
Parameter estimation with mixed-state quantum computation

Sergio Boixo*
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
and University of New Mexico, Albuquerque, New Mexico 87131, USA

Rolando D. Somma†

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
�Received 14 August 2007; published 19 May 2008�

We present a quantum algorithm to estimate parameters at the quantum metrology limit using deterministic
quantum computation with one bit. When the interactions occurring in a quantum system are described by a
Hamiltonian H=�H0, we estimate � by zooming in on previous estimations and by implementing an adaptive
Bayesian procedure. The final result of the algorithm is an updated estimation of � whose variance has been
decreased in proportion to the time of evolution under H. For the problem of estimating several parameters, we
implement dynamical-decoupling techniques and use the results of single parameter estimation. The cases of
discrete-time evolution and reference frame alignment are also studied within the adaptive approach.
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I. INTRODUCTION

Quantum mechanics provides resources that allow us to
determine physical properties at the highest possible accu-
racy established by generalized uncertainty relations �1–3�.
Exploiting quantum coherence enables us to estimate param-
eters �4–6� and expectation values of observables �7� with
better resource scaling than classically possible. In this pa-
per, we are interested in the estimation of interaction param-
eters �e.g., external fields�, when the interaction acts indepen-
dently on n quantum subsystems in a probe �8�. We quantify
our resource of interest by N=nT, given by the product of the
number of subsystems and the interaction time T. The stan-
dard quantum limit �SQL� precision in the estimation of an
interaction parameter is of order O�1 /�N�, achievable with
O�N� independent measurements at a fixed T. The optimal
precision for such an estimation, however, is given by the
Heisenberg limit and is known to be of order O�1 /N�.
Achieving it requires the preparation of entangled quantum
states in the probe �4�.

We are interested in estimating parameters at the so-called
quantum metrology limit �QML�. This can be obtained by a
series of estimations performed at different interaction times,
while keeping the size of the probe fixed �5,7�. If for a total
interaction time T, the precision of the estimation is of order
O�1 /T�, we say that the QML has been achieved. This se-
quential protocol, which is the one exploited in this paper,
does not require quantum entanglement in the input state,
although the response to uncorrelated decoherence, for an
unconstrained interaction time, is the same as that of the
entangled protocol �9�. Any method that allows us to achieve
the QML clearly provides an improvement over the SQL,
since for the same amount of resources �i.e., N=nT�, the
returned precision can be highly enhanced.

Quantum methods �algorithms� designed to beat the SQL
could have a wide range of applications, from highly sensi-

tive magnetometry �10� to atomic clock synchronization
�11�. In addition, phase estimation, a problem related to pa-
rameter estimation, is one of the cornerstones of quantum
computation �12,13�. In this paper we show that the QML
can be achieved in some cases even if the initial state is the
completely mixed state of all except one of the quantum
systems, avoiding the complexity associated with initial
pure, entangled, state preparation. Although here we consider
multiqubit probes, generalization of our algorithms to higher
dimensional systems is straightforward.

Specifically, we use deterministic quantum computation
with one bit �DQC1�, which was initially described in Ref.
�14� in the context of high temperature ensemble quantum
computation using liquid-state NMR techniques �15�. Al-
though less powerful than the standard model of quantum
computation, DQC1 is believed to outperform the classical
probabilistic computational model �16�. In DQC1, the initial
state �0 of a set of n+1 qubits corresponds to having the first
�ancilla� qubit a in the pure state �0�a, while the state of the
remaining n qubits �probe� is completely mixed. That is,

�0 =
1

2n ��0�a
a�0� � 1n� . �1�

The state �0 is then unitarily evolved and DQC1 returns a
noisy expectation value of a Pauli operator on the ancilla
qubit. If the evolution is performed by applying a unitary
operation controlled by a �i.e., a controlled-U or cU opera-
tion�, DQC1 allows us to estimate the renormalized trace of
U at a certain, fixed precision �Fig. 1�.

We assume that a single run of the DQC1 algorithm re-
turns an unbiased renormalized trace estimation with normal
distribution N�tr�U� /2n ,�2� of standard deviation � �17�. Of
course, � can be reduced by a factor of �K �i.e., SQL� if the
algorithm of Fig. 1 is repeated K times. In fact, this is the
situation in NMR where repetition reduces the signal-to-
noise ratio �SNR� at the SQL.

Consider now, for example, the typical case where an un-
known external magnetic field interacts with the n qubits of
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the probe �Fig. 1�, determining an interaction Hamiltonian of
the form

H� = �	
j=1

n

�z
j . �2�

We seek to estimate �. When the probe interacts with the
field for time T, the n-qubit state is evolved by applying the
corresponding �unitary� evolution operator W��T�=e−iH�T.
Replacing cU by cW��T� in Fig. 1, the final �n+1�-qubit state
right before the measurement is

� f =
1

2n+1 ��0�a
a�0� � 1n + �1�a

a�0� � W��T�

+ �0�a
a�1� � W�†�T� + �1�a

a�1� � 1n� . �3�

Using the trace properties of the Pauli operators, we obtain
��x

a�=tr�� f�x
a�= �cos��T��n. If �x�0 denotes the standard de-

viation in the estimation of ��x
a�, a first approximation error

formula determines

�� 

�x

����x
a�/���

, �4�

with �� the uncertainty in the estimation of �.
Let �+ � denote the single qubit state ��0�+ �1�� /�2. The

output signal of the previous algorithm is ��+1. . .
+n/2 �W��T� �+1. . .+n/2��2, which is the probability of measur-
ing �+1. . .+n/2� after its evolution under W��T�. Thus, the out-
put precision of Eq. �4� is upper bounded by ��

=O�1 / ��nT��, and the Heisenberg limit is not achieved when
scaling n �18�. Nevertheless, for fixed �small� n, we obtain
��=O�1 /T�, yielding the QML.

The previous estimation method has some important dis-
advantages. The first one concerns the use of the controlled
cW��T� operation which, due to technological difficulties or
to the nature of the problem, may be impossible. In fact, this
is the case in reference frame alignment, as we discuss in
Sec. IV. Second, it is clear that �cos��T��n approaches 0 ex-
ponentially with n for T��p�, which is usually the case, as
� is unknown. As a consequence, the SNR of the outcome is
weakened, especially for n�1.

