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We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic
pointer such that each eigenvalue of the measured object observable is tied up with a specific pointer deflec-
tion. Different pointer positions mutually decohere under the influence of a bath. Object-pointer entanglement
and decoherence of distinct pointer readouts proceed simultaneously. Mixtures of macroscopically distinct
object-pointer states may then arise without intervening macroscopic superpositions. Initially, object and ap-
paratus are statistically independent while the latter has pointer and bath correlated according to a metastable
local thermal equilibrium. We obtain explicit results for the object-pointer dynamics with temporal coherence
decay in general neither exponential nor Gaussian. The decoherence time does not depend on details of the
pointer-bath coupling if it is smaller than the bath correlation time, whereas in the opposite Markov regime the
decay depends strongly on whether that coupling is Ohmic or super-Ohmic.
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I. INTRODUCTION

The interpretation and theoretical description of measure-
ments on quantum systems have been under intense debate
since the birth of quantum mechanics �1,2�. In the last three
decades the major role played by environment-induced deco-
herence in a measurement process has been fully acknowl-
edged thanks to the works of Zeh, Zurek, and others �see
�3–6�, and references therein�. A renewal of interest for
quantum detection and decoherence came in the last decade
with new developments in quantum information. It is desir-
able to better understand the relation between quantum and
classical information and how one can convert one into an-
other. Moreover, good control over all sources of decoher-
ence is required for quantum-information processing. On the
experimental side, measurements can be used either to ex-
tract information on quantum states or to monitor quantum
systems �quantum trajectories �7�, quantum Zeno effect
�8,9��. Experimental data are now available for the decoher-
ence time in microwave cavities �10�, in trapped ions �11�, in
solid-state devices such as quantum dots �12� and supercon-
ducting tunnel junction nanocircuits �13,14�, for fullerene
molecules decohered by collisions with a background gas
�15�, and for beams of electrons decohered by Coulomb in-
teraction with a semiconducting plate �16�. These and other
experiments call for studies of concrete models for quantum
measurements. Various models have been investigated so far
�see, e.g., �17� and the interesting statistical physics models
of Refs. �18,19��, but a satisfactory treatment of decoherence
resulting from the many-body interactions in the measure-
ment apparatus is still lacking.

A measurement on a quantum system consists in letting
this system �called “object” in the following� interact with a
measurement apparatus in such a way that some information
about the state of the object is transferred to the apparatus.
As already recognized by Bohr, even though the composite

�object and apparatus� system has to be described by quan-
tum theory, some part of the apparatus �called the “pointer”
in the following� must be capable of classical behavior. The
interaction builds up a one-to-one correspondence between
the eigenvalues s of the measured observable S �supposed
here to have a discrete spectrum� and macroscopically dis-
tinguishable pointer states �characterized, e.g., by sharply de-
fined pointer positions separated by macroscopic distances�.
In addition to this object-apparatus coupling, the measure-
ment must involve some “superselection rules” destroying
the coherences between the pointer states �3–5,20�. Most pre-
vious discussions in the literature consider these two pro-
cesses separately: A first step �“premeasurement”� exclu-
sively treats the unitary evolution entangling object and
pointer. For an object initially uncorrelated with the appara-
tus and in a linear superposition ��S�=�scs�s� of eigenstates
of S, this entanglement produces a superposition of macro-
scopically distinguishable object-pointer states ��ent�
=�scs�s� � ��P

s �, where ��P
s � is the pointer state tied up with

the eigenvalue s �for simplicity we provisionally assume that
this state is pure�. The “Schrödinger cat” state ��ent� is taken
as the initial state for a second dynamical process, decoher-
ence, which leads to superselection rules; there, the quantum
correlations between object and apparatus are transformed
into classical correlations, as the superposition of object-
pointer states is degraded to a statistical mixture of the same
states according to ��ent���ent�→�s�cs�2�s��s� � ��P

s ���P
s �. For

such a sequential treatment to make physical sense, the du-
ration of the entanglement process must be short compared
with the decoherence time tdec associated with the latter
transformation. However, it is known that tdec is extremely
short for macroscopic superpositions. The present paper is
devoted to the more realistic situation where entanglement
and decoherence proceed simultaneously. If the characteristic
time for entanglement is larger than tdec, macroscopic super-
positions decohere to mixtures faster than entanglement can
create them. The measurement process then yields the final
mixture without involving a Schrödinger cat state at any pre-
vious moment, the object-pointer initial product state being
directly transformed as*spehner@ujf-grenoble.fr
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��S���S� � ��P
0 ���P

0 � → �
s

�cs�2�s��s� � ��P
s ���P

s � . �1�

Here ��S�=�scs�s�, ��P
0 �, and ��P

s � refer to the object initial
state, the pointer initial state, and the pointer state tied up
with s, respectively.

Our model is a three-partite model and consists of the
quantum object to be measured, a single “pointer” degree of
freedom of the apparatus singled out by its strong coupling
to the object and by affording a macroscopic range of “read-
out” values and a “bath” comprising all other degrees of
freedom of the apparatus. A pointer-bath coupling is respon-
sible for decoherence. Overcoming limitations of many pre-
vious approaches, we �i� allow for object-pointer entangle-
ment and decoherence of distinct pointer readouts to proceed
simultaneously, �ii� cope with initial correlations between
pointer and bath by considering them initially in a metastable
local thermal equilibrium, and �iii� go beyond the Markovian
treatment of decoherence. The physical relevance of point �i�
has been discussed above. This simultaneity of entanglement
and decoherence and the possibility of having decoherence
much faster than entanglement have been considered in
�18,19�. Let us now comment on �ii� and �iii�. Most models
studied so far �in particular in �18,19�� are based on the as-
sumption that the pointer and bath are initially statistically
independent. Taking instead the whole apparatus to be ini-
tially in a local thermal equilibrium seems more realistic.
The Markov approximation mentioned in �iii� consists in ne-
glecting memory effects for the �reduced� object-pointer dy-
namics. It assumes the decoherence time tdec to be larger than
the bath correlation time, a condition not satisfied in some
experiments �12–14�. Since decoherence for macroscopic
and even mesoscopic superpositions is faster than bath relax-
ation �21�, this approximation is clearly unjustified if such
superpositions arise during the object-pointer evolution.

We shall assume a certain ordering of time scales. One of
these, denoted by TS, is the characteristic time for the evo-
lution of the measured observable S under the Hamiltonian
of the object. A second �classical� time scale TP characterizes
significant changes in position of the pointer under its proper
Hamiltonian �i.e., in the absence of coupling with the object�.
The initial temperature T of the apparatus sets a time scale
��=� / �kBT�, referred to below as the thermal time �kB is the
Boltzmann constant�. Finally, the object and pointer are put
in contact during a time tint. For a macroscopic pointer, the
limit ���TP seems difficult to avoid. Similarly, the deco-
herence and object-pointer interaction times tdec and tint are
small compared with TP. During an ideal measurement, the
measured observable S may change but weakly under the full
�object�apparatus� Hamiltonian H—i.e., eitH/�S e−itH/�	S
for 0� t� tint , tdec. Only under this condition can an eigen-
state of the measured observable S be left almost unchanged
by the measurement. One has to require that �i� the object-
pointer interaction Hamiltonian producing the entanglement
commute with S �see �3–5�� and �ii� TS be much larger than
tint and tdec. It is thus legitimate to assume

tint,tdec � TS, tint,tdec,�� � TP. �2�

As far as we are aware, this separation of time scales in ideal
measurements has not been fully exploited in previous works

except in Ref. �18�. Unlike in the latter reference, given �2�
we shall not need a further hypothesis on the bath correlation
time TB and its relation with tint and tdec.

