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The methodology of optimal control theory is applied to the problem of implementing quantum gates in
continuous-variable (CV) systems with quadratic Hamiltonians. We demonstrate that it is possible to define a
fidelity measure for CV gate optimization that is devoid of traps, such that the search for optimal control fields
using local algorithms will not be hindered. The optimal control of several quantum computing gates, as well
as that of algorithms composed of these primitives, is investigated using several typical physical models and
compared for discrete-variable and continuous-variable quantum systems. Numerical simulations indicate that
the optimization of generic CV quantum gates is inherently more expensive than that of generic discrete
variable quantum gates, but can be routinely achieved for all the major classes of computing primitives. The
exact-time controllability of CV systems, hitherto largely ignored in the design of information processing
models, is shown to play an important role in determining the maximal achievable gate fidelity. Moreover, the
ability to control interactions between qunits can be exploited to delimit the total control fluence. Future
experimental model systems should carefully tune these parameters so as to enable the implementation of CV
quantum information processing with optimal fidelity.
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I. INTRODUCTION

The optimal control of quantum dynamical systems has
become a subject of intense interest in chemistry, physics,
and most recently, information theory [1,2]. Over the past
several years, it has become clear that the physical imple-
mentation of logical gates in quantum information process-
ing (QIP) may be facilitated by using the methods of optimal
control theory (OCT) to maximize the gate fidelity with a
target quantum gate [3-7]. Such implementations have been
directed toward discrete QIP, as hypothetically carried out on
the so-called quantum spin computers originally discussed
by Benioff and Feynman [8,9]. These computers, in which
information is carried as quantum bits (qubits) [10] encoded
in discrete systems like electron spins or two-level atoms, are
the quantum version of digital classical computers. Analog to
classical information carried by a continuous (analog) signal,
quantum information can also be carried by (infinite-
dimensional) continuous quantum systems, such as a har-
monic oscillator, rotor, or modes of the electromagnetic field
[11]. Quantum information processing over continuous vari-
ables (CV) can be thought of as the systematic creation and
manipulation of continuous quantum bits, or qunits [11].

Importantly, continuous-variable quantum information
processing (CVQIP) may be less susceptible to drift than its
classical counterpart. Cleverly encoded quantum states can
be restandardized and protected from the gradual accumula-
tion of small errors, or from the destructive effects of deco-
herence [12]. Moreover, compared to its discrete counterpart,
CVQIP has several practical advantages, originating, for ex-
ample, in the high bandwidth of continuous degrees of free-
dom, that have spurred substantial interest in its generic
properties. Significant experimental advances have recently
been made, including the demonstration of quantum telepor-
tation over continuous variables [13]. As experimental meth-
odologies improve, it becomes important to consider how
such implementations can be enhanced through the system-
atic application of OCT.
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Here, we examine OCT problems pertaining to an impor-
tant class of continuous quantum gates, namely those that
can be represented as symplectic transformations of the
quadrature vectors in the Heisenberg picture. This gate set is
referred to as the Clifford group [14], which, according to the
generalized Gottesman-Knill (GK) theorem, are sufficient to
represent any CV quantum computation that can be effi-
ciently simulated on a classical computer (as such, the sym-
plectic gate formalism also has applications in the context of
reversible analog classical computation). Although universal
quantum computation over continuous variables requires
higher-order nonlinear operational gates, networks using
only Clifford group gates have numerous important applica-
tions in the area of quantum communication, and in fact,
these gates are in many ways easier to implement over con-
tinuous variables than over discrete variables [15]. For ex-
ample, quantum error correcting codes, which are essential
for overcoming the effects of errors and decoherence, use
only Clifford group gates for encoding and decoding. Other
important protocols in QIP, like quantum teleportation, also
rely solely on Clifford group gates and related measure-
ments.

Early control studies on continuous quantum systems fo-
cused on the manipulation of quantum scattering states in
bond-selective control (i.e., dissociation or association) of
molecular systems [16,17], where OCT can be effectively
applied. In this paper, we investigate the implementation of
CV quantum gates via OCT, where the distance between the
real and ideal quantum unitary transformation is used as a
metric for assessing optimality. Prior work [18] has begun to
examine the question of constructing minimal time quantum
circuits for a given symplectic gate from restricted control
Hamiltonians. Here, we are concerned with the general prob-
lem of implementing symplectic gates in arbitrary time with
unrestricted quadratic control Hamiltonians. By contrast, we
are interested in the general problem of gate control for ar-
bitrary quadratic Hamiltonians and arbitrary final times.
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We carry out this analysis in two stages. First, we analyze
the features of the optimal control landscape for symplectic
gate fidelity, defined as the map between admissible controls
and associated values of objective function. Such landscapes
were recently shown to universally possess very simple criti-
cal topologies for finite-dimensional quantum gates, with no
suboptimal traps impeding optimal searches, irrespective of
the system Hamiltonian for controllable systems [19]. Upon
the assumption of full controllability of the underlying con-
trol systems, the control landscapes for symplectic gates are
also free of local traps that might otherwise impede the op-
timization process. Next, we carry out numerical OCT cal-
culations for various CV gates, comparing to the analogous
discrete variable gates with two physical models. We identify
characteristic differences between these two problems in
terms of control optimization efficiency, the factors influenc-
ing maximum achievable gate fidelity, and the physical prop-
erties of the associated optimal Hamiltonians.

The paper is organized as follows. Section II provides
preliminaries on the symplectic gates applied in CVQIP and
discusses several representative models for their physical
implementation. Section III examines analytical features of
the optimal control landscape for CV gate control and de-
scribes numerical algorithms for searching this landscape. In
Sec. IV, we carry out OCT calculations for specific CV gates
and algorithms using these representative model Hamilto-
nians, comparing with the corresponding problems for dis-
crete quantum gates. Finally, Sec. V draws general conclu-
sions regarding OCT for CV quantum gates versus discrete
quantum gates.

