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Belief propagation—a powerful heuristic method to solve inference problems involving a large number of
random variables—was recently generalized to quantum theory. Like its classical counterpart, this algorithm is
exact on trees when the appropriate independence conditions are met and is expected to provide reliable
approximations when operated on loopy graphs. In this paper, we benchmark the performances of loopy
quantum belief propagation �QBP� in the context of finite-temperature quantum many-body physics. Our
results indicate that QBP provides reliable estimates of the high-temperature correlation function when the
typical loop size in the graph is large. As such, it is suitable, e.g., for the study of quantum spin glasses on
Bethe lattices and the decoding of sparse quantum error correction codes.
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I. INTRODUCTION

Belief propagation is a powerful algorithm designed to
solve inference problems involving a large number of ran-
dom variables. It operates on graphical models, where vari-
ables are located at the vertices of a graph and edges encode
dependence relations between the variables. The algorithm is
exact when the underlying graph is a tree; but most impor-
tantly, it performs remarkably well in circumstances where it
is not proven to converge to the exact solutions, i.e., when
the graphical model contains loops. It is also highly parallel-
izable in the sense that each random variable can be associ-
ated with a different processor, and messages are exchanged
between processors that are joined by an edge �1–4�.

These features have made belief propagation an important
tool in numerous scientific and technological fields ranging
from information theory to image recognition, and from ar-
tificial intelligence to statistical physics. Indeed, it is one of
the most powerful heuristic algorithms to solve problems
such as decoding of low-density and turbo error correction
codes �5–7�, determining the phase diagram of quenched dis-
ordered systems �3,8�, and random satisfiability problems
�9,10�.

Recently, belief propagation and graphical models were
generalized to the quantum setting �11,12�. In this paper, we
characterize the performances of quantum belief propagation
�QBP� when used as a heuristic algorithm to solve inference
problems—e.g., compute correlation functions—in the con-
text of finite-temperature quantum many-body physics.

II. GRAPHICAL MODELS

We consider quantum graphical models �G ,�� that consist
of a graph G and an n-bifactor state �. The graph
G= �V ,E� has a set of vertices V and a set of edges E. Each
v�V is a quantum system, with Hilbert space Hv. A
n-bifactor state � is a positive operator on H= �v�VHv that
can be expressed as

� =
1

Z��
v�V

�v���n�� �
�u,v��E

�u:v� , �1�

where Z is some normalization factor, and �v and �u:v
are positive operators on Hu and Hu � Hv, respectively.
The operators �u:v are required to mutually commute
when n is finite. The product ��n� is defined as
X��n�Y ��X1/2nY1/nX1/2n�n, and has the property of producing
a positive operator when both X and Y are positive. This
product is noncommutative except in the limit n→�, which
defines the � product: X�Y � limn→�X��n�Y =e�log X+log Y�.
Both products ��n� and � reduce to normal matrix product
when X and Y commute.

A generic inference problem on a graphical model is to
compute the reduced density operator on a subset W�V of
the quantum systems conditioned on the fact that a measure-
ment was performed on a disjoint subset U�V, where both
W and U are of constant size. This problem turns out to be
equivalent to the seemingly simpler problem of computing
the reduced state on any subset W of constant size, i.e.,
�W=TrV−W	�
, where TrX denotes the partial trace over a sys-
tems in set X. Without additional assumptions on the struc-
ture of �, solving this problem requires resources that grow
exponentially with the number of quantum systems �V�.
However, the solution can sometimes be obtained or approxi-
mated by QBP in a time polynomial in �V�.

III. QBP ALGORITHM

Given a graphical model �G ,��, QBP consists of a se-
quence of exchanges of operator-valued messages between
neighboring vertices, which carry information about the state
at other locations in the graph. More precisely, for �u ,v��E,
the message passed from vertex u to vertex v at time t is an
operator on Hv given by

mu→v�t� � Tru��u��n���u:v � �
v��n�u�−v

mv�→u�t − 1��
 , �2�

where n�u� denotes the neighbors of u. The proportionality
factor can be chosen so that Tr	mu→v
=1, and the messages
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are initialized mu→v�0�= I. At time t the belief buv�t�—which
is meant to represent some approximation of the state �uv
=TrV−uv	�
 for �u ,v��E—is given by

buv�t� � ��u�v���n���u:v � �
w�n�u�−v

mw→u �
y�n�v�−u

my→v� ,

�3�

where all messages are taken at time t. When all operators
defining the bifactor state commute, QBP reduces to the stan-
dard belief propagation algorithm �1–4�.