A further key input in what follows is the quantum
central-limit theorem �QCLT� �22,23� which implies Gauss-
ian statistics �Wick theorem� for the bath coupling agent in
the pointer-bath interaction. This will allow us to study a
broad class of pointers and baths, following the approach of
Ref. �21�. The harmonic oscillator bath linearly coupled to
the pointer �24,25� is one member of this class, but more
general �nonharmonic� baths as well as nonlinear couplings
in the position X of the pointer will be also considered. It
turns out that the decoherence time tdec may be considerably
reduced by allowing such nonlinear couplings.

The paper is organized as follows. The model and its dif-
ferent time scales are introduced in Sec. II. We discuss the
separation of the time scales �2� and the ensuing simplifica-
tion of the object-pointer dynamics in Sec. III. Section IV
contains a separate study of the two dynamical processes
producing the entanglement of the object with the pointer
and the loss of coherences between well-separated pointer
readings. That section is pedagogical in character and serves
to fix the notation and to introduce the relevant time scales;
readers familiar with the theory of quantum measurement
might want to skip the section save for Secs. IV C and IV D.
Our principal results are presented in Sec. V, discussed in
Sec. VI, and finally derived in Sec. VII. Our conclusions are
drawn in Sec. VIII. Appendix A and Appendix B are devoted
to an example for a measurement apparatus and to a techni-
cal derivation of an approximation for the pointer-bath ther-
mal state. We review in Appendix C the general properties of
two-point correlation functions used in Secs. V–VII. Finally,
we discuss the QCLT and its consequences �Wick theorem
for the bath correlation functions� in Appendix D. Let us
point out that a short report of our results can be found in
�26�.

Before going on, some remarks may be permitted to put
our paper in perspective. Remaining within the frame of
quantum mechanics and its probabilistic interpretation, we
are concerned with unitary evolution of the composite sys-
tem object�apparatus. We discard information about the
�dynamics of� the microscopic degrees of freedom of the
apparatus �“bath”� and their entanglement with pointer and
object by tracing out the bath �see Sec. IV B and �3,6,27��.
We so obtain a reduced object-pointer density operator with
an irreversible evolution. Pointer and object end up in the
mixed state �1� wherein the different pointer states ��P

s � cor-
respond to macroscopically distinguishable positions. Such
states have quantum uncertainties in position and momentum
much smaller than the scales of macroscopic readings.
Therefore, the irreversible process �1� leaves a pointer posi-
tion revealing an eigenvalue of the measured object variable.
Over many runs of the measurement, the outcome ��P

s � arises
with probability �cs�2. Similar behavior arises for all pro-
cesses where initial microscopic fluctuations evolve toward
macroscopically distinct outcomes. A nice example is pro-
vided by superfluorescence where light pulses with substan-
tial shot-to-shot fluctuations grow from initial quantum un-
certainties �28–30�. Let us also recall that quantum
mechanics is not compatible with the idea that the specific
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outcome of a single run is predetermined by some unknown
but “real” property of the object �such a property being in-
dependent of the measurement apparatus� �31�. Competing
hidden-variable theories which indulge in such more “intui-
tive” notions of reality than quantum mechanics have been
experimentally falsified �32,33� in ever larger classes, most
recently even in nonlocal variants �34�, while the respective
quantum predictions were invariably confirmed.

II. MODEL

As many authors �3–6,17–19� we consider a three-partite
system: the object of measurement is some microscopic sys-
tem �S�; a single-degree-of-freedom macroscopic pointer �P�
will allow readouts; finally, a bath �B� with many �N�1�
degrees of freedom serves to decohere distinct pointer read-
ings. We shall have to deal with the following dynamical
variables: for S, the observable S to be measured; for P, the
position X and momentum P; and for B, a certain coupling
agent B given by a sum of N self-adjoint operators B	 acting
on single degrees of freedom of the bath. The pointer is
coupled to S and B via the Hamiltonians

HPS = 
SP, HPB = BX�, B = N−1/2�
	=1

N

B	, �3�

where 
 is a coupling constant and � a positive integer. The
object-pointer coupling HPS is chosen so as to �i� not change
the measured observable S �i.e., �HPS ,S�=0�; �ii� be capable
of shifting the pointer position by an amount proportional to
S, in such a way that each eigenvalue s of S becomes tied up
with a specific pointer reading; �iii� be a strong coupling �
 is
large�, so that different eigenvalues s�s� eventually become
associated with pointer readings separated by large distances.
The pointer-bath interaction HPB is chosen for the most effi-
cient decoherence of distinct pointer positions �21�. Depend-
ing on the value of �, nonlinear ���1� as well as linear
��=1� couplings will be considered �35�. The additivity of
the bath coupling agent B in single-degree-of-freedom con-
tributions B	 having zero mean and positive variance with
respect to the bath thermal state will allow us to invoke the
quantum central-limit theorem when taking the limit N→
.
The factor N−1/2 in front of the sum in �3� is introduced for
convergence purposes �the same scaling with N is familiar to
the classical CLT�; note that the pointer-bath coupling con-
stants are incorporated within the operators B	.

The free evolutions of S, P, and B are generated by the
respective Hamiltonians HS, HP, and HB. We do not have to
specify HS. The pointer Hamiltonian HP= P2 /2M +V�X� has
a potential V�x� with a local minimum at x=0, so that
V��0�=0 and V��0��0. The bath Hamiltonian HB is like B a
sum of Hamiltonians acting on single degrees of freedom,
HB=�	HB,	. We thus disregard couplings between different
degrees of freedom of the bath. The Hamiltonian of the full
system S+P+B is H=HS+HP+HB+HPS+HPB. An ex-
ample of a physical system realizing the apparatus P+B is
given in Appendix A.

We now proceed to describing the initial states allowed
for. It is appropriate to require initial statistical independence

between object and apparatus. The initial density operator �S
of the object may represent a pure or a mixed state. Two
types of initial conditions for the apparatus will be consid-
ered. The first one, to be referred to as partial equilibrium, is
a product state in which P has some density operator �P and
B is at thermal equilibrium with the Gibbs density operator
�B

�eq�=ZB
−1 exp�−�HB�, wherein �= �kBT�−1 is the inverse tem-

perature. For this first initial state all three subsystems are
statistically independent. In the second �more realistic� initial
state, the apparatus is in thermal equilibrium according to the
density operator �PB

�eq�=ZPB
−1 e−��HP+HB+HPB�. The two initial

states of S+P+B are

��0� = �S � �P � �B
�eq�, partial-equilibrium apparatus,

�4a�

��0� = �S � �PB
�eq�, equilibrium apparatus. �4b�

We further specify the partial-equilibrium state �4a� by re-
quiring that the probability density �x��P�x� to find the
pointer at position x has a single peak of width �x=� cen-
tered at x=0. A momentum uncertainty �p=2�� /� defines a
second length scale �. A macroscopic pointer has both � and
� negligibly small against any macroscopic readout scale
�class,

� � 4�� � �class, �5�

where the first inequality is the uncertainty principle. We
shall also require that

��

2��
=

�x

�p

 �MV��0��−1/2, �6�

which means that the state �P is not highly squeezed in mo-
mentum or in position. As a concrete example we may con-
sider a Gaussian pointer density matrix

�x��P�x�� =
1

�2��2
e−�x + x��2/�8�2�e−2�2�x − x��2/�2

. �7�

If P is initially in a pure state, then trP �P
2

=�dx dx��x��P�x��2=1, which implies that this state has the
minimum uncertainty product �x �p=� /2—i.e., �=4��.