In this paper we propose a different method to perform
multiparameter estimation that achieves the QML scaling
O�1 /T�. Interestingly, our method focuses on the evolution
of observables such as tensor products of Pauli operators
�i.e., we work in the Heisenberg picture�, rather than the
evolution of the state of the probe itself. For this reason, in
Sec. II A we start by giving a brief description of Hamil-

tonian evolution in terms of Lie algebras. We then present an
adaptive Bayesian estimation method to estimate single pa-
rameters at the QML with DQC1 �Sec. II C�. Moreover, in
Sec. III we show that, by applying dynamical-decoupling
techniques and different Suzuki-Trotter approximations,
multiparameter estimation can also be performed with
DQC1. Here, we deduce that when the amount of short-time
evolutions is considered a resource, the QML is asymptoti-
cally reached in the order of the approximation. In Sec. IV
we discuss the particular example of reference frame align-
ment and show that to estimate the Euler angles dynamical-
decoupling techniques are not required. In Sec. V we discuss
the reasons why DQC1 allows us to reach the fundamental
quantum limit in some cases, even though this model is less
powerful than standard quantum computation. Finally, we
present the conclusions in Sec. VI.

In the following, we ignore the effects of decoherence in
our quantum algorithms and we assume that all experimental
parameters can be controlled with arbitrary precision.

II. SINGLE-PARAMETER ESTIMATION

When the n-qubit probe interaction can be described by a
Hamiltonian H=�H0, single-parameter estimation aims to re-

turn an estimate �̂ of the unknown � at the highest precision
possible, for some given amount of resources. For fixed n
and �H0�, our main resource is determined by the total evo-
lution time under H. Let W�T�=e−i�H0T be the �unitary� evo-
lution operator induced by H, during a time interval T.
Clearly, if W�T� acts non-trivially on some operator O, infor-
mation about � can be gained by computing h��T�
=tr�W†�T�OW�T�O� /2n�C for different values of T. The
form of h��T� can be obtained through the representation
theory of Lie algebras �Sec. II A�. Contrary to the example
given in Sec. I, h��T� can be estimated using DQC1 without
controlling the operation W�T� �Sec. II B�. Assuming that the
accuracy in the estimation of h��T� remains constant regard-
less of T, an adaptive Bayesian estimator that returns � at
accuracy O�1 /T� �i.e., the QML� can be built in some cases
of interest. Furthermore, to avoid signal loss due to possible
large values of n, we choose the operator O such that h��T�
does not depend on n. These points are studied and explained
in more detail below.

A. The Heisenberg picture

If X=X† is an observable acting on n qubits, we define
�Heisenberg picture�

X�T� = W†�T�XW�T� , �5�

with W�T�=e−i�H0T as above. Assume now that we are given
two observables H1 and H2 such that, together with H0, they
generate an su�2� Lie algebra. We obtain �see Appendix A�

H1�T� = W†�T�H1W�T� = cos�2�T�H1 − sin�2�T�H2. �6�

If the operators are Schmidt pseudo-orthogonal
�tr�HiHj�=d�ij� we have

cos�2�T� = tr�H1�T�H1�/d , �7�

FIG. 1. DQC1 circuit for estimating the trace of a unitary U.
The filled circle denotes that U acts on the probe when the state of
the ancilla �control qubit� is �1�a, and H is the Hadamard gate. ��x

a�
and ��y

a� are the expectation values of the corresponding Pauli op-
erators on the ancilla a.
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sin�2�T� = − tr�H1�T�H2�/d . �8�

With no loss of generality we expand Hj =		=1
L e	,j�	,j,

where �	,j =�	,j
1

� ¯ � �	,j
n are tensor products of Pauli op-

erators �henceforth simply called Pauli products�, �	,j
i

� �1 ,�x ,�y ,�z
, and e	,j �R are known coefficients �19�. We
obtain

cos�2�T� = 	
	,	�

e	,1e	�,1tr�W†�T��	,1W�T��	�,1�/d , �9�

sin�2�T� = − 	
	,	�

e	,1e	�,2tr�W†�T��	,1W�T��	�,2�/d .

�10�

That is, cos�2�T� and sin�2�T� can be estimated at a fixed
precision by L2 runs of the circuit of Fig. 1. Each run returns
an estimate of tr�U	,j;	�,j�� /2n, with unitary U	,j;	�,j�
=W†�T��	,jW�T��	�,j�. In Sec. II C we show how to estimate
� at the QML from the estimation of cos�2�T� or sin�2�T�,
for different values of T. Although we are mainly interested
in the fundamental scaling achieved by increasing T, it is
worth noting that the scaling with L2 can be largely reduced
in some cases of interest �see Appendix A�.

B. DQC1 circuits

We now show how to avoid the need of controlled cW�T�
operations, when estimating parameters with DQC1. This is
of great importance since cW�T� may not be available for our
use. To show this, we focus on the estimation of
tr�W†�T��	,jW�T��	�,j��, as required by Eqs. �9� and �10�.
The circuit that accomplishes this task is shown in Fig. 2.
Here, the cU operation of Fig. 1 has been replaced by
cW†�T�c�	,j

cW�T�c�	�,j�, where each operation is controlled
by the ancilla a. Nevertheless, note that one can accomplish
the same task even if the action of the operators W�T� and
W†�T� is not controlled �20�. That is,

cW†�T�c�	,j
cW�T�c�	�,j� � W†�T�c�	,jW�T�c�	�,j�,

�11�

which is clearly the identity operator when a is in �0�a. In
Fig. 3 we show a simplified circuit that allows us to compute
the above trace. The last operation W†�T� is not included as it
does not alter the measurement outcome and it may not be an
available resource. Thus, the circuit can be implemented us-
ing �known� elementary gates and the available time-
evolution operator W�T� only.

The next step is to detail a strategy to estimate � from
cos�2�T� or sin�2�T�, and to characterize the associated error
and resources needed. For this reason, we first make an as-
sumption on the standard deviation � of the output returned
by the DQC1 circuit of Fig. 3. Obviously, the smaller � is,
the better the precision of the resulting estimation. We con-
sider �
1, which can always be achieved by simple repeti-
tion of the computation. In some cases, such as liquid-state
NMR quantum computation, where a vast amount of mol-
ecules contribute to the output signal, a �
1 could be
achieved in a single run. Our estimation procedure should
take advantage of this property by going beyond just per-
forming a bit by bit estimation of �, as it is done in several
pure-state phase estimation techniques that involve strong
�projective� measurements �5,7�. Moreover, we assume that
� remains approximately constant in a certain region of val-
ues of 2�T. This is a consequence of weak measurements
�21�. In view of the central limit theorem, we assume that the
measurement outcome is distributed according to
N�cos�2�T� ,�2� or N�sin�2�T� ,�2��see Sec. I and Ref.
�17��.