II. SYMPLECTIC GATES AND CONTROL SYSTEM
MODELS

The optimal control theory for CV gates frames the time
evolution of the canonical observable operators over the
symplectic group [20]. As such, these gates are represented
by symplectic propagators. This section will provide neces-
sary preliminaries on symplectic gates and their realization
via dynamical controls.

A. Symplectic gates

For simplicity, suppose that the CV system is to be real-
ized as a quantized electromagnetic field. Let d; and é; rep-
resent the creation and annihilation operators corresponding
to the jth mode of the field. These operators are related to the
position and momentum operators by

1
g;=—=(a;+a)),
V2

Denote 2=(§y,...,qy:P1s---,Py) the quadrature vector and
let U be a unitary transformation over it through
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Uizg> U'2,U= 2 S
B

where the matrix S is an element of the symplectic group
Sp(2N,R) defined as the set of 2N X 2N matrices such that

S ]S—J, where
J_— ( N)
11\/ .

Here the matrix S captures the Heisenberg equations of mo-
tion for the operators Z ;, and the unitary propagator U forms
the metaplectic unitary representation of S in Sp(2N,R). An-
other important class of transformations over the CVs are the
displacements that shift § and p by constants:

g—q+a,

p=>p+b. (1)

The combination of displacements with homogeneous sym-
plectic transformations forms the Clifford group, or the in-
homogeneous symplectic group ISp(2NV,R), in the form of

S ¢ W
S.= 0 1) S € Sp(2N,R), c¢€ R,

which acts on the extended quadrature vector H,=a'b]
+ab2.

In the context of quantum optics, which is the basis of
most proposed schemes for CV quantum computation, the
symplectic gates require both linear and nonlinear optics.
The linear elements (such as beam splitters, mirrors, and
half-wave plates) include the inhomogeneous displacement
transformation and the maximal compact subgroup
OSp(2N,R) of orthogonal symplectic matrices that preserve
the total photon number 7i==Y ,d/d;. The nonlinear elements
(such as squeezers, parametric amplifiers, and down-
converters) fall into the noncompact portion of Sp(2N,R),
and correspond to photon nonconserving transformations.

There exists a set of universal symplectic gates whose
combinations may realize arbitrary Clifford gates in
ISp(2N,R). A well-known choice of the universal gate set
consists of the (linear) Pauli operators, the Fourier gate,
phase gate, and the SUM gate as described below.

(1) The Pauli operators perform the phase displacements

X(Qj) = eXP(ihqjﬁj),

Z(Pj) = exp(iﬁpjéj) >

whose symplectic representations are

1 0 g
X(@)=|0 1 0,
001
1 0 O
Zp)={0 1 -p|. 2)
00 1
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(2) The one-qunit Fourier transform is the CV analog of
the discrete Hadamard gate:

imT o, . q p
““P{zz(f”’z)}:(,a)H(_q)

This action can be represented by a 2 X2 symplectic matrix

F—(O 1) OSp(2,R 3
=(_, ,)EospR). (3)

(3) The phase gate is the analog of the discrete variable
phase gate

i L)\ [d g
2h p p=nq

Unlike the other gates, P is a function of a real parameter
and can be represented by the matrix (in homogeneous form)

0
) € Sp(2,R). (4)

_(1
P(n) = o

(4) The SUM gate acts on a two-qunit system where qunit
1 is said to be the control and qunit 2 is said to be the target
[14,21], and it carries out the following transformations on
the canonical observable operators:
SUM:  §1=>q1, G2—>q1+qa P1=>P1—P2 P2 D2
This is the continuous-variable analog of the discrete
controlled-NOT (CNOT) gate and its unitary representation is

i, .
SUM = exp(— %qlpz) )

Therefore the associated symplectic representation in homo-
geneous form is

SUM = € Sp(4,R). (5)

S O = =
o O = O
oS = O O

B. Control systems for CVQIP

In this paper, we are only concerned with the optimal
control of the homogeneous symplectic transformation (the
inhomogeneous displacement transformations can be per-
formed relatively easily and independently [22,23]). The sys-

tem Hamiltonian H (¢) required to generate such transforma-
tions are quadratic in 2=(g;,...,4n:P1»-..,Pn) ", the vector
of quadratures of quantum observables. The unitary propaga-
tor is manipulated through the controlled Schrodinger equa-
tion

dU IR 2
% - é[Ho + é Ci(H;]U(), ©

where H,, is the (quadratic) internal Hamiltonian and H, is
the interaction Hamiltonian steered by a control field C,(¢) to
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couple the internal degrees of freedoms. Suppose that f]i
=2, phiagialp 1=0,1,...,m, and let H;={h; ,g}. Through
this representation, the symplectic matrix S(¢) associated
with U(¢) follows a classical Hamiltonian evolution equation

dfz_(f) = J[Hy+ S COHIS(). )
i=1

Early proposals for CVQIP focused on coupled pairs of
conjugate continuous variables describing quadrature modes
of the electromagnetic field [11,21,24], where it is typically
possible to apply only one control at any given time. More
recently, CV models displaying greater flexibility have been
proposed that may be more suitable for optimal control of
quantum gates. In particular, these control systems allow for
the simultaneous application of two or more independent
controls. A simple model raised in [24,25] considered the
off-resonant interaction of light with a collective spin de-
scribed by the effective Hamiltonian

Hy= k4,pa,
which represents a strongly coherent light beam polarized
along the x axis that propagates along the z axis through the
atomic ensemble. In addition, it is assumed that arbitrarily

fast local phase shifts are implementable by single-model
control Hamiltonians:
H =§¢1+pi, Hy=q>+p3.

The control pulses are usually instantaneous and exerted in
certain sequences to simplify the analysis and the experimen-
tal realization. However, here we will assume that the control
pulses can be arbitrarily shaped, so that a greater degree of
precision is possible in tailoring the control Hamiltonian to
match theoretical predictions.