The Gaussian density �7� also arises if P is in a Gibbs
state �P

�eq�=ZP
−1e−�HP provided that the potential V�x� is con-

fining and � is small enough. To see this, we note that the
pointer observables X and P evolve noticeably under the
Hamiltonian HP on a classical time scale TP, which is much
larger than all other �quantum� time scales in the model. In
particular, TP is much larger than the thermal time, TP
���. As a result, the matrix elements �x��P

�eq��x�� of �P
�eq� can

be approximated by ZP
−1e−��V�x�+V�x���/2e−2�2�x − x��2/�th

2
, wherein

�th=2���� /M�1/2 is the thermal de Broglie wavelength. The
reader may recognize in this expression the short-time be-
havior of the quantum propagator �x�e−itHP/��x�� for t=−i��
�see, e.g., �36��. Since the potential V�x� has a local mini-
mum at x=0, it can be approximated near the origin by a
quadratic potential, V�x�	V�0�+x2V��0� /2. Therefore, for
small x and x�, �x��P

�eq��x�� has the Gaussian form �7� with
�=�th= ��V��0��−1/2 and �	�th. It is important to bear in
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mind the separation of length scales �th��th��class. Inas-
much as the pointer classical time scale TP may be defined as
TP= �M /V��0��1/2, the fact that �th is much smaller than �th
is equivalent to TP���. To fix ideas, for TP=1 s, M =1 g,
�class=1 cm, and a temperature of 1 K, the above-mentioned
length scales differ by more than eight orders of magnitude.
Hence �5� and �6� are well satisfied if �P=�P

�eq�.
All of these illustrations, including the Gaussian �7�, are

meant to give an intuitive picture. What we shall need in
actual fact is the quasiclassical nature of the pointer initial
state, as implied by �5� and �6�, together with the single-peak
character of the initial density of pointer positions.

Let us point out an essential difference between our model
and the interacting spin model of �19�. Unlike in this refer-
ence, S is strongly coupled to a single degree of freedom �the
pointer P� of the apparatus, e.g., with its total momentum P
in a given direction �see Appendix A�. The coupling of S
with the other apparatus degrees of freedom �the bath B, for
us� is assumed to be much weaker and can therefore be ne-
glected, as will be seen in Sec. VI C. Given the separation of
time scales �2� and our choice of a quasiclassical pointer
initial state, the pointer Hamiltonian HP only plays a role in
providing an amplification mechanism, as we shall see in
Secs. III B and IV D. Hence allowing P to have two or three
degrees of freedom, instead of one, would make the notation
more cumbersome without changing significantly the results.
Our results below should also remain valid if the bath con-
sists of interacting degrees of freedom �like in a spin chain�
provided that the �spin-spin� correlations �B�B	� in the bath
thermal state decay more rapidly than 1 / ��−	� as ��−	�
→
. In fact, the validity of the QCLT can be extended in
this context �23�. Decoherence via coupling with a bath of
interacting spins and random matrix models for the coupling
and bath have been considered in �19,37,38�.

We shall study the dynamics of the reduced state of S
+P �object and pointer�. That state is defined by a density
operator �PS�t� obtained by tracing out the bath degrees of
freedom in the state of S+P+B,

�PS�t� = trB�e−itH/���0�eitH/�� . �8�

Here and in what follows, trj refers to the partial trace over
the Hilbert space of j=S, P, or B. When tracing out the bath
we admit the inability to acquire information about it �27�.

III. SEPARATION OF TIME SCALES

A. Time scales of object, pointer, and bath

Let us denote by S̃�t� the time-evolved observable S in the
absence of the coupling HPS—i.e., for the dynamics imple-

mented by the “free Hamiltonian” HS. Similarly, let X̃�t� and

B̃�t� be the time-evolved observables X and B when both
couplings HPS and HPB are turned off: namely,

Õj�t� = eitHj/�Oje
−itHj/�,

Oj = S, X, or B, j = S, P, or B . �9�

One may associate with the time evolution of X̃�t�, B̃�t�, and

S̃�t� four distinct time scales. The time scale TP

= �M /V��0��1/2 has been already introduced in Sec. II; it is

the time scale for significant evolution of X̃�t� �or, equiva-

lently, of P̃�t�=M dX̃ /dt� when the pointer is in the initial
state �P. The Gaussian form �7� for �P and the no-squeezing
condition �6� make sure that TP is indeed a classical time.

The bath correlation time TB is defined with the help of
the n-point correlation functions

hn�t1, . . . ,tn� = trB�B̃�t1� ¯ B̃�tn��B
�eq�� . �10�

For simplicity we assume

trB�B�B
�eq�� = 0. �11�

Since the bath has infinitely many degrees of freedom,
hn�t1 , . . . , tn� decays to zero as �tm− tl� goes to infinity. We
define TB �tB� as the largest �smallest� time constant charac-
terizing the variations of hn. It follows from the QCLT of
Ref. �22� that for a bath coupling agent B and Hamiltonian
HB which are sums of N independent contributions coming
from single degrees of freedom, the n-point functions �10�
satisfy the bosonic Wick theorem in the limit N�1. This
means that hn vanishes if n is odd and is given if n is even by
the sums of products of two-point functions,

hn�t1, . . . ,tn� = �
pairing of 
1,. . .,n�

h2�ti1
,tj1

� ¯ h2�tin/2
,tjn/2

� .

�12�

That manifestation of the QCLT amounts to Gaussian statis-
tics for the bath correlation functions. It follows from �12�
that TB �tB� can be defined more simply as the largest �small-
est� time scale associated with the variations of h2�t1 , t2�
=h2�t1− t2� as function of t= t1− t2. More precisely, h2�t�	0
whenever �t��TB and h2�t�	h2�0� whenever �t�� tB. Note
that with B in thermal equilibrium, the thermal time �� fig-
ures among the decay rates of h2 and thus tB����TB.

The time scale TS is defined in analogy to tB, so as to
signal significant variation of the object n-point functions

trS�S̃�t1�¯ S̃�tn��S�. Let us stress that TS can be larger than
the typical inverse Bohr frequency � / �E−E�� of S �here E
and E� are two eigenvalues of HS�. For instance, if S is �or
commutes with� the energy HS, then TS=
.

B. Simplified dynamics and initial state

We assume that the object and pointer observables S̃�t�,
X̃�t�, and P̃�t� do not evolve noticeably under the “free”
Hamiltonian HS+HP during the time span of the measure-
ment, so that tint , tdec�TS ,TP. We show now that thanks to
this separation of time scales, the impact of HS and HP on
the dynamics can be fully accounted for at times t�TS ,TP
by modifying the initial states �4a� and �4b� according to

��0� → e−it�HS+HP�/���0�eit�HS+HP�/�. �13�

With that slippage of the initial condition accounted for, one
makes a small error by otherwise dropping HS and HP from
the total Hamiltonian H in the object-pointer state �8�.

Actually, for times t short compared with TS and TP, the
full evolution operator can be approximated by
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e−itH/� 	 e−it�HB+HPS+HPB�/�e−it�HS+HP�/�, �t� � TS,TP.

�14�

To justify that simplification we express this evolution opera-
tor in the interaction picture with respect to H0=HS+HP as

eitH0/�e−itH/� = T exp�−
i

�
�

0

t

d��HB + 
S̃���P̃��� + BX̃������;

�15�

here, T denotes the time ordering and S̃���, P̃���, and X̃���
are given by �9�. Note that for �t��TS ,TP these operators are
almost constant in time between �=0 and �= t and may thus
be replaced in �15� by S, P, and X. In other words, the right-
hand side of �15� can be approximated by exp
−it�HB
+HPS+HPB� /��, whereupon �14� is obtained by taking the
adjoint and by setting t→−t.