C. Adaptive Bayesian estimation

In Bayesian estimation, a parameter � to be estimated is
considered to be a variable with an associated �known� prob-
ability distribution f��� �i.e., the prior distribution�. The
prior distribution formalizes the experimenter’s state of be-
lief about �. It is the job of the experimenter to gain access to
a sample of data �x1 , . . . ,xK
 whose distribution
f�xK , . . . ,x1 ��� depends on �. Thus, the joint distribution of
�x1 , . . . ,xK
 and � is

f�xK, . . . ,x1,�� = f�xK, . . . ,x1���f��� . �12�

After observing a set of measurement outcomes �x1 , . . . ,xK
,
this information is used to obtain a posterior distribution
f�� �xK , . . . ,x1� that corresponds to the experimenter’s up-
dated state of belief about the unknown �. This update is
done using Bayes’ rule

f���xK, . . . ,x1� =
f�xK, . . . ,x1,��
f�xK, . . . ,x1�

, �13�

where the marginal sampling distribution f�xK , . . . ,x1� can
be calculated from the joint distribution as

f�xK, . . . ,x1� =� f�xK, . . . ,x1,��d� . �14�

In standard Bayesian estimation the probability of observ-
ing an i.i.d. sample �x1 , . . . ,xK
 is determined by the total

FIG. 2. DQC1 circuit for the estimation of
tr�W†�T��	,jW�T��	�,j�� /2n���x

a�. Note that ��y
a�=0 in this case.

Since every unitary is controlled by a �filled circles�, including the
evolution operator W�T�, the execution of this algorithm may be
unfeasible due to the nature of the problem.

FIG. 3. Simplified version of the DQC1 circuit of Fig. 2. The
operators cW�T� and W†�T� are avoided. The estimation of cos�2�T�
or sin�2�T� �Eqs. �9� and �10�� is performed using available re-
sources only.
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sampling distribution f�xK , . . . ,x1 ���= f�xK ���¯ f�x1 ���. In
adaptive Bayesian estimation the outcome of the first mea-
surement x1 can be used to control the sampling distribution
of the second measurement, f�x2 �x1 ,�� �see below�. In gen-
eral, the sampling distribution of the lth measurement out-
come can be conditioned by �x1 , . . . ,xl−1
. At the end,
f�xK , . . . ,x1 ���= f�xK �xK−1 , . . . ,x1 ,��¯ f�x1 ���.

The Bayes’ risk quantifies the expected penalty to be paid
when using a particular estimator �̂�xK , . . . ,x1� of �, and a
given cost function. It is common to search for an �̂ that
minimizes the Bayes’ risk with a quadratic cost function,
given by

� „� − �̂�xK, . . . ,x1�…2f���xK, . . . ,x1�d� . �15�

This risk is just the variance of the estimator and is mini-
mized by the expectation value of the posterior distribution,
giving the optimal estimator

�̂�xK, . . . ,x1� =� �f���xK, . . . ,x1�d� . �16�

While a more detailed explanation of the adaptive Baye-
sian procedure is given in Appendix B, in the following we
present a generic step of the estimation. Denote by �
1 the
output precision of DQC1 when measuring cos�2�T�, which
may actually involve many �L2�1� different runs of the cir-
cuit of Fig. 3. Assume that, from l previous estimations, we

have obtained an estimator �̂l of � such that, for known evo-
lution time Tl and integer pl,

2�̂lTl 
 �/2 + 2pl� . �17�

Furthermore, assume that the 95% confidence interval for the
estimation is

�̂l − 1.96�l/�2Tl� � � � �̂l + 1.96�l/�2Tl� , �18�

with �l
�. Next, we show how to zoom in on �̂l to obtain

an estimator �̂l+1, so Eqs. �17� and �18� are still satisfied
when replacing l→ l+1.

To do this, we first find Tl+1 such that

2�̂lTl+1 = �/2 + 2pl+1� , �19�

with pl+1� pl integer. The �l+1�th measurement returns xl+1,
an estimate of cos��l+1�, with �l+1=2�Tl+1. This is done by
running the algorithm of Fig. 3 with T=Tl+1. We chose pl+1
close enough to pl such that, for �l+1� =�l+1− �� /2+2pl+1��,
we approximate cos�l+1
−�l+1� �see Appendix B�. Using
Bayes rule and the joint distribution for the �l+1�th measure-
ment, we obtain

f�xl+1,�l+1�xl, . . . ,x1�

= f�xl+1��l+1,xl, . . . ,x1�f��l+1�xl, . . . ,x1�



1

�2��
exp�− �xl+1 + �l+1� �2 � 2�2�

�
1

�2�al+1�l

exp�− ��l+1� �2 � 2�al+1�2�l
2� , �20�

with al+1=Tl+1 /Tl. Equation �20� determines the posterior
distribution f��l+1 �xl+1 ,xl , . . . ,x1�= f�xl+1 ,�l+1 �xl , . . . ,x1� /
f�xl+1 �xl , . . . ,x1�. This adaptive procedure returns a new es-

timator �̂l+1, and standard deviation �l+1 / �2Tl+1�, with �l+1

�, satisfying

�̂l+1 − 1.96�l+1/�2Tl+1� � � � �̂l+1 + 1.96�l+1/�2Tl+1� .

�21�

The total number K of estimations is chosen such that the
final standard deviation is reduced below the desired preci-
sion ��. A sufficient condition is � / �2TK����. The fact that
the standard deviation is reduced by Tl at each step �Eq. �21��
guarantees that the QML is achieved �Appendix B�.

Remarkably, the confidence level of estimating the mean
with error � in our algorithm increases exponentially as 1
−e−C��/��2�, with C�0 and � the corresponding standard de-
viation. This is clearly an advantage with respect to the stan-
dard pure-state phase estimation algorithm, where the confi-
dence increases as 1−O�1 /�� �12�.

D. Black-box estimation: discrete time evolution

Imagine now that, instead of being able to evolve under
the action of H for any period of time T, we are given a black
box whose action is to perform the unitary operation WB
=e−iH. As in the previous case, H=�H0. That is, we are only
allowed to evolve under H for a discrete time by simple
concatenation of WB’s. This condition restricts the set of ac-
cessible operations to elementary gates and operations of the
form

W̄�q� = WB ¯ WB

q times

, �22�

only. We seek to estimate � at the QML using a modification
of the previous adaptive Bayesian method.