Recently, atomic ensembles, particularly ensembles of
trapped ions, have emerged as a promising medium for CV-
QIP [26-28] because the trapped ions are thermally isolated
from their environment, minimizing decoherence effects.
Quantum information is stored in the vibrational modes of
the trapped ions. Some quantized fields inside an optical cav-
ity [26,27] are applied to couple (entangle) these vibrational
modes, through which it is possible to indirectly tune the
coupling between vibrational modes. For concreteness, con-
sider a model wherein two trapped ions with internal elec-
tronic levels are coupled to external lasers. They are also
coupled to a cavity mode with frequency w,, described by
annihilation and creation operators d and ', respectively,
where the harmonic frequency of each trap is 2v. Assume
that the cavity is oriented along the x axis and the laser is
incident along the y or z axis. Then in a frame that is rotating
with frequency w,, the interaction Hamiltonian coupling the
vibrational modes of the ions with the cavity and laser fields
can be written as (omitting the electronic states);

H=20b1, + 5by) + V,

where 51,2 and 54{2 are the annihilation and creation opera-
tors of the vibrational modes. The interaction Hamiltonian V
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is a function of the coupling constants between ions and
lasers and single-photon coupling strengths. Under reason-
able assumptions regarding the size of the traps compared to
the laser wavelength, and with proper detuning of the lasers
from the cavity mode, the interaction Hamiltonian for the
first ion can be approximated as [27]

‘A/z rll(aATbA] + dé}) + er(aATbA; + é52)7

where ry; and r,; are functions of the frequencies and cou-
pling constants. This system actually involves three har-
monic oscillators, where ion-cavity interaction Hamiltonians
produce indirect couplings between the vibrational modes of
the two ions. By modulating the frequencies of these lasers
through time, we can achieve time-dependent control Hamil-
tonians necessary for the implementation of CV gates with
optimal fidelity. The controls in this model induce nonlocal
interactions between qunits.

The above models display features that are representative
of current proposals for CVQIP. The light-collective spin in-
teraction control system (hereafter referred to as the “photon
model”) is a promising candidate for achieving most sym-
plectic transformations experimentally.

C. Controllability of CV gates

Systems employed to process quantum information are
generally required to be sufficiently controllable, i.e., able to
realize arbitrary desired quantum gates. A fundamental nec-
essary condition for controllability of systems evolving on
general Lie groups [29] is the rank condition, i.e., the condi-
tion that the Lie algebra spanned by H,,H,, ... ,H,,, and their
commutators such as [Hy,H,], [Hy.[H.H]1, [H;,[H.H/]I,
and so on, equals the Lie algebra of the Lie group. This
condition has been proven to be sufficient for the unitary
propagators of discrete-state quantum systems [29], and such
systems are exact-time controllable for any time > 7, where
T, is some constant positive time, i.e., arbitrary gate can be
achieved exactly at any positive > T,,. However, for systems
on noncompact symplectic groups, the rank condition is gen-
erally insufficient except when H,y is compact, and there is no
guarantee of exact-time controllability, i.e., it may take an
extremely long time for some particular gates. The control-
lability usually fails when H, is noncompact [29,30], but
proper use of multiple control fields may greatly enhance it,
such that any gate can be achieved at arbitrary positive times
(rendering the system strongly controllable), if their corre-
sponding control Hamiltonians span the Lie algebra of the
symplectic group.

In choosing CV control systems for the purposes of our
study, we are guided by two considerations: (1) the differing
controllabilities of systems proposed thus far in the literature
and (2) the nature of the coupling between qunits in such
control schemes. Thus far, the design of CV gate control
systems has not paid enough attention to the effects of the
controllability of these systems on the maximal achievable
gate fidelity. A reason for this oversight may be the fact that
in discrete gate control, exact-time controllability is usually
easy for achieving high fidelity control. With respect to the
coupling between qunits, we will show that whether the con-
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trols act locally (between pairs of qubits) or nonlocally
(among multiple qubits) has a dramatic impact on the effi-
ciency of control optimization, as well as the energetic ex-
pense of implementing the optimal controls.

Assessment of the controllability of the proposed physical
models described above reveals that (1) the photon model
satisfies the rank condition, but is not ensured to be fully
controllable because H, is noncompact; and (2) the ion-trap
model does not satisfy the controllability rank condition, and
hence is only controllable over a Lie subgroup of Sp(6,R).
This lack of strong controllability is characteristic of many
proposed physical models for CVQIP. Nonetheless, such
schemes are still feasible for many practical gates.

In addition to the above two physical models, we also
study a strongly controllable system below in order to ex-
plore the effects of controllability on the properties of gate
optimization. The following control Hamiltonians were em-
ployed for this purpose:

~ ATD A2 A2 A2
H1=a]; —a1+a; - as,

Hy=ala, - aa, +i(al +a,)(al - a,);
the internal Hamiltonian in this case consisted of uncoupled
harmonic oscillators, i.e., I:I(,:didl +&§d2+1.

In the following, we make several comparisons to discrete
QIP. For this purpose, we assume the standard physical
model of NMR-based quantum computation [6]. In this
model, the internal Hamiltonian H,, consists of nuclear spins
that are coupled in the absence of the control field. The cou-
pling between N spins (only up to 2-qubit interactions are
considered) is achieved through standard NMR coupling
Hamiltonians of the form:

N N N
H=X woi+ 2 2 JPofed+> Cno],
i=1 i=1

i,j=1 a,f=x,y,z

where o7}** are the standard Pauli matrices representing ob-
servables of the ith qubit. The first term splits the energy
levels via a static magnetic field along the z axis, with w;
being the Raman frequencies; the second term represents the
internal couplings between the qubits (e.g., chemical shifts);
the last term, the control Hamiltonian, interacts each qubit
state to a time-variant x-axis radio-frequency control field
Ci(r). Because of the tensor product structure of qubit sub-
spaces in these expressions, the total system dimension
scales as 2V. One can verify that this system is controllable,
but not strongly controllable.

