔1, and P�1� v=2↔1 whose transition
frequencies are 2136, 2124, and 2113 cm−1, respectively, as
shown in Fig. 1. As seen in Fig. 6�a�, the amplitudes at the
latter three frequencies are almost null. On the other hand,
the amplitude at 2147 cm−1 is not maximum. Since the fre-
quency difference between the transitions R�0� v=1↔0 and
P�2� v=1↔0 is only 11 cm−1, which is comparable to the
resolution of the shaper, the amplitude at the transition R�0�
v=1↔0 cannot be the maximum. In general, since the en-
ergy separations of rovibrational transitions are much closer
than those of vibrational transitions without rotational exci-
tation, quantum gate operations using rovibrational states are
more difficult than those using pure vibrational states ma-
nipulated by broadband laser pulses. This must be the reason
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FIG. 8. �Color online� Optimized laser pulse for the CNOT gate
defined as �00�→ �00�, �01�→ �01�, �10�→ �11�, and �11�→ �10�. The
pulse shape is shown in �a� the frequency and �b� the time domain,
and �c� as the Gabor transform calculated by Eq. �16�. Dotted
�black� and solid �red� lines in �a� and �b� show the shapes of the
input pulse and the optimized pulse after 100 generations of the
GA, respectively. Dashed �blue� line in �a� and �b� shows the opti-
mized phase function of the shaped pulse. The arrows indicate the
transition frequencies involved in this gate operation. See Fig. 1 for
the definition of the colors and styles.
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for the fidelity for rovibrational qubits shown in Figs. 6 and
7 being worse than that for the pure vibrational qubits shown
in Figs. 2 and 3.

We have also optimized the electric field to realize the
NOT gate with rovibrational eigenstates as another example
of one-qubit gate operations. The optimized laser field �not
shown� realized the NOT gate with a fidelity of F=0.9646
when the laser input energy to the shaper was assumed to be
30 �J. This fidelity is better than that for the Hadamard gate,
but worse than that for the NOT gate with the pure vibrational
states. The laser pulse was considerably stretched to �8 ps
as in the case of the Hadamard gate.

2. CNOT gate

In this section, we examine the CNOT gate, which is a
fundamental two-qubit operation, with rovibrational
qubits defined as �00�= �v=0,J=0�, �01�= �v=0,J=2�,
�10�= �v=1,J=1�, and �11�= �v=1,J=3�. The optimized laser
field was calculated so as to achieve the following four tran-
sitions: path �a�, �00�→ �00�, path �b�, �01�→ �01�, path �c�,
�10�→ �11�, and path �d�: �11�→ �10�, simultaneously, by
considering the vibrational and rotational states as the con-

trol and target qubits, respectively. The latter two paths are
induced by two-photon transitions of P�2� v=1↔0 and R�2�
v=1↔0, or R�1� v=2↔1 and P�3� v=2↔1. Note that this
two-photon transition is induced by sequential dipole transi-
tions �Eq. �21�� and is not due to interaction via polarizability
�Eq. �22��. This is because the dipole interaction is much
larger than interaction via polarizability when the pulse in-
cludes the resonant frequencies.

Figure 8 shows the optimized laser field. The center fre-
quency of the input pulse used in the calculation was
2115 cm−1, slightly shifted to lower frequency as compared
to that for other calculations. We found that shift improved
the fidelity for the CNOT gate. Figure 9 shows the optimized
behavior of the population transfers and phase rotations for
each path. The initial input energy of 30 �J was assumed.
As seen in Figs. 9�c� and 9�d�, the populations in the
�v=1,J=3� state in path �c� and in the �v=1,J=1� state in
path �d� are only 50% or so after the wave packet propaga-
tion. Although the dispersion of the phase during the gate
operation was relatively small �0.132��, the population
transfers in paths �c� and �d� were not sufficient. As a result,
the fidelity was obtained as only F=0.6877, while the effi-
ciency of the population transfers defined in Eq. �19� was
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FIG. 9. �Color online� Popula-
tion transfers and phase changes
for the CNOT gate induced by the
laser pulse shown in Fig. 8 using
the rovibrational eigenstates. The
input pulse energy was assumed
to be 30 �J in the calculation.
�a�–�d� display the population
transitions of paths �a�–�d� in the
CNOT gate, respectively. �e� shows
the phase evolution of the vibra-
tional eigenstates. Note that the
phase is shown only when the
population of the state is greater
than 5%.
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P̄=0.7249. These numbers indicate that good efficiency of
population transfer is difficult to achieve in the CNOT gate
operation when the rotational states are treated as the target
bit.