We now give the generic step for achieving the QML in
the discrete time case �see Appendix C for the first step�. We

assume that �̂l is the mean of the estimator obtained after the
lth measurement, performed with ql�N* uses of WB. Be-
cause we seek to make estimations around � /2, we take

2�̂l−1ql + 2�l = �/2 + 2pl�, ∀ l , �23�

with �̂l−1 the mean of the estimation in the �l−1�th measure-
ment, pl�N*, and �l the phase compensation. In
other words, the lth estimation was performed by implement-
ing the algorithm of Fig. 3 with W�T�→Wa
�ql ,�l���WB�qle−i�lH0. Because we can always consider
� /2��l�−� /2, the phase compensation is made with unit
cost. We also assume that �l�� is the standard deviation of
the estimator of 2�ql �22�.

For the �l+1�th measurement, we write ql+1=bql with
small enough b �23�. The �l+1�th measurement returns yl+1,
an estimate of cos��l+1�, with �l+1=2�ql+1+2�l+1
� /2
+2�pl+1. Thus, to obtain f��l+1 �yl+1 , . . . ,y1� in the adaptive
Bayesian step, we approximate
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f�yl+1�yl, . . . ,y1,�l+1� 

1

�2��
exp�− �yl+1 + �l+1� �2 � 2�2� ,

�24�

with

�l+1� = �l+1 − ��/2 + 2pl+1�� . �25�

Moreover, since

f��l+1�yl, . . . ,y1� =
1

�2�b�l

exp�− ��l+1� �2 � 2b2��l�2� ,

�26�

the resulting distribution f��l+1 �yl+1 , . . . ,y1� is normal. This
is a consequence of Bayes’ rule. Its mean and standard de-
viation, obtained by combining the exponents appearing in
Eqs. �24� and �26�, are

�̂l+1� = −
�bl+1� �2

1 + �bl+1� �2 yl+1, �27�

�l+1 = �bl+1� /�1 + �bl+1� �2�� 
 � , �28�

with bl+1� =b�l /�
b. Equations �27� and �28� guarantee the
success of the induction method. These quantities determine
the mean and standard deviation of the new �improved� es-
timator of � as

�̂l+1 =
1

2bl��/2 + 2pl+1� − 2�l+1 −
�bl+1� �2

1 + �bl+1� �2 yl+1� ,

�l+1� =
�l+1

2bl 

�

2bl . �29�

The similarity of these results and those obtained for the
continuous time case �Eqs. �B20� and �B21�� is clear.

Summarizing, if �� denotes the desired precision in the
parameter estimation, a sufficient condition is to choose the
total number of measurements K such that the final precision
satisfies � / �2bK−1����. Since the total number of uses of
WB is given by 1+ ¯ +bK−1= �bK−1� / �b−1�=O�� / �2����,
the QML is also reached in this case.

III. MULTIPARAMETER ESTIMATION

In this section we consider a more general case where the
unknown interaction with the n-qubit probe can be described
by a Hamiltonian

H = 	
�=1

P

����. �30�

Here, ���R and �� are Pauli products. Using the results of
Sec. II C, we seek to estimate every �unknown� �� such that
the returned precision approaches the QML for a given
amount of resources or evolution time. For this reason, we
assume that a previous estimate of every parameter, with

mean ���̂0
��0, is known.

Using dynamical-decoupling techniques �24�, the multipa-
rameter estimation case can be converted into P single-
parameter estimations. For simplicity, we consider first the
case where there is a Pauli product � such that �for some ��

���,�� = 0, �31�

����,�
 = 0 ∀ �� � � . �32�

A decoupled interaction is

H� = ���� = �H + �H��/2. �33�

�In general, methods such as the one just described can be
used to decouple any H� from any H.� We define S��T�
=e−iH�T to be the corresponding evolution operator. If such
an operator were to be an available resource, �� could be
estimated using the scheme of Sec. II C. To do this, we
would have to replace W�T�→S��T� and �	,j→�1 in the
circuit of Fig. 3, with ��� ,�1
 being Pauli products that gen-
erate an su�2� algebra.

We now show how to approximate S��T� from accessible
operations that include W�T� and elementary gates only. To
show this, we use a Suzuki-Trotter approximation �25�. Spe-
cifically, for q=1 /��N*, we decompose

S��T� = S���T� ¯ S���T�

q times

.

If S̄���T� denotes a pth order Suzuki-Trotter approximation
to S���T�, we have

�S���T� − S̄���T�� = O��H�p��T�p� , �34�

with � . � some operator norm �e.g., the largest eigenvalue�.
The error of the approximation is

�/2 � �S��T� − S̄��T�� = O��H�p�p−1Tp� , �35�

with S̄��T�= �S̄���T��q. Equation �35� was obtained using
Eq. �34�, together with �Aq−Bq � = � �A−B�Aq−1

+B�A−B�Aq−2+ ¯ +Bq−1�A−B� � �q �A−B�, for A and B
unitaries.

We now show how to build S̄��T� out of available re-
sources. In the simplest case �i.e., p=2� the evolution opera-
tor at short times factorizes as

S̄���T� = e−iH�T/2�e−iH�T/2� . �36�

Then, S̄��T� can be implemented using H evolutions and �
gates only. Similarly, a second-order Suzuki-Trotter approxi-
mation �i.e., p=3� is given by

S̄���T� = e−iH�T/4�e−iH�T/2�e−iH�T/4. �37�

Higher order approximations can be constructed in a similar
fashion �26�, so they can always be implemented with acces-
sible gates. The larger p is, the shorter the actions of H in
each step. Thus, we require precise time control in our algo-
rithms �measurements�.

Replacing W�T�→ S̄��T� and �	,j→�1 in the circuit of
Fig. 3 allows us to estimate ��. To show this, consider the
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measurement output zl obtained in the lth measurement. zl
will give us an estimator of the parameter �� plus a correc-
tion

cos�2��Tl� + ���,p,Tl,��� , �38�

with ��=�1 , . . . ,�P. The norm of ��� , p ,Tl ,����R can be
bounded above as

����,p,Tl,���� =
�tr�S�

†�Tl��1S��Tl��1 − S̄�
†�Tl��1S̄��Tl��1��

2n

�
tr�S�

†�Tl��1S��Tl��1 − S̄�
†�Tl��1S̄��Tl��1�

2n � � .