III. OPTIMAL CONTROL OF SYMPLECTIC GATES

The objective of this paper is to identify the time-
dependent functional form of the Hamiltonian that minimizes
the distance to a target symplectic (CV) gate at a fixed time
14, with a particular focus on the convergence of search algo-
rithms for this problem. Since the (quantum) symplectic gate
U(t) is a faithful unitary representation of a symplectic ma-
trix S(z), it is reasonable and convenient to define the gate
fidelity analogously to that for discrete gates as
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FLC(), 7] = TelS(1y) = WI'LS(2y) = W1, (8)

where W is the finite-dimensional representation of the target
quantum propagator, and S(#,) is the representation of the
system propagator U(ty) as an implicit function of C(-). In
this section, we describe numerical algorithms used to search
for optimal controls and study analytical features of the sym-
plectic gate control problem via landscape analysis.

A. Numerical implementation

Several optimization algorithms, including iterative meth-
ods such as the Krotov algorithm [3] and tracking methods
such as D-MORPH (diffeomorphic modulation under ob-
servable preserving homotopy) [31], have been applied in the
OCT of discrete quantum gate implementations. These algo-
rithms can vary considerably in optimization efficiency, but
they are all based on information pertaining to the first func-
tional derivative of the objective function with respect to the
control field. Here we adopt gradient algorithms to search for
optimal controls, which, although not the most efficient, of-
fer the simplest and most direct opportunity for comparing
the properties of discrete and continuous gate OCT. In par-
ticular, they are ideal for detecting landscape traps.

The electric field C,(s,r) was restricted to be piecewise
constant over [O,tf], i.e., they are constant on each equally
divided subintervals [f;,t;,,] k=1,...,q, with ;=0 and ¢,
=1;. The field is stored as a g-dimensional vector in each
algorithmic step s;. Starting from an initial guess Ci(so.{t;})
for the control ﬁeld the equations of the motion were inte-
grated over the interval [0,7;] by propagating the
Schrddinger equation over each time step #;, — t,,, producing
the local propagator U(ty,,t)=exp[—iH(s;,t,)t;/ q], while
for symplectic case the local propagator is S(t.;,f;)
=exp[JH(s;, 1)t/ q].

The Pade approximation for the exponential function was
used to calculate the local symplectic propagators S(z j+1,t)
=exp[JH(s;, ])tf/(q 1)]. Since the matrix JH(s;,t;) is not
symmetric, it is not possible to calculate its exponential via
diagonalization and subsequent scalar exponentiation of its
eigenvalues. The type (p,q) Pade approximation for ¢ is the
(p.q)-degree rational function P, (x)=N,,(x)/D,,(x) ob-
tained by solving the algebraic equatlon Ek k!

pq(x)/ D, (x)=0(x**1), ie., P,,(x) must match the Tay-
lor series expansion up to order p+¢g. Due to the large num-
ber of iterations generally required for convergence of CV
quantum controls, the speed of the matrix exponentiation al-
gorithm is particularly important. In contrast to discrete
gates, acceleration of matrix exponentiation for CV systems
via the propagation toolkit requires significantly greater
memory overhead for the storage of precomputed propaga-
tors at discrete control field intervals. Otherwise, discretiza-
tion of the control field amplitudes produces unacceptable
errors in the matrix exponential, and the maximum ampli-
tudes often grow abruptly during optimization. However, for
larger systems where the number of iterations for conver-
gence increases considerably, the storage overhead will be
warranted due to the resulting substantial increase in propa-
gation speed per step.

PHYSICAL REVIEW A 77, 052303 (2008)

Theoretically, the gradients of the objective functions can
be proven to be

O el )LS7(0W - W2,
5Cj(t) J ! !
where H ,-(t):ST(t)H_ ;S(1), for CV gates, and
SF(U) . .
PO Te{H,(O)[U* (1) W -~ WU (1)1},

where H(f)= UT(t)H U(r) for discrete unitary gates. Here,
the H; is the Hamlltoman that couples to the time-dependent
control C, (t) Since the field is constrained to be piecewise
constant, the system at each time instance #;, can be precisely
represented as the product of these local propagators:

Up=Ultitiy) -+ Ulta,ty),

Si =8ty tyy) -+ S(tas1y),

where U,;=1Iy and S;=1,y. For the application of numerical
gradient algorithms, the gradient vector is discretized as fol-
lows:

SF(S,)

=T STH S JSITW-W'S)], k=1,....q,
5C](lk) r[ Kkt k‘]( q q)] q
OFU,) _ iT{UHU(UW-W'U)], k=1
8Ci(ty) KT o K=ot

Among gradient algorithms [32], the conjugate gradient
(CG) method applied here is among the most efficient exist-
ing implementations. Here we minimize the fidelity function
using the Polak-Ribere variant of the CG method with step
size varied adaptively based on Brent’s method for line mini-
mizations. In several cases, an adaptive step size steepest
descent algorithm was employed to analyze the behavior of
gradient flow lines.

Optimization algorithms for CV gate control are inher-
ently more susceptible to instabilities than those for discrete
gate control due to the appearance of positive real eigenval-
ues in the exponent of the dynamical propagator matrix ex-
ponential, which makes it easy to propagate the symplectic
operators toward infinity. In the case of the gradient, how-
ever, the following topology analysis indicates that the algo-
rithm is fundamentally stable, i.e., that the search for optimal
controls monotonically decrease to cost value F and guide
the iterations to the unique global optimum. Nonetheless, in
practice, finite numerical precision can in certain cases cause
artificial instabilities in gradient algorithms for CV control
optimization. This may occur when the initial guess for the
control field results in the corresponding symplectic propa-
gator being very far from the global optimum, or the norm of
the corresponding gradient vector exploding to infinity, so
that the actual iteration process deviates away from the ideal
gradient flow and leads to instability. These problems can be
avoided by carefully choosing the initial guess of control
fields. Another commonly used class of algorithms in OCT
of classical dynamical systems consists of iterative algo-
rithms based on Pontryagin’s maximum principle [33]. These
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are often used in conjunction with gradient algorithms to
speed up optimization in the vicinity of the solution, but are
much more susceptible to instabilities away from the opti-
mum. This is another reason that gradient algorithms are
adopted in this paper.