Since the message update rule Eq. �2� at vertex u depends
only on the incoming messages at that vertex, the algorithm
can be operated in a highly parallel fashion where each quan-
tum system u is associated with a processor, and messages
are exchanged between processors u and v iff �u ,v��E.
Similarly, the beliefs on the pair �u ,v�, Eq. �3�, can be com-
puted by combining the messages received at those vertices.

Convergence

In �12�, it was shown that when G is a tree and �G ,�� is
either �i� a 1-bifactor state �cf. Eq. �1� with n=1� or �ii� a
quantum Markov network, QBP yields the exact solution in a
time proportional to the graph’s diameter—i.e., buv�t�=�uv
for t�diam�G�. Intuitively, this means that the algorithm
must run for a time sufficiently long to allow messages to
travel between any pair of vertices. When operated on loopy
graphs, the beliefs do not necessarily converge to the correct
density operators. A good heuristic in that case is to halt the
algorithm when buv�t� become almost time-independent,
which also happens in a time roughly equal to the graph’s
diameter in all the models we have investigated.

A graphical model �G ,�� is a quantum Markov
network when the conditional independence conditions
I�U : �(V−n�U�−U)�n�U��=0 are met for all U�V. The quan-
tity I�A : �B�C�=S�AC�+S�BC�−S�C�−S�ABC� is the quan-
tum conditional mutual information �13,14�, and S�A�
=Tr	�A log2 �A
 is the von Neumann entropy. As explained
in �12,15�, the vanishing of I��A :C�B� is equivalent to the
condition �ABC=�B

−1��AB��BC. This equality is not verified
in general, and the Kullback-Leibler distance between the
right- and left-hand side is precisely the conditional mutual
information D���ABC��B

−1��AB��BC�= I�A : �C�B�.
To understand the workings of QBP, consider a bifactor

state �uvw on the line u−v−w. The reduced state on w is
�w�Truv	��u�v�w���n���u:v��v:w�
. When n=1, basic alge-
bra implies that �w�Trv	��v�w���1��Tru	�u��1��u:v
��v:w�
;
the operations Tru and ��1� commute so to say. The
computation of �w can thus be broken into two steps: �i�
Compute mu→v=Tru	�u��1��u:v
 and �ii� compute �w
�Trv	��v�w���1��mu→v��v:w�
. When n→� on the other
hand, the operations Tru and � do not commute in general,
but they do precisely when I�u : �w�v�=0 �12�. QBP is based
on a generalization of these observations to arbitrary graphs.

QBP does not rely on the vanishing of the norma-
lized connected correlation functions C�	A ,	C�
= �	A	C�− �	A��	C� �16�, or equivalently �17,18� on
the vanishing of the mutual information I�A :C�
=S�A�+S�C�−S�AC�. In many systems, the mutual informa-

tion is not a priori short range. For instance, in the T→0
limit, the thermal state of the 1−d Ising model in zero trans-
verse field is an equal mixture of all spins up and all spins
down, which has I�A :B�=1 between any two disjoint re-
gions, whereas I�A : �C�B�=0 for any three disjoint regions. To
compute thermodynamical quantities, one generally intro-
duces a symmetry-breaking field that randomly singles out
either the all-up or all-down state, which both have
I�A :B�=0. Symmetry breaking can be a delicate issue—for
instance, on Cayley trees where a constant fraction of verti-
ces live on the boundary �8�—and is circumvented by QBP.

IV. QBP FOR QUANTUM MANY BODY

In the context of quantum many-body physics, the infer-
ence problem consists of computing correlation functions for
the thermal state of a system of interacting particles. Given a
graph G= �V ,E�, we consider the generic Hamiltonian

H = �
v�V

hv + �
�u,v��E

huv. �4�

The thermal state at inverse temperature 
=1 /T is given by
�= 1

Ze−
H where Z=Tr	e−
H
 is the partition function. Defin-
ing �v=e−
hv and �u:v=e−
huv enables us to express any such
thermal state as an �-bifactor state, cf. Eq. �1�.