�39�

We have used Eq. �35� to obtain Eq. �39�. Because

��� , p ,Tl ,��� depends on the ��’s, we consider it a variable
with an associated �worst-case scenario� prior distribution
given by f����N�0,���, with ��=O���� �27�. The net ef-
fect in the adaptive Bayesian procedure is that now, the joint
distribution determines a marginal distribution after

��� , p ,Tl ,��� is integrated out. More precisely, for the lth es-
timation, we have

f�xl�xl−1, . . . ,x1,�l
�� =� f�xl�xl−1, . . . ,x1,�l

�,��f���d� ,

�40�

with �l
�=2��Tl. Making a linear approximation in the cosine

function, we obtain

f�xl�xl−1, . . . ,x1,�l
�� 
 N��1�

�,����2� , �41�

with �1�
�=�l

�− �� /2+2pl�� �see Sec. II C�, and updated vari-
ance

����2 = �2 + ��
2 . �42�

Thus, we can use the adaptive method of Sec. II C to esti-
mate every parameter �� at the QML, by replacing �→��.

Notice that one could also implement an adaptive Baye-

sian approach to learn about ��� , p ,Tl ,���. In such a case, the
distribution f��� would need to be updated after each mea-
surement based on the previous measurement outcomes.
Nevertheless, we did not consider this approach in the above
discussion because we assumed that the Suzuki-Trotter ap-
proximation used is good enough for our purposes �i.e., ��


1�.
When the resource of interest is the number of calls to

S̄���T�, the amount of resources to reach a precision ���

changes. For this reason, consider the total evolution time
Tt=O���+��� /�����, with ��=O�� �H�p�p−1Tt

p�. Assume
that we want to keep Tt constant, regardless of p. Then, q
=1 /�=O��Tt��p/p−1��. That is, O�1 / ������p/p−1�� actions of

S̄���T� are required to attain ���, and the QML is asymptoti-
cally reached in p.

IV. REFERENCE FRAME ALIGNMENT

Imagine that two distant parties, Alice and Bob, suffer
some frame misalignment, which is manifest in the way they
characterize their operations on equivalent quantum systems.
This might be a result of not sharing synchronized clocks or
having different spatial reference frames. Aligning both
frames requires the exchange of physical systems carrying
“unspeakable” information. This information is encoded as
frame-dependent parameters that need to be estimated �28�.
The resource that limits the quality of this estimation is the
number of systems interchanged between Alice and Bob. We
will show that Alice and Bob can align their frames within
the DQC1 model at the QML. In particular, we propose a
modification of a pure-state protocol for frame synchroniza-
tion �5� based on repeated coherent exchanges of the n-qubit
probe only. Remarkably, the state of the probe remains com-
pletely mixed and separable from the ancilla at every step
�16�. Moreover, in our protocol, Bob never accesses the an-
cilla that Alice measures.

We consider first the case where the effect of the frame
misalignment is uni-parametric. That is, Alice’s and Bob’s
description of operators acting on equivalent Hilbert spaces
is known to differ by a unitary transformation V�=e−i�H0,
with � unknown. More explicitly, for some operator O we
have

OB = V�
†OV� = ei�H0Oe−i�H0, �43�

where we used the superscript B to denote the action of O in
Bob’s frame. Since H0 is known, we assume that we can find
pseudo-orthogonal observables H1 and H2 such that they
form an su�2� algebra �i.e., Eq. �A5� is satisfied in Alice’s
frame�.

An elementary step of the protocol starts with Alice send-
ing the n-qubit probe to Bob. Subsequently, Bob applies the

operation e−i�H1
B/2 and returns the probe to Alice. Finally,

Alice applies the adjoint operation ei�H1/2. The resulting op-
eration on the state of the probe in Alice’s frame is

ei�H1/2e−i�H1
B/2 = ei�H1/2ei�H0e−i�H1/2e−i�H0 = e−2i�H0 � V2�.

�44�

Equation �44� can be obtained by working in any faithful
representation of su�2�. The global action of each step can be
seen as a “black box” implementation of V2�, whose param-
eter we want to estimate. Using the results of Sec. II D, the
circuit of Fig. 3 can be used to make a first estimate of � if
W�T� is replaced by V2� �see Fig. 4�. To zoom in on previous
estimations requires instead the implementation of the uni-
tary V2m�= �V2��m, with m�N*. This can be done by simple

FIG. 4. Elementary step of the frame alignment protocol. The
n-qubit probe, whose state remains completely mixed, is exchanged
between Alice and Bob. The Pauli products �	,j and �	�,j� appear in
the decomposition of H1 �see Eqs �9� and �10��.
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concatenation of elementary steps, requiring m coherent ex-
changes of the probe.

Another case of interest is the alignment of spatial refer-
ence frames �5�. Let us assume that Bob’s operators are re-
lated to Alice’s through a rotation

R = e−i�H2e−i�H1e−i�H2 , �45�

where �� ,� ,�
 are Euler angles and �H1 ,H2
 generate an
su�2� algebra. Consider a synchronization protocol with this
elementary step: Alice sends the probe to Bob; Bob applies

the operation e−i�H2
B/2 and returns the probe to Alice; Alice

applies the operation ei�H2/2. The effective rotation of this
step, in Alice’s frame, is given by

V� = ei�H2/2e−i�H2
B/2 = ei�H2/2R†e−i�H2/2R . �46�

The action of V� on H2 implies that

tr�V�†H2V�H2� = d cos�2�� , �47�

with d some normalization constant �Eq. �9��. Again, the pre-
vious derivation can be carried out in any faithful represen-
tation of su�2�. Thus, a first estimation of the Euler angle �
can be performed by using the circuit of Fig. 3, replacing
W�T�→V�, and with �	,j being the Pauli products appearing
in the expansion of H2. Furthermore, since

tr��V�†�mH2�V��mH2� = d cos�2m�� , �48�

we can zoom in on the previous estimation by applying V�,
m�1 times, and using the results of Sec. II D. In this case, m
coherent transports of the probe between Alice and Bob are
required.

Notice that in this estimation procedure, the action of rel-
evant operations need not be controlled by the ancilla. Fi-
nally, the other Euler angles can be estimated in a similar
way if Alice and Bob agree to apply other analogous opera-
tions.