B. Landscape topology and its impact on control search

Theoretically, an optimal control solution is a critical
point of the gate fidelity function JF. Since this control land-
scape generally has nonunique critical points, and any of
them can be a candidate of the ultimate optimal solution, the
topology of the critical sets is essential in estimating the
complexity of searching for optimal controls [34]. Under the
assumption of controllability over the symplectic group at
the final time 7, the topological analysis [35] of the critical
points of the landscape (8) in the domain of admissible con-
trol fields can be reduced to that of

F(S) =[S - Wi

over a smaller space Sp(2N,R), because in that case each
critical control is locally maximal (minimal, saddle) if and
only if the resulting S(z) is locally maximal (minimal,
saddle). In [35,36], it is shown that the set of critical points
consists of a finite number of critical submanifolds that can
be expressed as [35]

S*=URTDRV, R € stab(E), 9)

where the matrices U, V, and E are from the singular value
decomposition of W=UEV. The stabilizer stab(E) of E in
OSp(2N,R) is defined as

stab(E) = {R € OSp(2N,R)|RTER =E}
=0Sp(2ny) X O(n;) X -+ X O(ny).

Suppose that the singular values of the diagonal matrix E are
e < <ej'l=1=ey<e;<---<e,, where the degeneracies
for e,...,e; are ny,...,n, as well as those of e{l,...,egl.
The characteristic matrix D contains different operations on
the separate modes represented by its diagonal blocks (their
inverses appear pairwise symmetrically in D and E according
to the reciprocal property of eigenvalues of symplectic ma-
trices) as follows [35].

(1) Type-I operations D,=e,l,, corresponding to a sub-
block Eézealm:y in E, which are identical with those opera-

tions in the target transformation W.
(2) Type-II operations D'/';:—e};/SImg corresponding to a
subblock E'[';:e;,llm; in E, which reverse the directions of the

quadrature vector of the corresponding modes and is fol-
lowed by a squeezing operation with ratio e}f on the § com-
ponents.

(3) Type-III operations
bo_ ,ﬁs cos x751my5 *sin x,/(glmyﬁ
& e, \ Esin X,y(glmya —cos lemya ’

eJes—ege

where x5,=arccos PPRICRPPRETE corresponding to a sub-

block
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el 5
E‘}/5=< i

which rotates two decoupled yth and Jth modes with an
angle x;, followed by a uniform squeezing operation on both
modes.

(4) The subblock for the particular singular value ey=1 is

L,
- I"o—'"o

which leaves m, modes of linear operations invariant and
reverses the direction of quadrature vectors of the other n
—mg modes in the phase space.

It is apparent that the overall landscape topology is influ-
enced greatly by the compactness and degeneracies of the
singular values of W, which determine the number and pos-
sible structures of the critical submanifolds. In [35] we found
that the landscape has only one locally minimal critical sub-
manifold, and the remaining critical submanifolds are all
saddles. This greatly facilitates the search for optimal control
fields, implying that local algorithms will eventually con-
verge to the desired optimal solutions without being trapped
by any suboptima. Absence of local traps is a property also
shared by the landscape for the discrete-variable quantum
gate control [19], where

FU)=Te(W-U)"(W-U)=2N
-2Re Tr(W'U), U€EUN), (10)

1/3
;' ) o =er=es
6 moys

with WEU(N) representing the target unitary transformation.
However, the critical topology for the landscape (10) is uni-
versal, i.e., independent of W as well as the implemented
Hamiltonians, while the topology for Eq. (8) strongly de-
pends on the target gate W.

Each combination of the indices {mo,m;,m’l’;,mwg} labels
an individual critical submanifold. All admissible combina-
tions can be enumerated to count the number of the critical
submanifolds, which is always finite. The number of critical
manifolds in the control landscape scales linearly as N+1
when W is compact (e.g., F, X, and Z or combinations
thereof), where N is the number of qunits. This scaling is the
same as that of a discrete quantum gate where N is the num-
ber of levels [19].

When W is noncompact but has fully degenerate singular
values, this scaling can be shown to be quadratic in N [35]:

{(N+ 2)%/2, N even;

(N+1)(N+3)/2, N odd. (n

The scaling for nondegenerate gates keeps rising when the
degeneracy is broken. For the extremal case that W has fully
nondegenerate singular values, the upper bound for the num-
ber of critical submanifolds is

[N/2]

2N—3mN!
JU St 1y
o1 M (N =2m)!

which is superexponential but lower than N! scaling. Figure
1 compares the above scalings with that of (N-level) unitary
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FIG. 1. The scaling of the numbers of critical submanifolds for
fully nondegenerate (N-qunit) symplectic gates and (N-qubit) uni-
tary gates.

gates, showing that the number of critical submanifolds for
N-qunit symplectic gates always grows faster than that for
N-level unitary gates. This implies that the search for optimal
controls will be more slowed down on the symplectic group
than on the unitary group.

Since all these critical submanifolds are orbits of a com-
pact Lie group stab(E), they must be contained in the ball
centered at W with radius R ~ VN equal to the distance to the
farthest critical points, wherein they may affect the optimal
search. The volume of this region is roughly of the order V
~NN2, which rises so quickly as N increases that it is ex-
pected that the probability for a random initial guess to be
close to a saddle manifold should be small enough to be
negligible in practice.

The above results apply when controls are applied using
both linear optics and squeezing. We are also interested in
the optimal control problem that involves the use of only
linear optical operations, whose realizable CV gates S are
restricted to the compact symplectic group OSp(2N,R). In
[35,36], it is shown that the landscape topology for this prob-
lem is identical to that of discrete-variable gate control over
U(N) due to the isomorphism between OSp(2N, R) and U(N).
For a compact target symplectic gate, the critical submani-
folds are completely identical when the search is carried out
on the full symplectic group (corresponding to linear optics
plus squeezing) or its compact subgroup (corresponding to
only linear optics), the only difference being an increase in
the dimension of the search space. Therefore the additional
directions accessible through squeezing transformations are
not expected to improve convergence toward the optimal so-
lution. These observations collectively draw a fairly simple
picture of CV gate landscape topology, which, although more
complicated than the topology of discrete gate landscapes,
should not preclude efficient control optimization.