Despite the fact that thermal states are bifactor states, the
result from �12� cited above does not imply that correlation
functions can be evaluated exactly and efficiently with QBP.
This is primarily because G is not necessarily a tree, but also
because thermal states are neither 1-bifactor nor quantum
Markov networks in general. There is no general remedy to
the first hurdle, unless the loops happen to be very small and
can be eliminated by merging some vertices. Thus QBP will
need to be executed on a loopy graph and it is the primary
goal of this paper to determine the effects of such loops on
the performance of QBP. Two pragmatic solutions, named
the replica method and sliding window QBP, have been pro-
posed to overcome the second set of obstacles �12�.

A. Replica

The general idea of the replica method is to approximate
the thermal state by a 1-bifactor state on which QBP can be
executed directly and is guaranteed to converge in the ab-
sence of loops. In a first step, a Trotter-Suzuki �TS� decom-
position is used to approximate a thermal state by an
N�-bifactor state with finite N�. This produces a systematic
error that scales as 
 /N�. Then, in a fashion reminiscent of
the replica trick used in the study of spin glass, the
N�-bifactor state is replaced by a 1-bifactor state at the ex-
pense of substituting the quantum system at each vertex by
N� replicas:

�v → ��v
1/N���N�Tv

�N�� and �u:v → ��u:v
1/N���N�, �5�

where Tv
�N�� is the operator that cyclicly permutes the N� rep-

licas of v. The operators �u:v=e−
huv do not commute in gen-
eral, but this can be fixed in practice on sparse graphs by
merging some vertices. On a tree, the TS decomposition is
the only source of error, so accuracy � can be achieved at a
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computational cost that is exponential in 
 /�. This method is
particularly useful as it allows for a direct computation of
correlation functions at arbitrary distances, see �12�.

B. Sliding window

While all quantum Markov networks are thermal states of
some local Hamiltonian on G �12�, the converse is not true in
general. Sliding window QBP is motivated by the fact that
quantum Markov networks are fixed points of coarse grain-
ing procedures. Thermal states, regarded as �-bifactor states,
are used directly to implement the message passing rule in
Eq. �2� with n=�, except that messages are computed not
just using the nearest neighbors but with all vertices within a
distance 
�. On a line, for instance, vertex j receives
a message from �j−1, j−2, . . . , j−�� and one from
�j+1, j+2, . . . , j+��. In that case, sliding window QBP pro-
duces the exact solution efficiently if the conditional mutual
information dies off at a finite distance.

V. NUMERICAL RESULTS

We have numerically implemented the QBP algorithm on
various graphs for the Ising and Heisenberg model whose
Hamiltonians are

HI = �
v�V

g� · 	� v + �
�u,v��E

Juv	u
z	v

z and HH = �
�u,v��E

	� u · 	� v,

�6�

respectively, and 	� = �	x ,	y ,	x� are the usual Pauli matrices
normalized so that 	2=1 /4. On a line, the homogeneous
�Juv=1� Ising model has a zero temperature phase transition
at the critical transverse field g� = � 1

2 ,0 ,0�. Most of our simu-
lations were performed at this critical value, as it is expected
to represent the “hardest case.” Unless otherwise specified, it
is henceforth assumed that g� = � 1

2 ,0 ,0� and Juv=1.
We used QBP to compute the energy density of the Ising

model on an infinite line. This model can be solved exactly
by means of a Jordan-Wigner transform that maps the inter-
acting spin chain to a collection of free fermions �19�. Figure
1 shows the difference between the energy density computed
with QBP and its exact value as a function of inverse tem-
perature. Also shown are results obtained from a superopera-
tor version of time-evolving block decimation �TEBD�,

which combines ideas from �20,21�. Since a line is a tree, the
error in the results obtained from the replica method is en-
tirely caused by the TS decomposition. The results obtained
for sliding window QBP are in remarkably good agreement
with the exact value, and can be systematically improved by
increasing �. This reflects the fact that correlations are short-
ranged in finite-temperature one-dimensional �1D� models.
As expected the agreement improves for noncritical g. Re-
sults obtained for the Heisenberg model on the infinite line
�not shown� are similar in all aspects.