V. PARAMETER ESTIMATION VS. GROVER’S SEARCH
ALGORITHM IN DQC1

So far we have shown that to reach certain precision in
the estimation of a parameter, DQC1 requires less resources
than other methods. One may wonder if such a quantum
speedup can also be attained in problems such as searching
for a particular property in a given set �i.e., search problem�,
which is the case for pure-state quantum algorithms. How-
ever, in Ref. �14� the authors proved that DQC1 is strictly
less powerful than standard quantum computation in the
oracle setting. This implies that DQC1 does not provide a
quadratic quantum speedup in the search problem as the one
given by Grover’s algorithm �29�. To show this, consider the
situation in which we are given a black box that implements
either the unitary UB=ei��S��S�, with ��0, or UB=1, over the
state of the n qubits in the probe. Here, �S� encodes the
solution to our search problem. We want to determine the
existence of a solution; that is, we want to specify if the
action of UB is trivial �i.e., 1� or not �i.e., ei��S��S��. In fact, this
is a phase estimation problem in which we have to decide
whether the phase is 0 or �.

In general, the output of a DQC1 algorithm is given by

��z
a� = tr�� f�z

a� , �49�

with � f the ancilla-probe state right before the measurement.
With no loss of generality,

� f = WQUB ¯ W1UBW0�0W0
†UB

†W1
†
¯ UB

†WQ
† , �50�

with �0= ��0�a
a�0 � � 1n� /2n being the initial state, and Q the

number of calls to UB. Since �0�a
a�0 � = �1a−�z

a� /2, we have

��z
a� = tr�WQUB ¯ UBW0�z

aW0
†UB

†
¯ UB

†W†Q�z
a�/2n+1.

�51�

Following the proof in Ref. �14�, we obtain

���z
a��UB=1 − ��z

a��UB=ei��S��S�� � 4Q/2n+1. �52�

Since DQC1 returns ��z
a� at accuracy �, Q must be exponen-

tially large in n or the algorithm needs to be executed expo-
nentially many times to determine whether there is a solution
or not. That is, if J is the amount of times that the algorithm
is executed, we would expect that the precision in the esti-
mation scales as ��=O�� /�J�. To solve the problem, it is
necessary �but not sufficient� to choose J and Q such that

4Q/2n+1 � ��, �53�

requiring N�JQ uses of the black box. Thus,

N � O�2n� . �54�

If Q=O��2n� as in Grover’s algorithm, we need J=O��2n� to
satisfy Eq. �54�, and no quantum speedup with respect to the
classical counterpart is obtained in this case.

The reason for the existence of a quantum-speedup in
parameter estimation is that the unitary operators considered
act nontrivially in a large-dimensional subspace of the corre-
sponding 2n-dimensional Hilbert space. In this case, the out-
put signal obtained by executing the DQC1 circuits enables
us to distinguish between different unitaries and to estimate
the parameter. In the search problem, however, the operator
UB is very close to the identity operator 1 in that it only
affects the state �S�. Therefore, its action over highly mixed
states is almost trivial. This is not the case in pure-state al-
gorithms where one usually works in a two-dimensional Hil-
bert space spanned by the states �S� and �S��, with �S �S��
=0 �7,29�.

VI. CONCLUSIONS

Parameter estimation at the quantum metrology limit
could have a wide range of applications in metrology
�10,11�. Further, single-parameter estimation is related to
phase estimation, a cornerstone of quantum computation.
Mixed-state quantum computation, as formalized in the
DQC1 model, is interesting both from a theoretical and from
a practical point view �14–16�. We have shown that, under
fairly general conditions, it is possible to perform parameter
estimation at the quantum metrology limit within the DQC1
model. These conditions are presented using Lie algebraic
methods. The algorithm proceeds using adaptive Bayesian
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estimation. In each step we zoom in on the previously esti-
mated parameter, while ensuring that the increased variance
remains below certain bounds. A measurement reduces such
a variance to the previous value and this procedure is re-
peated until the desired precision in the estimation is
reached. In short, the procedure ensures that the phase is kept
in the same region, with almost constant variance, but in-
creasing winding number.

The adaptive estimation is clearer when the time of the
evolution under the unknown Hamiltonian �parameter� can
be controlled at will. When lacking this freedom, as in the
case of black box estimation, the algorithm for continuous
time can be amended with some straightforward modifica-
tions. Moreover, to perform multiparameter estimation,
implementation of dynamical-decoupling techniques reduces
the problem to several single-parameter estimation proce-
dures. Yet, these techniques are not necessary in some simple
cases such as frame alignment between two parties, Alice
and Bob. For spatial frame alignment, the Euler angles can
be estimated at the quantum metrology limit with Bob hav-
ing access to the completely mixed, separable, state of the
probe only. Surprisingly, although precise estimation is inti-
mately related to the quantum speedup given by Grover’s
search algorithm, the latter cannot be performed efficiently
within the DQC1 model.

ACKNOWLEDGMENTS

We are thankful to E. Bagan, H. Barnum, C.M. Caves, E.
Knill, and L. Viola for interesting discussions. This work was
carried out under the auspices of the National Nuclear Secu-
rity Administration of the U.S. Department of Energy at Los
Alamos National Laboratory under Contract No. DE-AC52-
06NA25396 and partially supported by ONR Grant No.
N00014-07-1-0304.

APPENDIX A: LIE ALGEBRA REPRESENTATIONS

For X�T�=W†�T�XW�T� we can also write X�T�=X
+ iT�H ,X�−T2 /2[H , �H ,X�]+¯, with �Y ,X�=YX−XY. That
is, X�T� is a linear combination of observables belonging to
the Lie algebra h generated by H and X �30�. In general, h
��O1 , . . . ,OM
 is an M-dimensional �real� semisimple Lie
algebra, with Oj =Oj

† and tr�OiOj�=d�ij �d�R�. A faithful

representation of h is the mapping Oj→ Ōj, with Ōj = Ōj
† be-

ing �m�m�-dimensional matrices that satisfy

�Oi,Oj� = 	
k

f ij
k Ok ↔ �Ōi,Ōj� = 	

k

f ij
k Ōk, �A1�

tr�ŌiŌj� = d̄�ij , �A2�

for some d̄�R. The coefficients f ij
k are the so-called struc-

ture constants of h. Then, X�T�=	kc
kOk, ck�R, and

X̄�T� = W̄†�T�X̄W̄�T� = 	
k

ckŌk, �A3�

with W̄�T�=e−iH̄T. The ck’s depend only on the f ij
k ’s. Equation

�A3� implies that if two different sets of �linearly indepen-

dent� matrices have the same commutation relations, the co-
efficients ck can be determined by working in either matrix
representation:

ck = tr�X�T�Ok�/d = tr�X̄�T�Ōk�/d̄ . �A4�

Because �H0 ,H1 ,H2
 span a su�2� Lie algebra, they sat-
isfy

�Hj,Hk� = 2i� jklHl, �A5�

with j ,k , l� �0,1 ,2
 and � jkl the totally antisymmetric sym-
bol. The su�2� Lie algebra can be built upon
�2�2�-dimensional Hermitian, traceless, matrices �i.e., Pauli
spin-1/2 operators�. This allow us to carry out the calculation
of Eq. �A3� in a low-dimensional representation.