More specific remarks are in order for each of our two
initial states �4a� and �4b�. We first comment on the partial
equilibrium �4a�. Due to its assumed quasiclassical nature,
the pointer state �P is weakly modified by the substitution
�13� in the range of time under study. Deferring the justifi-
cation of that statement to Appendix B we shall use
e−itHP/��PeitHP/�	�P for t�TP. As regards the object of
measurement, S, the free time evolution of the object in

�S
0�t� = e−itHS/��SeitHS/� �16�

cannot be neglected, even for t�TS. �For instance, for S
=HS one has TS=
 and �s��S

0�t��s��=e−it�s−s��/��s��S�s�� is not
close to �s��S�s�� for all finite times t if s�s�.� However, it
suffices for our purposes to notice that the diagonal elements
�s��S

0�t��s�	�s��S�s� remain nearly unaffected by the free

evolution when t�TS. Actually, tr�S̃�t��S�=�ss�s��S
0�t��s� has

to approximate tr�S�S�=�ss�s��S�s� in this limit by definition
of TS.

When allowing the apparatus to start out from thermal
equilibrium according to �4b�, we shall take advantage of the
“high-temperature” condition ���TP discussed in the Intro-
duction. We argue in Appendix B that under this condition
�which to violate for a macroscopic pointer would be a
nearly impossible task� and for a weak enough pointer-bath
coupling satisfying �th=h2�0�1/2�th

� ��1, the Gibbs state of
the apparatus can be approximated by

�PB
�eq� 	

1

ZPB
e−�HP/2e−��HB+HPB�e−�HP/2, �� � TP. �17�

Moreover, e−itHP/��PB
�eq�eitHP/�	�PB

�eq� as long as t ,���TP.
In conclusion, for both initial states �4a� and �4b�, the

substitution �13� amounts to replacing �S by �S
0�t� in the

object-pointer initial state.

IV. ENTANGLEMENT AND DECOHERENCE SEPARATED

A. Entanglement of object and pointer

Before studying the dynamics generated by the total
Hamiltonian H, it is instructive to discuss what happens if we
discard the free dynamics of S, P, and B as well as the

pointer-bath interaction. For the initial state �4a�, the bath
can then be ignored and the object-pointer entanglement pro-
duced by the interaction HPS=
SP becomes particularly
easy to describe. Recalling that P is the generator of space
translations we have ei
SPt/��s ,x�= �s ,x− t
s�, where �s ,x� is
the joint eigenstate of S and X with eigenvalues s and x,
normalized as �s ,x �s� ,x��=�ss���x−x��. Hence an initial
product state of S+P becomes at time t

�PS�t� = e−itHPS/��S � �PeitHPS/�

= �
s,s�

�s��S�s���s��s��

�� dx dx��xs�t���P�xs�
� �t���x��x�� , �18�

with

xs�t� = x − t
s, xs�
� �t� = x� − t
s�, �19�

and, for the Gaussian initial state �7�,

�xs�t���P�xs�
� �t�� =

1
�2��2

e−�x + x� − t
�s + s���2/�8�2�

�e−2�2�x − x� − t
�s − s���2/�2
. �20�

It is now well to put forth a specification: throughout the
present paper we assume for simplicity that S has a discrete
and nondegenerate spectrum. Moreover, if the Hilbert space
of S has infinite dimension, we restrict ourselves to initial
states of the object satisfying �s��S�s��=0 if s and s� belong
to a part of the spectrum containing arbitrarily close eigen-
values �near an accumulation point�.

In the state �18�, the diagonal �s=s�� matrix elements of
the object state �S are multiplied by the pointer density ma-
trix �P shifted by t
s in position space, as given by �20� for
s=s�. The interaction has thus tied up each eigenstate �s� of S
with a pointer state which has position x	 t
s with uncer-
tainty � and momentum p	0 with uncertainty 2�� /�. In
position representation, each of these pointer states has a
peak at x= t
s. The different peaks are separated by at least
by the distance t
�s, where �s is the minimum of �s−s�� over
all pairs �s ,s�� of nondegenerate eigenvalues such that
�s��S�s���0. In order to be able to infer the value of s from
the position of the pointer, one must wait until all peaks are
well resolved. That resolvability begins at the entanglement
time

tent =
�


�s
. �21�

At that time, the reduced pointer density operator �P�t�
=trS��PS�t�� has a Wigner function as represented in Fig.
1�b�. Much later yet, the separation between the peaks
reaches a macroscopic value �class at the time

tclass =
�class


�s
� tent, �22�

allowing for a “reading” of the result by a classical observer.
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The entanglement in the state �18� comes from the off-
diagonal �s�s�� contributions in �S. Due to the peak struc-
ture of the pointer matrix elements �20�, for fixed s�s�,
��s ,x��PS�t��s� ,x��� reaches its maximal value when x=
st
and x�=
st. For those values of x and x�,

�s,x = 
ts��PS�t��s�,x� = 
ts�� = �s��S�s���0��P�0� �23�

is time independent and proportional to �s��S�s��. Hence all
coherences between different eigenstates of S present in the
initial state of the object are still alive, no matter how large
the time t is. At times t� tclass, �PS�t� resembles a
Schrödinger cat state—i.e., has nonzero matrix elements be-
tween macroscopically distinguishable pointer position
eigenstates. For such an object-pointer state, no classical
probabilistic interpretation is possible: one cannot assign a
probability to the pointer being located, e.g., in the vicinity
of x=
ts, henceforth implying that S has the value s. In a
quantum measurement, the entanglement process must be
completed by a decoherence process suppressing the coher-
ences �23� for s�s�.

B. Decoherence and “disentanglement” of object and pointer

We now turn to the decoherence brought about by the
pointer-bath interaction HPB=BX�, momentarily disregard-
ing all other terms in the full Hamiltonian H. As shown in
�21� for a similar model, a quantum superposition of coher-
ent states of P with well-separated peaks in position evolves
under HPB to a statistical mixture of these coherent states. In
the situation under study here, S and P are entangled, and
then decoherence also modifies S. The present subsection
highlights the fundamental role of this decoherence in a mea-
surement �for more details, see �3,5,6��.

Assume object and pointer at time t0 entangled, with
�PS=�PS

ent given by �18�; the time t0 should be chosen larger
than tent, possibly as large as the classical time scale intro-
duced above, tent� t0
 tclass. At time t0, the state of S+P
+B is ��t0�=�PS

ent
� �B and the pointer-bath coupling HPB is

switched on. To simplify the discussion, let us take for �B a
pure state �B= ��0���0�, where ��0�= �	��	� is a product of
N single-degree-of-freedom wave functions. �All arguments
below can be easily extended to a bath in an initial mixed
state like �B=�B

�eq�.� Moreover, let us suppose that
��	�B	��	�=0 and that higher moments �B	

q�= ��	�B	
q��	� �q

=2,3 , . . .� are bounded uniformly in 	. The eigenstates �s ,x�
are entangled at time t� t0 with the bath states ��x�t��
=e−i�t−t0�x�B/���0�. The density operator of S+P+B reads

��t� = e−iHPB�t−t0�/��PS
ent

� �BeiHPB�t−t0�/�

= �
s,s�
� dx dx��s,x��PS

ent �s�,x���s��s�� � �x��x��

� ��x�t����x��t�� . �24�

We now argue that for x�x�, the scalar product
��x�t� ��x��t�� is vanishingly small when the time span t
− t0 is larger than a certain decoherence time tdec�x ,x��. Due
to the additivity �3� of B,