Throughout this paper, we will use gradient algorithms to
optimize the control field. The search process in the kine-
matic picture can be represented by the so-called gradient
flow on the symplectic group:

PHYSICAL REVIEW A 77, 052303 (2008)

Cost Function

2 4 6 8 10 0 2 4 6 8 10
Algorithmic Time Algorithmic Time

FIG. 2. The convergence of the gradient flows for optimal
search of the suM gate on Sp(4,R) and CNOT gate on U(4).

B __vr),
ds

where the parameter s is the algorithmic time representing
the progress of iterations. It is instructive to estimate the
convergence speed of the gradient flow. Via linearization of
this equation in a sufficiently small neighborhood of the glo-
bal optimum S=W, one can observe that the gradient vector
converges approximately exponentally to zero (acommpan-
ing with proper line search methods) and the converging rate
is dominated by the smallest eigenvalue of the Hessian form
at W, identified as w2 =1, where @y, is the maximal sin-
gular value of W (see details in [35]). In the context of quan-
tum optics, this parameter represents the maximal squeezing
ratio of optical modes under this transformation. By com-
parison, a similar estimate for gate search on the discrete
unitary group reveals a constant convergence rate of 1 (i.e.,
no squeezing). Therefore the search for noncompact sym-
plectic gates will display slower convergence in general, de-
pending on the magnitudes of the singular values of the tar-
get gate. Figure 2 shows the convergence speed of gradient
flows for the SUM gate on the symplectic group, and, for
comparison, the CNOT gate on the unitary group. In a physi-
cal context, the convergence speed for the phase gate (or
squeezing gate) decreases with increasing phase shift (or
squeezing ratio).

IV. NUMERICAL SIMULATIONS

In this section, we numerically solve for optimal control
fields for implementing Clifford group gates and composite
CV algorithms, and compare the optimization effort and con-
trol field complexity to those of the corresponding gates over
discrete variables. As such, we aim to identify distinguishing
features of CV gate control that will have the greatest impact
on its computational and experimental implementation.

These results indicate that conjugate gradient algorithms
are successful at locating optimal controls for each of the
important classes of CV gates, and for each of the represen-
tative CV control systems described above. From the point of
view of physical implementation of these control systems,
we examine the effects of three characteristic features of CV
gate control on the properties of the optimal fields. These are
(A) the controllability of the CV gate control system (i.e.,
whether it is strongly controllable, weakly controllable, or
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FIG. 3. The convergence of dynamical search for the sum gate
using conjugate gradient algorithms with the photon model (left)
and a strongly controllable system (right).

uncontrollable); (B) the compactness or noncompactness of
the gate in question; and (C) the nature of the couplings
between qunits. As we will show below, these features have
surprisingly important effects on the feasibility of imple-
menting proposed information processing schemes, features
that have hitherto been largely ignored in the literature. By
proper choice of the control system, the optimization do-
main, and the couplings between qunits, it is possible to
engineer physical systems for CV quantum information pro-
cessing in which it will be easiest to implement gates with
optimal fidelity.

A. Effects of exact-time controllability on CV gate fidelity

In order to assess the effects of exact-time controllability
on control fidelity, optimization efficiency, and the energy
expenditure required for control, we studied the control prob-
lem where W is the SUM operation whose matrix form is
shown in Eq. (5), using both the photon model (k=1) and the
strongly controllable system described above. Figure 3 com-
pares the effects of strong versus weak controllability on
convergence speed, starting from either a random guess or
near saddle solutions. Although the SUM gate is reachable
with both models at the final time, the weaker controllability
of the photon model compromises convergence speed. In ad-
dition, Fig. 4 shows that the corresponding optimal control
fields are more expensive in that their fluences are much
greater.

Both the photon model and the strongly controllable
model have the same kinematic critical topology, which in-
cludes a total of five critical submanifolds, including four
isolated points and one one-dimensional manifold. Their cha-
rasteristic indices are summarized in Table I. As discussed
above, the saddles are expected to be rarely encountered dur-
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FIG. 4. The optimal control fields for CV suM gate control after
searching from a random initial guess, for (a) the photon model and
(b) a strongly controllable model.

ing the progress of most optimization trajectories. This is
supported by the simulation result (Fig. 3); the saddle mani-
folds appear to have a slightly adverse effect on optimization
efficiency for the strongly controllable system, and have al-
most no influence on the convergence of the photon model.

Note that the free Hamiltonian for the photon model hap-
pens to be proportional to the matrix logarithm of the SUM
gate; thus using this model, SUM can be achieved merely via
free evolution in «~! units of time. Simulations show that the
SUM gate is always realizable in any time longer than x!
(e.g., Fig. 4). The attempts to employ a final time less than
«~! failed as shown in Fig. 5, where the control search does
not converge, implying the x~! should be the minimum time
required for the SUM gate. By contrast, for the strongly con-
trollable system, optimal control fields exist even for very
small 7, although the expense increases and the shape of
control fields tends to become more singular (Fig. 6).

An important feature not shown in the figures is that the
optimal search can suffer from numerical instabilities when it
starts far away from W (for example, when there is no a
priori knowledge of an appropriate choice for the control
fields) because the system dynamics involves exponentially
increasing components. Our simulations show that this prob-
lem can be solved by sampling multiple initial control fields
to get the search started close enough to the ball containing
the critical points, and using sufficiently small step sizes to
avoid large numerical errors. In fact, gradient algorithms are
less susceptible to such numerical instabilities than faster it-
erative optimization algorithms, which has led to the com-

TABLE 1. Critical topology for the SUM gate, where D, is the manifold dimension and D. are the
numbers of positive and negative Hessian eigenvalues that reflect the optimality status.