As another example, we have examined the gate operation
that includes the four transitions path �a��, �00�→ �10�, path
�b��, �10�→ �00�, path �c��, �01�→ �01�, and path �d��,
�11�→ �11�, simultaneously. This gate operation corresponds
to an alternative CNOT �ACNOT� gate when the second qubit is
considered as the control qubit. In this case, the vibrational
states are treated as the target and the rotational states as the
control qubits, as opposed to the previous example. In this
case, paths �a�� and �b�� are achieved by the one-photon
transition R�0� v=1↔0. The obtained electric field �not
shown� results in the population transfers and phase rotations
shown in Fig. 10. The center frequency of the input pulse
was set to be 2147 cm−1. Even with the weaker input pulse
of 20 �J, the population transfers in paths �a�� and �b�� are
better than 85%, and the obtained population transfer prob-

ability was P̄=0.8942. The reason for the better population
transfer probability in the second example �v, target, J, con-

trol� than the first example �v, control, J, target� is that paths
�a�� and �b�� in the second example are one-photon allowed,
while paths �c� and �d� in the first example are one-photon
forbidden.

Despite the fact that the population transfer probability of
the second example was much better than in the first ex-
ample, the fidelity of the second example was obtained to be
F=0.6374, which is about the same as in the first CNOT ex-
ample. The phase control is more difficult in the two-qubit
operation than in the one-qubit operations. Part of the reason
for the difficulty in control is the proximity between desired
and undesired transitions as indicated by arrows in Fig. 8�a�.

The fidelity F and population transfer probability P̄ for
the quantum gates using rovibrational eigenstates for the
X�1�+� state of CO are summarized in Table II, together with
the peak intensity for the shaped pulse. The fidelities for the
one-qubit system shown in Table II are slightly worse than
those shown in Table I, but they are not significantly worse.
The input laser pulse energies required for one-qubit quan-
tum gate operations with rovibrational transitions are higher
than those with pure vibrational transitions, but a power of
30 �J will be experimentally available soon in the mid-ir
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FIG. 10. �Color online� Popu-
lation transfers by the optimized
laser pulse for the ACNOT gate us-
ing rovibrational eigenstates de-
fined as �a� �00�→ �10�, �b�
�10�→ �00�, �c� �01�→ �01�, and
�d� �11�→ �11�. The input pulse
energy was assumed to be 20 �J
in the calculation. �e� shows the
phase evolution of the vibrational
eigenstates. Note that the phase is
shown only when the population
of the state is greater than 5%.
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region by use of high-power ultrafast laser amplifier systems.
Therefore, one-qubit quantum gate operations on rovibra-
tional states of molecules are proved to be experimentally
feasible by the present calculation, although more improve-
ment is required to satisfy the threshold condition for fault-
tolerant calculation �52�.

For two-qubit operations with rotation �J� and vibration
�v� on a single CO molecule, the fidelities shown in Table II
are not acceptable for practical computation. In order to
achieve better fidelity for the CNOT gate operation using rovi-
brational states as qubits, we may need better resolution than
10 cm−1 for the shaper. This is because the frequency sepa-
rations among transitions involved in the gate operation are
smaller than 10 cm−1, e.g., the frequency separation between
v=1,J=1↔v=0,J=0 and v=1,J=3↔v=0,J=2 is only
8 cm−1, so that it is difficult to excite them individually. In
other words, the rovibrational states in the X�1�+� state of
CO are not the best system as the qubit because of its small
rotational constant B�1.9 cm−1. In order to control the
population and phase of rovibrational wave packets more
precisely by shaped mid-ir pulses, systems with larger rota-
tional constants are preferable. The X�2�3/2� state of OH
�B�19 cm−1� may be such a candidate. Calculations for this
system will prove whether we can use the rotational �J� and
vibrational �v� degrees of freedom as two independent qubits
for two-qubit quantum gate operations. This effort is in
progress.

IV. CONCLUSION

In this paper, we have numerically examined the experi-
mentally feasible shape of ultrafast pulses needed to realize
molecular qubit operations. We have optimized the shape of
a laser pulse in the frequency domain, since conventional
pulse shapers operate in the frequency domain. For this pur-
pose, the GA is more appropriate than OCT, since OCT it-
eratively solves the differential equations in the time domain
and it seems to be difficult to impose the experimental limi-
tations required in the frequency domain.

The present results demonstrate both the potential and dif-
ficulties in the application of rovibrational states to quantum
computation. It is shown that one-qubit operations can be
achieved with high fidelity. As demonstrated in the CNOT

gate operation, however, the fidelity of the two-qubit system
is still far too low for quantum computation. In order to
improve the fidelity of two-qubit gate operations, we may
need to use a pulse shaper with high frequency resolution
��10 cm−1�, or find a better molecular system whose rovi-
brational transition frequencies are well separated compared
with the resolution of the shaper.

In order to perform an actual calculation such as the
Deutsch-Jozsa algorithm, one must apply the present method
to multiple vibrational states of polyatomic molecules or spa-
tially aligned molecules. The next effort of our study will be
the investigation of multiqubit systems using eigenstates of
polyatomic molecules or an ensemble of trapped molecules;
this is currently under way.
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