��x�t���x��t�� = �
	=1

N

��	�e−i�t−t0��x��−x��B	/���N���	�

= �
	=1

N �1 −
�t − t0�2�x�� − x��2��	�B	

2��	�
2N�2

+ O�N−3/2�� . �25�

Taking the limit N→
 for fixed values of t, t0, x, and x� we
obtain

��x�t���x��t�� = e−Dt�x,x�� = exp�−
�t − t0�2

tdec�x,x��2 + O�N−1/2�� ,

�26�
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FIG. 1. �Color online� Wigner function WP�x , p ; t� of the pointer reduced state �P�t�; S is a spin one-half with two eigenvalues ��s /2 and
����S � � �=1 /2. Note the absence of ripples: the reduced state is a mixture, not a superposition, of single-peak states. In the horizontal axis,
position and momentum are measured in units of � /2 and �p; in the vertical axis, units are such that WP�x , p ; t� has maximum value 1.
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tdec�x,x�� =
�2�

�x�� − x����B2�
, �27�

with �B2�= ��0�B2��0�=N−1�	��	�B	
2��	�. We have so far re-

traced the proof of the �classical� central-limit theorem.
Taking the partial trace of �24� over the bath Hilbert space

yields

�PS�t� = �
s,s�
� dx dx��s��S�s���xs�t0���P�xs�

� �t0��e−Dt�x,x��

��s��s�� � �x��x�� . �28�

Due to the coupling with the bath, each matrix element of
�PS

ent is now multiplied by the scalar product �26�. Let us
consider a particular term s�s� in the sum in the right-hand
side of �28�. To simplify the forthcoming discussion, we as-
sume that �=1. As follows from the peak structure of the
pointer coherences �20�, only the terms satisfying x	xs0
= t0
s and x�	xs�0= t0
s� with uncertainty � contribute sig-
nificantly to the integral over x and x�. For those terms,
Dt�x ,x��=Dt�xs0 ,xs�0��1+O�tent / t0��; see �21�, �26�, and �27�.
Therefore, if t− t0 is large compared with tdec�xs0 ,xs�0� and
t0� tent, the product �xs�t0���P�xs�

� �t0��e−Dt�x,x�� is vanishingly
small for all values of �x ,x��. The off-diagonal terms corre-
sponding to s�s� then become negligible in the object-
pointer state �28�. It is worth emphasizing that tdec�xs0 ,xs�0�
can be much smaller than the dissipation time scale on which
the pointer-bath coupling irreversibly changes the pointer po-
sition.

We would like to point out that the aforementioned damp-
ing of the coherences is related to a lack of information about
the bath in a more subtle way than what is suggested by the
partial trace in �28�. In fact, some partial knowledge of the
bath state would not inhibit this decoherence. More precisely,
in order to obtain some information on the coherences in the
full density operator �terms proportional to �s��s�� with s
�s� in �24�� at times t− t0� tdec�xs0 ,xs�0�, it is necessary to
perform a measurement on some bath observable OB satisfy-
ing ��xs0

�t��OB��xs�0
�t���0 at such time. It can be shown by

repeating the arguments yielding to �26� that such an observ-
able must be nonlocal; i.e., it must act nontrivially on all
bath degrees of freedom except for a finite number of them.
Considering that measuring such an observable is “unrealis-
tic,” everything happens as if the s�s� terms have disap-
peared in �24�. The crucial point is that the object-pointer
state is entangled by HPB with a very large number N of bath
variables, so that information about the coherences is spread
out between these many variables after some time. Macro-
scopically distinguishable object-pointer states are then en-
tangled with bath states which are almost orthogonal in many
subspaces of the bath Hilbert space. This makes the situation
quite different from the entanglement discussed in Sec. IV A:
there, the object state was entangled with a single pointer
variable x and it was implicitly assumed that any pointer
observable �in particular, its position X� could be “observed”
at some ultimate stage of the measurement. We refer the
reader to �39� �Sec. 22.11�, �20�, �3� �Chap. 2�, and �6� for
related discussions on this very important conceptual point.

Let us define the decoherence time tdec as the largest of
the times tdec�xs0 ,xs�0� for all distinct eigenvalues s and s�
such that �s��S�s���0. For t− t0� tdec, the object-pointer state
has shed all terms s�s� in the double sum in the density
operator �18�,

�PS�t� 	 �
s

�s��S�s��s��s� � �P
s �t� , �29�

wherein it has been assumed that tdec� t− t0� tB ,TS ,TP �so
that HB, HS, and HP can be neglected� and tent� t0 and we
have set

�P
s �t� =� dx dx��xs�t0���P�xs��t0��e−�t − t0�2/tdec�x,x��2

�x��x�� .

�30�

While �PS�t� is not �and actually never can become� strictly
diagonal in the position basis of the pointer, the matrix ele-
ments of the pointer state �30� almost vanish if �x−x�� is
larger than either the uncertainty � �see �20�� or the decoher-
ence length �2� / ����−1�t− t0���B2�� �see the second factor
inside the integral in �30��.

It is worth noting that the object-pointer states appearing
in the sum over s in �29� are product states; �PS�t� is a
statistical mixture of these states with probabilities ps
= �s��S�s�. Hence the decoherence disentangles S and P. This
implies that in the time regime indicated after �29�, S and P
can be given independent states �S�t� and �P�t�,

�S�t� = �
s

ps�s��s�, �P�t� = �
s

ps�P
s �t� . �31�

The object S is in one of the eigenstates �s� with probability
ps, in agreement with von Neumann’s postulate. The pointer
P is in the quasiclassical state �P

s �t�, with the same probabil-
ity.

C. Summary

Let us sum up the discussion of the two previous subsec-
tions about the object-pointer entanglement produced by the
interaction HPS and the decoherence arising from the cou-
pling with the bath HPB. The dynamics implemented by HPS
uniquely ties up after the entanglement time tent each eigen-
value s of S with a characteristic pointer position xs�t�. Such
neighboring pointer positions differ by more than the uncer-
tainty � then. Note that arbitrarily close eigenvalues cannot
be resolved within a finite time: in fact, tent tends to be large
for an object initially in a superposition of eigenstates �s�
with closely lying eigenvalues s �e.g., near an accumulation
point of the spectrum�—i.e., for small values of �s in �21�;
this limits in practice the precision of the measurement of S.
In the absence of any other interaction, after a time tclass
� tent the initial product state of the object and pointer has
evolved into a Schrödinger cat state. Nothing irreversible is
brought about by the dynamics: the entanglement can be as
easily undone as done, by applying the Hamiltonian HPS
with the parameter reset 
→−
.

The dynamics generated by HPB brings about decoher-
ence. After the decoherence time tdec, any pair of object-
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pointer states corresponding to macroscopically distinguish-
able pointer positions are entangled with almost orthogonal
bath states. After averaging the object-apparatus state over
the bath variables, one obtains an object-pointer state �PS�t�
in which all information about the coherences between such
states is missing; i.e., all coherences for pairs �s ,s�� of dis-
tinct eigenvalues are suppressed. The irretrievable loss of
information about the bath goes hand in hand with the irre-
versibility of the object-pointer dynamics.

An object-pointer state �PS�t� describes an accomplished
measurement under two conditions.

�i� All coherences �s ,x��PS�t��s� ,x�� corresponding to s
�s� have disappeared, so that S+P is in a statistical mixture
of separable states like in �29�; this occurs at time t� tdec.

�ii� The separation between the peaks of the distinguished
pointer states �P

s �t� reaches a macroscopic value �class; this
occurs at time t0� tclass �see �22��.

Only for t0� tclass can a classical observer infer a mea-
sured value s by looking at the position of the pointer. Such
a “reading” of the pointer, while still a physical process in
principle perturbing P, surely cannot blur the distinction of
the peaks. Rather, the pointer will behave classically under a
reading; i.e., it will not noticeably react.