To characterize the performance of QBP on more general
graphs, we restrict our attention to systems with less than 12
spins, allowing comparison to direct brute-force numerical
solutions. Figure 2 shows the correlation function C�0, j�
=Tr		0

z	 j
z�
 for HI on a frustrated 11-site circle. We assess

the quality of the approximation C̃ to the exact correlation C
by the average relative error

�Error� =

�
j

�C�0, j� − C̃�0, j��

�
j

�C�0, j��
. �7�

Sliding window is again in very good agreement with the
exact value for a relatively small window size. For the values
of N�
10 accessible with modest computational resources,
the replica QBP reproduces the exact correlation function
within a few percents at sufficiently high temperatures

�6, which is consistent with the systematic error due to
the TS decomposition.

Indeed, both the TS decomposition and the loopy QBP
contribute to the total error Eq. �7�. By brute force computa-
tion, it is possible to determine exactly what fraction of the
error is caused by each of these approximations, and in al-
most all cases we have studied at critical g, both contribu-
tions were comparable. Figure 3�a� shows each contribution
to the total error as a function of the transverse field g�
= �g ,0 ,0�.
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FIG. 1. �Color online� Critical Ising model on infinite line. En-

ergy density estimate Ẽ using the method of replicas with N�=10,
sliding window QBP with �=6, and TEBD with �=150, compared
to the exact energy density E obtained from fermionization. ����
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FIG. 2. �Color online� Correlations for HI on a 11-site circle at

=6. Exact numerical solution �dashed�, sliding window with
�=5 �dashed-dotted�, and the replica method for various values of
N� �full�. Left inset: Error Eq. �7� vs the N� for different 
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The most successful applications of the classical belief
propagation algorithm are on graphs whose typical loop size
is very large. This is the case, for instance, of low density
parity check codes �6,7� and spin glasses on Bethe lattices
�8�. Intuitively, one expects a local algorithm such as belief
propagation to be relatively insensitive to the large-scale
structure of the graph. We expect QBP to share this feature,
and Fig. 3�b� illustrates the effect of the loop size on the
average relative error of the correlation function. The oscil-
latory behavior of the error is explained by the frustration
present in odd-size circles. Save from these oscillations, the
results show a global improvement as the loop size increases.
Errors obtained from the sliding window �not shown� also
show a clear improvement as the loop size increases, but
tend to have higher errors on even-size loops.

We have tested QBP on a variety of graphs depicted in
Figs. 4�a�–4�d�. The resulting errors in the correlation func-
tions are shown in Fig. 4. The computational cost is slightly
higher for the Heisenberg model because huv do not mutually
commute. This restricts the computation to lower values of
N� and consequently yields larger errors. Modulo this differ-
ence, the error is most prominent for Figs. 4�c� and 4�d�
which contain loops of size 3. In those cases, we found that
the QBP algorithm was not converging: the magnitude of the
errors is consistent with the magnitude of the time fluctua-
tions of buv�t�, cf. Eq. �3�. As expected, the predicted corre-
lation function is in much better agreement with its exact
value in Figs. 4�a� and 4�b� that have only relatively large
loops.

VI. CONCLUSION

We have numerically characterized the performance of the
recently proposed QBP algorithm. In the high temperature
phase, both the replica and the sliding window QBP algo-
rithms perform remarkably well on a tree with modest com-

putational resources, cf. Fig. 1, and offer performances simi-
lar to TEBD. On loopy graphs, we found that the algorithm
gives reliable approximations when the loop size is large.
Most importantly, when the results deviated from the exact
value, e.g., in the presence of small loops, the algorithm did
not reach a steady state, i.e., the beliefs Eq. �3� were highly
fluctuating as a function of time. This provides an indirect
way of assessing the validity of the results.

In �22�, a technique similar to what we have called the
replica method was used to investigate the phase diagram of
quantum spin-glasses on Cayley trees. Based on the results
we have presented, QBP should be suitable to study this
phase diagram for more general Bethe lattices whose typical
loop size scales as log�V�. In the classical setting, it has been
argued that the physics of random Bethe lattices and Cayley
trees is greatly different �8�. We note that the randomness in
quenched disordered systems should not affect the perfor-
mences of QBP. In fact, our results obtained for random cou-
plings Juv and random local fields g� are typically in better
agreement than the ones we have presented.

Finally, the low temperature phase of these models may
be accessible using QBP as part of a variational approach
based on projected entangled-pair states �23�, which are a
form of 1-bifactor states. QBP can be used to approximately
compute the reduced state on pairs of sites and minimize
their energy. We leave the characterization of this approach
for a future study.
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