To provide an example in which the L2 trace estimation
can be reduced �Eqs. �9� and �10��, consider again the situa-
tion where H=�	 j=1

n �z
j �Eq. �2��. Then, for example,

�x
1�T� = eiHT�x

1e−iHT = cos�2�T��x
1 − sin�2�T��y

1, �A6�

as ��x
1 ,�z

j�=0∀ j�1. That is, cos�2�T� can be estimated by
computing the renormalized trace of the unitary U
=�x

1�T��x
1 only. This situation can be generalized to the case

when H0=		=1
L e	,0�	,0, if there is an H1=�1, with �1 a Pauli

product such that �for some 	�

��	,0,�	�,0� = 0 ∀ 	,	�,

��	,0,�1
 = 0,

��	�,0,�1� = 0 ∀ 	� � 	 . �A7�

It follows that

��	,0,�1� = 2i�2,

��	�,0,�2� = 0 ∀ 	� � 	 , �A8�

with �2=−i��	,0�1�. Equation �A8� results from the Jacobi
identity and the definition of �2. Thus, ��	,0 ,�1 ,�2
 satisfies
the su�2�-commutation relations, yielding

cos�2�e	,0T� = tr�W†�T��1W�T��1�/2n, �A9�

sin�2�e	,0T� = tr�W†�T��1W�T��2�/2n. �A10�

We estimate Eqs. �A9� and �A10� by executing the circuit of
Fig. 1 with U=W†�T��1W�T��1 and U=W†�T��1W�T��2, re-
spectively.

APPENDIX B: THE ADAPTIVE BAYESIAN ESTIMATION
PROCEDURE

To reach the QML in our estimation procedure, we first
assume an initial estimation of � given by a prior distribution

N��̂0 ,���. For simplicity, in the following we focus on the
case where � is determined from the estimation of cos�2�T�
for different values of T, denoted as Tl. This is done using the
DQC1 algorithm of Fig. 3, where the corresponding Pauli
products �	,j are determined by Eq. �9�. Thus, xl denotes an
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estimate of cos�2�Tl� and we consider ���̂0�0. Otherwise,
the estimation of sin�2�Tl� is also required to determine, for
example, the corresponding quadrant of �.

To obtain x1, we choose T1 such that 2�̂0T1=� /2 �31�.
This can be done with an upper bounded initial use of re-

sources when �̂0� �� ,��, with ��0. That is, 1 /4
T1

�� / �4��. Nevertheless, if �̂0
1 �i.e., T1�1�, a similar
analysis as the one carried out below can be performed by
measuring sin�2�T1�� instead of cos�2�T1�, with T1�=O�1�
�32�. Therefore, we take N(� /2, �c ��2)as the prior distribu-
tion of �1=2�T1. We define here � to be the output precision
of DQC1 when measuring cos�2�T�, which may actually in-
volve many �L2�1� different runs of the circuit of Fig. 3.
We assume 1�c���. The measurement outcome x1 of the
first measurement has then a sampling distribution given by
N(cos��1� ,�2).

The joint distribution f�x1 ,�1�= f�x1 ��1�f��1� is

f�x1,�1� =
1

�2��
exp�− �x1 − cos��1��2 � 2�2�

�
1

�2�c�
exp�− ��1 − �/2�2 � 2c2�2�



1

�2��
exp�− �x1 + �1��

2 � 2�2�

�
1

�2�c�
exp�− ��1��

2 � 2c2�2� . �B1�

Here, �1�=�1−� /2 and, for simplicity, we approximated
cos��1� at first order by −�1� so that the joint distribution is
normal. The error in this approximation can be bounded
above, with high confidence, as

�cos��1� − �− �1��� � � = �c���3/6 
 1, �B2�

for some c��c. For example, if choosing c�=1.96c, Eq.
�B2� determines a 95% credible interval for cos��1�. Such a
confidence can be made exponentially close to 1 as c� in-
creases. Of course this error can be avoided if no approxi-
mation is made and other analytical or numerical methods
are used. Nevertheless, a linear approximation to the cosine
is enough for our purposes, as it will yield the proper results
�33�. Moreover, the error of the above approximation will be
further corrected by subsequent measurements. This is a con-
sequence of the adaptive method.

The following step is to update the information about �1
�or �� based on the measurement outcome x1. The posterior
distribution is f��1 �x1�= f�x1 ,�1� / f�x1�. Using Eq. �B1� this
distribution can be shown to be

f��1�x1� 
 N��̂1,�1
2� . �B3�

�̂1 and �1 are determined from the exponent E=−�x1
+�1��

2 / �2�2�−�1�
2 / �2c2�2� in Eq. �B1�. We write

E = −
��1� +

c2

1 + c2x1�2

2�1
2 + g�x1� , �B4�

implying

�1 =
c

�1 + c2
� 
 � , �B5�

�̂1 = �/2 −
c2

1 + c2x1. �B6�

Summarizing, if �̂1 is our estimator of � after the first mea-
surement, we have

�̂1 =
�̂1

2T1
=

1

2T1
��/2 −

c2

1 + c2x1� , �B7�

which is only a linear correction in x1. Moreover, our knowl-
edge about � has increased such that

�̂1 − 1.96�1/�2T1� � � � �̂1 + 1.96�1/�2T1� �B8�

is a 95% credible interval. If the desired output precision ��

in the single-parameter estimation satisfies �1 / �2T1����,
the estimation procedure stops here. Otherwise, further mea-
surements are required.

In the previous analysis we have neglected other values of
�1 mod 2� that would yield the same measurement outcome.
This assumption introduces an extremely small error
bounded above by

erfc� 2�

c��2
� , �B9�

where erfc denotes the complementary error function of the
normal distribution. Since c�
1, we have
erfc(2� / �c��2�)
0. For example, for the unrealistic case of
c�=1, we have erfc��2��
3.4 10−10. Thus, our assumption
does not affect the final results of the estimation procedure.