D. Unstable pointer potentials and amplification

It is clear from �22� that condition �ii� can hardly arise
unless the object-pointer coupling constant 
 is very large.
This is related to the well-known amplification problem in
quantum measurements �39�. In order to get rid of this unre-
alistic condition on 
, one may consider a different situation
than that described in Sec. IV A. Let us take a nonconfining
pointer potential V�x� with two potential barriers separated
by a distance W; see Fig. 2. The height of these barriers is
large compared with the thermal energy 1 /�. We now re-
place the initial states �P=�P

�eq� in �4a� and �PB
�eq� in �4b� by

local equilibria within the potential well. �This local equilib-
rium for the apparatus can be achieved by first preparing P
in some state localized near x=0 at time t=−ti, with ti larger
than the relaxation time, but small compared with the tunnel-
ing escape time, and then letting P interact with B until t
=0.� Our previous statements about the distinct peaks in the
pointer density produced by the object-pointer interaction re-
main valid for such initial states. The interaction HPS is
switched off at some time tint. If tint is larger than W / �
�s�,
the separation between the peaks in the pointer density at

time tint will be subsequently amplified by the pointer dy-
namics. Assuming also that ��W�
�sTP ,�class, one has
tint
W / �
�s��TP , tclass. In this situation, the small quantum
system S must be able to perturb the pointer strongly enough
in order to produce in it a “mesoscopic change” �i.e., a dis-
tance W between the peaks in its density�, instead of a mac-
roscopic change as required in Sec. IV A. In particular, if �P
is a Gibbs state with position uncertainty �=�th
= ��V��0��−1/2, this arises when the height V0
W2V��0� of
the two potential barriers satisfies �−1�V0�M�
�s�2 and
V0��class

2 V��0� �recall that TP
2 =M /V��0��. Then condition

�ii� of the preceding subsection will be fulfilled after the
object-pointer interaction has been turned off, at time t0

TP. If moreover V0�V��0��
�sTS�2, the simplification of
the dynamics discussed in Sec. III can be used since the
object-pointer interaction time satisfies tint�TS ,TP.

V. SIMULTANEOUS ENTANGLEMENT
AND DECOHERENCE

We now present and discuss the main results of this work,
before deriving them in Sec. VII. We are interested in the
object-pointer dynamics when, unlike in the situation just
described, S and P evolve under the simultaneous action of
HPS and HPB. Furthermore, in contrast to Sec. IV B, we do
not neglect the bath Hamiltonian HB.

A. Partial-equilibrium initial state

Let us first consider the evolution of the initial state �4a�.
Due to both the initial statistical independence and our spe-
cial choice of the interactions, the density matrix of S+P
retains at “short” times t�TS ,TP a remarkably simple prod-
uct structure �see the discussion in Sec. III�

�s,x��PS�t��s�,x�� = �s��S
0�t��s���xs�t���P�xs�

� �t��

�exp
− Dt�xs�t�,xs�
� �t�;s,s�� − i�t� .

�32�

Here �S
0�t� is given by �16�, xs�t�=x− t
s, xs�

� �t�=x�− t
s�, and
�t is a certain real phase �depending on t, x, x�, s, and s��
which we do not specify here since it is irrelevant for deco-
herence. We shall derive in Sec. VII the decoherence expo-
nent Dt

Dt�x,x�;s,s�� =
1

2�2�
0

t

d�1�
0

t

d�2��x� + �1
s��� − �x + �1
s���

���x� + �2
s��� − �x + �2
s���h��1 − �2� , �33�

where h��1−�2�=h2��1 ,�2� is the bath two-point function de-
fined in �10�. The first factor in �32� accounts for free evo-
lution of the object initial state �S, as generated by HS, see
�16�. It is equal to ps= �s��S�s� if s=s� and t�TS. The second
factor is nothing but the matrix element �20� of the shifted
pointer initial state. Here, the Hamiltonian HP does not show
up because of our assumption t�TP and our choice of a
quasiclassical initial state �P. Most important is now the
third factor in �32�; it accounts for decoherence—i.e., for the

V0

W

V(x)

x

FIG. 2. Sketch of a candidate for the pointer potential. The
height V0 of the potential barriers around x=0 and the width W of
the potential wall are much larger than kBT and the thermal fluctua-
tion �th.
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suppression of coherences with respect to pointer displace-
ments associated with different eigenvalues s�s�.

The exponent Dt has the following properties.
�a� Dt�x ,x� ;s ,s���0 for all values of x ,x� ,s, and s�.
�b� Dt�x ,x� ;s ,s��=0 initially �for t=0� for all matrix ele-

ments and at all later times for the diagonal matrix elements
�x=x� and s=s��.

�c� Dt(xs�t� ,xs�
� �t� ;s ,s�)=D−t�x ,x� ;s ,s��.

The non-negativity �a� is a consequence of the fact that
the correlation function h�t� and its real part Reh�t� are of
positive type; i.e., they have non-negative Fourier transforms

ĥ��� and �Reh�̂���. Actually, one may rewrite �33� as

Dt�x,x�;s,s�� =
1

2�2�
0


 d�

�
�Reĥ������

0

t

d���x� + �
s���

− �x + �
s���e−i���2

� 0, �34�

where we have used �Reh�̂���
= �Reh�̂�−�� and �Imh�̂���=−�Imh�̂�−��. Property �c� is eas-
ily checked by a change of the time integration variable in
�34�. Let us recall from Sec. IV A that the dynamics gener-
ated by HPS maps the object-pointer coordinate �x ,s� to
(xs�t� ,s) after time t and, similarly, �x� ,s�� is mapped to
(xs�

� �t� ,s�). Hence one may interpret �c� as the invariance of
Dt under time reversal—i.e., under t→−t and the exchange
of the initial and final coordinates.

B. Equilibrium apparatus initial state

Our result for the initial state �4b� looks quite similar to
that for the initial state �4a�. Before stating it, let us introduce
the effective pointer potential

Veff�x� = V�x� − �−1�0x2�, �35�

wherein �0 is given in terms of the imaginary part of the bath
correlation function h�t� by

�0 = �
−


0

d� Imh��� . �36�

We write ZP,eff=�dx e−�Veff�x� for the partition function asso-
ciated with Veff. It follows from the general properties of h�t�
that 0��0���h�0� /2 �see Appendix C�. Considering e.g., a
linear pointer-bath coupling, 2�0 /� is the mean force per unit
length exerted by the bath on the pointer. Note that Veff�x� is
a nonconfining potential if V�x�=o�x2�� at large distances.
For instance, if P is a harmonic oscillator �V�x��x2 for all x�
and ��1 then Veff�x� looks like in Fig. 2. This means that an
initial pointer density localized around x=0 will tunnel away
and eventually spread over the whole real line once the
pointer-bath coupling is switched on. In such a case the ap-
paratus equilibrium state �PB

�eq� must be replaced by a local
thermal equilibrium �see Sec. IV D�. This local equilibrium
exists under certain conditions on the pointer-bath coupling
to be discussed below.

As we shall show in Sec. VII C, the object-pointer density
operator is given at times t�TS ,TP by

�s,x��PS�t��s�,x�� = �s��S
0�t��s��Rt„xs�t�,xs�

� �t�;s,s�…

�exp
− Dt„xs�t�,xs�
� �t�;s,s�… − i�t� ,

�37�

with the same decoherence exponent Dt and phase �t as
above. The only difference between �37� and the formula
�32� for the partial-equilibrium initial state lies in the re-
placement of the initial pointer density �x��P�x�� by the func-
tion Rt�x ,x� ;s ,s��. For a time t short enough so that
Dt�x ,x� ;s ,s���1, this function is given by the Gibbs-type
density

Rt�x,x�;s,s�� 	 R0�x,x��

= ZP,eff
−1 e−��Veff�x�+Veff�x���/2e−2�2�x� − x�2/�th

2
.