Number Critical value D, D, D_ Type
1 0 0 14 0 Minimum
2 18.623 0 10 4 Saddle
3 9.311 1 12 1 Saddle
4(=*) 10 0 11 3 Saddle
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search, followed by the use of iterative techniques only
within a small radius of the solution [33]. By contrast, be-
cause of the compactness of the dynamical group, the control
optimization for discrete quantum systems generally does not
encounter numerical instabilities.

B. Effects of linear vs nonlinear implementations
on optimal controls

Since the SUM gate is noncompact, the search for its op-
timal controls must be carried out using both linear quantum
optics and squeezing. In the case of compact gates, the im-
portant question arises as to whether the use of squeezing
transformations facilitates the search for optimal controls, or
whether employing only linear quantum optics is preferable.

This section simulates the optimal search of a (compact)
transform that swaps the states of two qunits as follows:

0100

1000
W=

0001

0010

For this gate, we employ the photon model with two local
phase controls, using two different free Hamiltonians: (i)
Hy=xp,, which involves squeezing operations, and (ii) H,,
=X|p>—Xop1, Which involves only linear optics. It can be
verified that these systems are controllable over (i) Sp(4,R)
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FIG. 6. Dynamical search for the SUM gate using conjugate gra-
dient algorithms with the strongly controllable system model at a
small final time.

FIG. 7. The convergence of optimal search for the SWAP gate
with linear and squeezing couplings [Sp(4,R)] and linear couplings
[OSp(4,R)].

and (ii) OSp(4,R), respectively. The simulation results in
Fig. 7 show that the optimal search restricted on OSp(2N, R)
generally exhibits fast convergence, as in the case of control
of discrete unitary gates. This is not surprising because the
group OSp(2N,R) is isomorphic to the unitary group U(N)
and the corresponding dynamical control system is equiva-
lent to a N-level discrete quantum control system. By con-
trast, optimal control using squeezing operators as well ex-
hibits no advantages compared to using only linear
operations; in fact, the application of squeezing operators can
remarkably increase the energy of the control fields (Fig. 8).

Because OSp(2N,R) is isomorphic to U(N), a comparison
of the gradients of the fidelity on Sp(2N,RR) and OSp(2N,R)
sheds light not only on the comparative efficiencies of these
two optimization problems, but also the origin of the slower
convergence of noncompact CV gate optimization versus
that of discrete gate optimization. Figure 9 displays the norm
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1
0
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FIG. 8. The control fields for the SWAP gate with (a) linear and
squeezing couplings [Sp(4,R)] and (b) linear couplings
[OSp(4,R)]. The solid lines refer to the control field on the first
qunit, while the dotted refer to the second.
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of the gradient of the fidelity of the SWAP gate with respect to
the control field on Sp(2N,R) and OSp(2N, R), at each algo-
rithmic step during the course of optimization. In order to
sample more points along the optimization trajectory, a
steepest descent algorithm was employed in this case, start-
ing from near a saddle point of the control landscape. As can
be seen, the norm of the gradient is larger on OSp(2N,R) at
most points along the optimization trajectory. In addition,
over several runs, it was found that the gradient norm
changes more abruptly during optimization on Sp(2N,R)
compared to OSp(2N,R) [or, equivalently, L/(N)].

suM(1,2,3) =

S o O O O
S O O = = O
S o O = O O
S o = O O O
S = O O O O

oS O O O
S O O O = =

This composite operation can be implemented using a pho-
ton model where the internal Hamiltonian includes interac-
tions between 1-2 and 2-3 qunits, i.e., Hy=x;p,+X,p3, and
three local control Hamiltonians applied in the form of H;
=x]2~+ pf, j=1,2,3. Again, because the internal Hamiltonian
H, is noncompact, full controllability is not guaranteed at
arbitrary final time 7. In the case of the ion trap model, the
internal Hamiltonian H,, consists of uncoupled harmonic os-
cillators, and two nonlocal controls

Hl =aTb1 +Cle,

H2 = aTb; + ab2

are applied. As discussed above, there is no guarantee that
the gate will be reachable at any final time within this model,
since the system does not satisfy the controllability rank con-

S O O O = O
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C. Effects of qunit-qunit coupling
on optimal control energy cost

The nature of the controlled couplings between the qunits
comprising multiqunit CV algorithms has a significant im-
pact on the total energy cost of optimal control. In particular,
control schemes involving only 1-qunit couplings (local con-
trols), while physically easier to design, offer less flexibility
in achieving composite multiple-qunit operations and may be
temporally or energetically more costly. In order to explore
this issue, we examined the optimal control of composite CV
algorithms using both local and nonlocal control strategies.

Composite algorithms composed of large numbers of low-
dimensional Clifford group gates will generally have richer
structures in their singular values and a greater number of
critical manifolds. The geometry of the control landscape is
also expected to be complexified for such gates. In practice,
representing composite Clifford group algorithms through
sequences of 1-qunit or 2-qunit gates is generally preferred.
However, since using a larger number of gates may increase
the likelihood of information loss through quantum decoher-
ence, the implementation of higher dimensional transforma-
tions is desirable in some instances.

Consider a composite operation on 3 qunits that sums
the values of their ¢ components. This gate can be decom-
posed into two elementary gates SUM(1,2,3)=suM(2,3)
X suM(1,2), which is represented by

00 0 0 1000 0 0
00 0 0 1100 0 0
10 0 0 1110 0 0
o1 -10] looo1-10
00 1 0 0000 1 -1
00 0 1 0000 0 1

dition. In Fig. 10, we compare the convergence speeds of
optimal control search for the 3-qunit SUM gate using these
models with that of its discrete quantum counterpart, the
controlled-CNOT gate (Toffoli gate). In the latter case, the
NMR control system described above was used.