To increase the precision we zoom in on the previously
estimated �, so a better estimate is attained. Since x1

=O�c��
1 �34�, we have �2�̂1T1−� /2 � 
1. Accordingly,
there exists a time period T2�T1 such that

2�̂1T2 = �/2 + 2p2� , �B10�

with p2�N*. T2 denotes the evolution time in the second
measurement �estimation�. The main reason behind Eq.
�B10� is that here, as in the first measurement, we seek to
make a phase estimation around � /2 mod2�. In this region,
the cosine function is more sensitive to variations in the
phase. The second measurement returns x2, an estimate of
cos��2�, with �2=2�T2.

Since T2=a2T1, with a2�1, we obtain a2
�1+4p2� �see
Eqs. �B7� and �B10��. The previously estimated � has a vari-
ance of order � / �2T1� �Eqs. �B5� and �B8��, so the variance
of �2 is of order a2�. To guarantee that this variance is
similar to that of �1 �first measurement�, we choose a2 as
large as possible so that �35�
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0 
 c� − 4 
 a2 � c�. �B11�

This implies that Eq. �B2� is still satisfied when replacing �1
by �2, and �1� by �2�=�2− �� /2+2p2��. As an example, con-
sider the case when c�
10. Therefore, we choose a2
9
�c�, corresponding to p2=2 in Eq. �B10�.

After the measurement, the outcome x2 is used to update
our information about �. Since c��
1, �2
� �2p2� , �2p2+1��� with large confidence. That is, we do
not consider other values of �2 mod2� and we make the
estimation in this region only. The joint distribution is now

f�x2,�2�x1� = f�x2�x1,�2�f��2�x1�



1

�2��
exp�− �x2 + �2��

2 � 2�2�

�
1

�2�a2�1

exp�− ��2��
2 � 2�a2�2�1

2� .

�B12�

f��2 �x1� has been determined using Eq. �B10�. Thus, the
posterior density distribution f��2 �x2 ,x1�
= f�x2 ,�2 �x1� / f�x2 �x1� is a normal N(�̂2 , ��2�2), where �̂2
and �2 are determined by the exponent appearing in Eq.
�B12�. These are

�̂2 = ��/2 + 2p2�� −
�a2��

2

1 + �a2��
2x2, �B13�

�2 =
a2�

�1 + �a2��
2
� 
 � , �B14�

with

a2� = a2�1/� 
 a2. �B15�

Summarizing, the estimator after the second measurement is

�̂2 =
1

2T2
���/2 + 2p2�� −

�a2��
2

1 + �a2��
2x2� , �B16�

with a 95% credible interval

�̂2 − 1.96�2/�2T2� � � � �̂2 + 1.96�2/�2T2� . �B17�

The standard deviation in the estimation of � has been re-
duced by a factor of order a2 with respect to the one returned
in the first measurement �Eq. �B8��.

If the desired output precision satisfies �2 / �2T2����, the
estimation stops here. Otherwise, we continue with the adap-
tive procedure. At each step l we find Tl such that

2�̂l−1Tl = �/2 + 2pl� , �B18�

where �̂l−1 is the Bayes’ estimator determined by the previ-
ous measurement outcomes. Since pl� pl−1 are positive inte-
gers, we write Tl=alTl−1, with al
�1+4pl� / �1+4pl−1�. The
lth measurement returns xl, an estimate of cos��l�, with �l
=2�Tl. This is done by running the algorithm of Fig. 3 with
T=Tl. To keep the variance of �l at order c�� we choose al
such that c�−4�al�c� �35�. With this choice, Eq. �B2� is

still satisfied when replacing �1 by �l, and �1� by �l�=�l
− �� /2+2pl��. Using Bayes’ rule, and considering

f�xl,�l�xl−1, . . . ,x1�



1

�2��
exp�− �xl + �l��

2 � 2�2�

�
1

�2�al�l−1

exp�− ��l��
2 � 2�al�2�l−1

2 � , �B19�

we obtain for the lth estimation

2�̂lTl = �/2 + 2pl� −
�al��

2

1 + �al��
2xl, �B20�

�l

2Tl
=

al�

�1 + �al��
2

�

2Tl



�

2Tl
, �B21�

with

al� = al�l/� 
 al. �B22�

That is, the variance of the lth estimator has been reduced by
a factor 1 /Tl.

We now show that the QML has been achieved. Consider
the total evolution time Tt=T1+ ¯ +TK, for K estimations,
with Tl= ��l�=2

l al��T1. Then,

Tt = � 1

a2 . . . aK
+ ¯ + 1�TK. �B23�

Moreover, since �1 /al��1 / �c�−4�
1, we have

Tt � ��c� − 4�−�K−1� + ¯ + 1�TK 

c� − 4

c� − 5
TK. �B24�

Equation �B24� gives the total resource scaling Tt
=O�� / �2���� �i.e., the total evolution time under the action
of H�, implying that the QML is attained.

APPENDIX C: FIRST STEP IN BLACK-BOX ESTIMATION

For simplicity, assume � /4��̂0�0, with �̂0 the mean of
the prior �normal� distribution of �. Then, there exists a �1
such that

2�̂0 + 2�1 = �/2. �C1�

The first estimation of � can be done by running the algo-
rithm of Fig. 3 replacing W�T�→Wa�1,�1�=WBe−i�1H0.
Since H0 is known, Wa�1,�1� can be implemented with
available gates. The output of the first measurement,
denoted by y1, is a measurement of cos��1�, with �1=2��
+�1�. The a priori distribution of �1 is then given by
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f��1�=N(� /2, �c��2) �36�. Similar to the continuous time
evolution case, this distribution yields the joint distribution

f�y1,�1� =
1

�2��
exp�− �y1 − cos��1��2 � 2�2�

�
1

�2�c�
exp�− ��1 − �/2�2 � 2c2�2�



1

�2��
exp�− �y1 + �1��

2 � 2�2�

�
1

�2�c�
exp�− ��1��

2 � 2c2�2� , �C2�

with �1�=�1−� /2. The first measurement returns an estima-

tor of �1, with mean �̂1=� /2− �c2 / �1+c2��y1, and standard
deviation �1= �c /�1+c2��
�. Therefore, the first estima-
tion of � has mean and variance determined by

�̂1 =
1

2
��/2 −

c2

1 + c2 y1� − �1, �C3�

�1� = �1/2 =
c

�1 + c2

�

2

 �/2 . �C4�

Clearly, the accuracy of the estimation has increased after the
first measurement. Thus, we continue with the adaptive
Bayesian method by zooming in on the previously estimated
parameters.
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