�38�

For larger times t �with the proviso t�TS ,TP�, Rt is given by
the more complicated integral �85� or, in the special case �
=2, by the formula �89� below. Let us only mention here that
for �=1, Eq. �38� gives the correct answer up to a phase
factor for all times t�TS ,TP. Interestingly, �37� entails the
following result on the reduced pointer initial state:

�x�trB��PB
�eq���x�� = R0�x,x�� . �39�

Comparing �38� with the expression of �x��P
�eq��x�� at high

temperatures given in Sec. II, we see that the coupling be-
tween P and B can be fully accounted for by the effective
potential �35�. Furthermore, for a linear coupling �=1 the
matrix elements �38� can be approximated for small x and x�
by the Gaussian �7� with an almost unchanged uncertainty in
momentum, �p	2�� /�th, and a renormalized uncertainty
in position �eff��th given by �eff

−2 =�Veff� �0�=��V��0�
−2�0 /�� �see Sec. II�.

Our results �37�–�39� rely, in addition to t�TP ,TS, on
two additional hypotheses: �a� the separation of time scales
���TP or, equivalently, the separation of length scales �th
��th �see Sec. III B�; �b� a weak enough pointer-bath cou-
pling satisfying

��th � 1/�2 if � = 1,

�th � 1 if � � 1,
� �40�

with

�th = �B2�1/2�th
� � .

Here �B2�=trB�B2�B
�eq��=h�0� is the thermal variance of the

bath coupling agent. Condition �40� is motivated by the fol-
lowing requirement: The effective potential �35� must have a
local minimum at x=0 and the height of the potential barriers
surrounding the origin must be large compared with the ther-
mal energy 1 /�. Only under that condition can pointer and
bath be prepared in a local thermal state in which the pointer
reduced state has a single peak at the origin like in Fig. 1�a�.
If the coupling HPB induces an instability in the pointer-bath
dynamics, we must replace the Gibbs state �PB

�eq� in �4b� by
that local thermal state, as explained in Sec. IV D. Note that
we exclude here pointers being at a critical point of a phase
transition considered in �18,19�.
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We first consider the case �=1. If V�x�=V��0�x2 /2, the
aforementioned requirement is met whenever
Veff� �0��0—i.e., �0 /��V��0� /2. This stability condition is
well known for a harmonic oscillator interacting linearly
with a bath of harmonic oscillators �40�. For a potential V�x�
which is nonquadratic at large distances �x��W, we must
stipulate a bit more, e.g., �0 /��V��0� /4, in order that the
height of the two potential barriers be large compared with
1 /�. Bearing in mind that �0����B2� /2, the latter condition
is satisfied under our hypothesis �40�. Most importantly, it
implies �th��eff��2�th, so that the various length scales
are ordered as �th��th
�eff�W.

Now turning to the case ��1 we insert V�x�
	V��0�x2 /2 into �35� and find a distance between the left
and right maxima of Veff�x� equal to Weff
=2��V��0� / �2��0��1/�2�−2�, these maxima equaling
V��0���V��0� /�0�1/��−1� up to a factor of the order of unity.
As a result, �40� implies the required stability of Veff�x�. Ac-
cording to the discussion of Sec. IV D, the object-pointer
coupling can be switched off at time tint
Weff / �
�s�

��V��0� /�0�1/�2�−2��
�s�−1. This time must be chosen small
compared with TS and TP and large compared with the en-
tanglement time tent=�th / �
�s�, so as to fulfill �2� and �40�.

By comparing �32� and �37� we may conclude that the
coherences of �PS�t� for s�s� decay to zero in same way for
the two initial states �4�, at least in the early time regime
when these coherences are not yet very small. Furthermore,
in view of �38� the whole discussion of Sec. IV about the
emergence of classically discernible peaks remains qualita-
tively valid.

VI. DECOHERENCE TIMES

Before presenting a derivation of our main results �32�
and �37� in the next section, we focus our attention to the
decoherence factor e−Dt. It has been stressed in Sec. IV B that
the object-pointer matrix elements

�PS
peak�t;s,s�� = �s,x = 
ts��PS�t��s�,x� = 
ts��

= �s��S
0�t��s��Rt�0,0;s,s��e−Dt

peak�s,s��−i�t
peak

�41�

are of particular importance for decoherence in a quantum
measurement. Here Rt�0,0 ;s ,s�� is equal to �0��P�0� for the
initial state �4a�, to ZP,eff

−1 for the initial state �4b� if
Dt

peak�s ,s���1, and to a more complicated function of s and
s� for the initial state �4b� if Dt

peak�s ,s���1. The main dif-
ference between �41� and �23� lies in the presence of the
damping factor exp
−Dt

peak�s ,s��� given by

Dt
peak�s,s�� = Dt�0,0;s,s��

=

2�

2�2 �s�� − s��2�
0

t

d�1�
0

t

d�2�1
��2

�h��1 − �2� .

�42�

A. How does Dt
peak grow with time?

The decoherence factor �42� is positive, vanishes for s
=s� �see �a� and �b� in Sec. V A�, and satisfies the following:

�d� Dt
peak�s ,s�� is an increasing convex function of time if

s��s��.
�e� Dt

peak�s ,−s�=0 if � is even.
�f� Dt�x ,x� ;s ,s��=Dt

peak�s ,s���1+O(��x�+ �x����
t�s
−s���−1)� for �x� , �x���
t�s−s��.

Property �d� means that, quite generally, the graph of
Dt

peak looks qualitatively like in the inset in Fig. 3. To estab-
lish this result, we take x=x�=0 in �34�, differentiate both
sides with respect to t, and do the time integration by parts to
get

�

�t
Dt

peak�s,s�� =

2�

�2 �s�� − s��2�t2��
0


 d�

�

�Reĥ����
�

��
0

1

du�1 − u��−1sin��tu� . �43�

Using the fact that the function �1−u��−1 is positive and
decreasing between 0 and 1, it is easy to show that the inte-
gral over u in �43� is positive for almost all ��0. Bearing in

mind that �Reh�̂����0, this establishes that �Dt
peak /�t�0 for

t�0. Hence Dt
peak is an increasing function of t. By a similar

argument, �2Dt
peak /�t2�0 and thus Dt

peak is convex.
According to property �e�, if � is even and the spectrum

of S is symmetric with respect to s=0, the coherences �41�
for s�=−s are not damped. This comes from the symmetry
x↔−x of the Hamiltonian HPB in �3�, which allows for the
existence of decoherence-free subspaces �41�. Due to these
long-living coherences, P+S fails to reach �at least within a
time span t�TP ,TS� the statistical mixture required to be
able to give a classical result to the measurement. We ex-
clude that case from now on. More precisely, we assume that
if � is even, then s /s� is not close to  1 for all pairs �s ,s��
of eigenvalues such that �s��S�s���0; i.e., �s��−s�� / �s�−s��
is bounded below by a constant c�

min�0 of the order of unity.