From Fig. 11, we observe a stark difference in the fluence
of the optimal control fields obtained using local versus non-
local controls. For the photon model (local controls), the
fluence of the optimal fields exceeds physical limits, whereas
for the ion trap model (nonlocal controls) and the NMR
model, the fluence remains bounded. This indicates that for
composite gates, CV control models employing nonlocal
controls may be preferable to those whose design requires
the use of local controls. Note that although the NMR model
employs local controls, their fluence remains small, suggest-
ing that this problem does not arise for discrete variable
gates.
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This example also sheds further light on the effects of
exact-time controllability on optimal control fidelity and the
scaling of control search effort with system size. As can be
seen from Fig. 10, neither the ion trap nor the photon control
search converges within the specified tolerance for the cho-
sen final time, whereas the strongly controllable system does
converge. The weakly controllable and uncontrollable sys-
tems therefore display similar behavior for this composite
gate. Thus the example demonstrates that it is even more
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FIG. 11. The optimal control fields for (a) 3-qunit SUM gate with
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dotted) lines are the control fields on the first (second, third)
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essential to verify the controllability of a CV gate control
system for higher dimensional gates.

For both discrete and continuous quantum systems, the
decrease in convergence speed with increasing system di-
mension appears to be severe; in addition, control field
searches are more likely to become trapped due to easier loss
of controllability. Therefore for a quantum algorithm involv-
ing a polynomially large number of operations (i.e., primitive
gates), it would indeed appear more efficient to apply se-
quences of smaller gates rather than attempting global search
over transformations on the whole set of qunits.

V. DISCUSSION

The absence of local traps in control landscapes for sym-
plectic gate fidelity indicates that given sufficient time, local
gradient-based algorithms will generally succeed at reaching
the global optima (perfect fidelity), assuming the system is
controllable. This property, combined with other attractive
features of continuous QIP such as the high bandwidth of
continuous degrees of freedom, strengthens the feasibility of
QIP over continuous variables. We have demonstrated nu-
merically across all major classes of primitive CV quantum
gates, and across several canonical physical models for CV
information processing, that conjugate gradient algorithms
are generally capable of locating controls attaining the maxi-
mal achievable gate fidelity.

Because the dynamical propagator for CV quantum sys-
tems can have exponentially increasing components, the sta-
bility of OCT algorithms is of paramount importance. In par-
ticular, perhaps the most common type of OCT algorithm for
discrete systems—iterative algorithms—is known to encoun-
ter instabilities in classical OCT problems, where the system
dynamics are also governed by symplectic propagators. In
these cases, it is common to employ gradient algorithms in
order to control instabilities, as we have done here. In the
present case, analytical evidence was provided that such al-
gorithms should converge exceptionally well to the global
optimum for sufficiently small step sizes.

We have seen that CV gate optimization problems can be
divided into two classes with inherently different difficulties.
The first, wherein only linear Hamiltonians are employed as
controls, is mathematically identical to the problem of dis-
crete unitary gate optimization. The second, in which squeez-
ing operations are also employed, is generally more expen-
sive.

A second point of distinction between these two control
problems is the complexity of the optimal fields. The optimal
fields for discrete gate control are typically in resonance with
the transition frequencies of the system, within the weak-
field regime. By contrast, in the case of CV gate optimization
over Sp(2N,R), the fields are usually not simply related to
any natural resonant frequencies because of the appearance
of real Hamiltonian eigenvalues in the argument of the ma-
trix exponential governing the dynamical propagation. These
eigenvalues produce exponentially increasing and decreasing
modes in the field. The former can result in instabilities dur-
ing the optimization process [38]. Moreover, for CV gate
optimization over Sp(2N, R), there is a strong dependence of
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field complexity on the final dynamical time. It is important
to identify several controllable #/’s and choose the one cor-
responding to control fields that are physically the most
simple to implement. However, the higher degeneracy of
these fields means that we are presented with more choices
for convenient physical implementation and points to a rich
variety of distinct control mechanisms that reach the same
objective.

The fundamentally different requirements for exact-time
controllability of dynamical systems evolving on compact
versus noncompact Lie groups has a dramatic effect on the
maximal achievable fidelity of CV quantum gates. These ef-
fects of controllability have largely been ignored in the de-
sign of putative systems for CV quantum information pro-
cessing. The present results indicate that better physical CV
control systems may be designed through the application of
the rank condition and numerical analysis. In particular,
exact-time controllability usually fails when H, is noncom-
pact [29,30]. In such cases, it is often difficult to identify a
final dynamical time ¢, at which the gate can be reached with
high fidelity. Moreover, several current physical models for
CV gate synthesis are not fully controllable for any choice of
t;. For these systems, even when the gate of interest is reach-
able, the cost of optimal search is typically steep. The use of
multiple control fields can restore exact-time controllability
if their corresponding control Hamiltonians span the whole
Lie algebra of the symplectic group. While this condition is
not satisfied for many proposed control systems, it can easily
be introduced into future proposals.

Application of OCT to practical CV quantum information
tasks will require the imposition of penalty terms on the

PHYSICAL REVIEW A 77, 052303 (2008)

control Hamiltonians corresponding to physical constraints.
We have shown how the total energy cost of control can be
delimited by carefully tuning the coupling between qunits in
information processing models. Another practical limitation
is the ability to shape controls to match theoretical predic-
tions. For control of discrete states in molecular systems,
current pulse shaping technologies are capable of producing
the majority of shapes predicted by OCT. Ongoing efforts to
design pulse shapers with ultrahigh bandwidth should further
facilitate implementation of the theoretically predicted fields.
For CV systems, it is difficult to shape control pulses within
certain physical models. Applying shape constraints to the
optimization problems above would amount to choosing
among the highly degenerate sets of control Hamiltonians
that solve the generic OCT problem.

Finally, we note that universal quantum computation re-
quires nonlinear symplectic gates corresponding to the abil-
ity to count photons in the electromagnetic field [37]. The
implementation of nonlinear symplectic gates necessary to
achieve universal continuous quantum computation is known
to be difficult to achieve with high fidelity [21]. Purification
protocols are necessary to distill from an initial supply of
noisy nonlinear symplectic states a smaller number of such
states with higher fidelity. Future work should consider the
challenges inherent in implementing such gates through the
methodology of optimal control theory.
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