-8 -7 -6 -5 -3 -1

-2

-1

1

1

α = 1 α = 2

Dpeak
t ln τdec

ln τent

τ
τdec

FIG. 3. Decoherence against entanglement times in units of
TB=�� for the harmonic oscillator bath considered in Sec. VI D
with �=10−1, c=1, and wD=5 �log-log scale�. Solid curves, exact
results for �� ,m�= �1,5�, �1,3�, �1,1�, �2,5�, �2,3�, and �2,1� �from
left to right�. Dashed lines, approximate expressions for �dec�wD

−1

�dashed curves� and �dec�1 �dotted curves�; see text. Inset: deco-
herence exponent Dt

peak as a function of �= t /TB for �� ,m�= �1,3�.
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With this restriction, for ��x�+ �x��� / �
t�s−s��� sufficiently
small the error term in property �f� is bounded by ��x�
+ �x����
t�s−s���−1 times a constant independent of x, x�, s, s�,
and t �42�.

We are concerned in this section with determining the
time scale tdec�s ,s�� characterizing the growth of Dt

peak�s ,s��
and the corresponding decay of the �s�s�� coherences �41�.
This time, to be called the decoherence time, is defined im-
plicitly as Dt=tdec

peak �s ,s��=1—i.e.,

� tent�s,s��
�1/� �2�

=
c��s,s��2

����2 �
0

tdec�s,s��
d�1�

0

�1

d�2�1
��2

�

�
Reh��1 − �2�

�B2�
, �44�

where

tent�s,s�� =
�


�s� − s�
�45�

is the entanglement time �whose physical interpretation has
been illustrated in Sec. IV A�, � is the �fluctuation of the�
initial pointer-bath coupling energy in units of kBT,

� = �B2�1/2��� 
 ��tr�HPB
2 �P � �B

�eq���1/2, �46�

c��s ,s��=1 if �=1, and

c��s,s�� =
�s�� − s��
�s� − s��

if � � 1. �47�

For the initial state �4b�, one must set �=�th in �45� and �46�
and �=�th must be small enough; see �40�. By inspection of
�44�, tdec�s ,s�� depends on the object-pointer and pointer-
bath coupling constants 
 and � through a single parameter

�1/�. Recalling that �32�–�42� are valid with the proviso t
�TS ,TP, the “free” evolutions of S and X must be slow
compared to tdec�s ,s��—i.e.,

tdec�s,s�� � TS,TP, s � s�. �48�

For given s�s�, if tdec�s ,s��� tent�s ,s��, then at time t
� tdec�s ,s�� the peaks at �x ,x��= �
ts ,
ts�� of the pointer co-
herences in �32� and �37� �second factors on the right-hand
side� are flatten down by decoherence �third factors�, so that
�s ,x��PS�t��s� ,x��	0 for all values of �x ,x��. This statement
follows from a similar argument as in Sec. IV B and from
property �f� �see the beginning of this section�. It is worth
emphasizing that if, unlike in the situation just described,
tdec�s ,s�� is smaller than tent�s ,s��, then the coherence
�s ,x��PS�t��s� ,x�� may still be large at time tdec�s ,s�� for
some �x ,x��	�
ts ,
ts�� with uncertainty �. In such a case
the decoherence time must be defined as the time t at which
the minimum of Dt�x ,x� ;s ,s�� over all values of �x ,x�� is
equal to 1. We postpone to a separate work the determination
of that decoherence time.

The decoherence time tdec of the measurement is the larg-
est of the times tdec�s ,s�� for all pairs of distinct eigenvalues
�s ,s�� such that �s��S�s���0 �with the proviso tdec� tent
=� / �
�s� in light of the discussion in the preceding para-
graph�. This amounts to replacing �s��−s�� in �42� by its
minimum value over all such pairs �s ,s�� �recall that Dt

peak is

an increasing function of time�. For �=1 this minimum
value is by definition equal to �s �Sec. IV A�; for ��2, it
depends on the spectrum of S in a more subtle way �43�. At
times t� tdec, the object-pointer state �PS�t� is very close to
the separable state �29�. In other words, S and P are in the
statistical mixture �31� with the probabilities ps= �s��S�s� and
with pointer states �P

s �t� given by

�x��P
s �t��x�� = Rt„xs�t�,xs��t�;s,s…exp
− D−t�x,x�;s,s� − i�t� ,

�49�

with Rt�x ,x� ;s ,s� equal to �x��P�x�� for the initial state �4a�
and to the Gibbs-type density �38� for the initial state �4b�
when D−t�x ,x� ;s ,s��1. We have used in �49� the time-
invariance property �c�; see Sec. V A. The initial superposi-
tions of eigenstates �s� have disappeared by indirect decoher-
ence via the pointer. The pointer is in a statistical mixture of
quasiclassical states having densities localized around x
= t
s with uncertainty �. The essence of quantum measure-
ments lies in this loss of coherences: for indeed, as already
pointed out in Sec. IV C it is only when all object-pointer
coherences for s�s� are vanishingly small that a classical
probability can be given for the result of the measurement.

The pointer matrix elements �49� are also damped by de-
coherence via the last exponential factor in �49�. One can
show, however, that for relevant values of x and x� satisfying
�x−
ts��� and �x�−
ts���, the corresponding damping
time is much larger than tdec, at least in the two limiting
regimes tdec� tB and tdec�TB studied below. The special case
�=1 will be discussed in the next subsection.

It is worthwhile mentioning here that one should expect
that tdec� tclass, save for extremely large object-pointer cou-
pling constants 
. Object and pointer are then never in a
Schrödinger cat state as in �18�, because decoherence sub-
dues linear superpositions �via the third factors in �32� and
�37�� faster than entanglement between P and S can produce
them �second factors in �32� and �37��. Due to the simulta-
neous action of HPS and HPB, the whole measurement pro-
cess directly produces the mixture of macroscopically dis-
tinct pointer states �P

s �t�, without allowing for the
intermediate appearance of macroscopic superpositions. This
is one of the central results of the present paper. In the situ-
ation described in Secs. IV D and V B; i.e., if the �effective�
pointer potential is unstable and the object-pointer interac-
tion is switched off at time tint
W / �
�s��TP , tclass, even
mesoscopic superpositions do not appear at any stage of the
measurement when tdec� tint.

No assumption whatsoever was made on the bath corre-
lation time TB to establish �32�–�42�. Our results therefore go
beyond the so-called Markovian limit which would require
TB� tdec. This is an important point, since for sufficiently
large 
 decoherence will take place within the “non-
Markovian” regime t�TB. Explicit asymptotical results for
tdec can now be drawn from the foregoing expressions for
both tdec� tB and tdec�TB.

B. Interaction-dominated regime tdec™ tB

In the �non-Markovian� regime tdec� tB, the dynamics is
dominated by the interactions HPS and HPB. For t� tB, one
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may approximate h��� in �42� by the thermal variance h�0�
= �B2� of the bath coupling agent. This yields

Dt
peak�s,s�� = � t

tdec�s,s��
�2�+2

�interaction-dominated regime� , �50�

tdec�s,s�� = ��2�� + 1�
c��s,s��

�1/��+1�� tent�s,s��
���1/� ��/��+1�

�� ,

�51�

where we have used the entanglement time and dimension-
less parameters �45�–�47�. This result makes sense with the
proviso tdec�s ,s��� tB ,TS ,TP. The fact that Dt

peak� t2�+2

could be expected from �26�: indeed, a contribution of
t2�x��−x��2 to the decoherence exponent was found for
HPS=0 and fixed x and x�; recalling that for HPS given by
�3� the positions of the peaks grow proportionally with time,
we recover the above-mentioned power law. It should also be
noted that tdec depends on the bath through the single param-
eter �. This comes from the fact that the bath dynamics can
be ignored when tdec� tB �44�.

Invoking �42� and �Reh�̂����0, it is easy to show that
�50� gives an upper bound on Dt

peak�s ,s�� for all times t�0.
By property �d� in Sec. VI A, in the regime tdec� tB the de-
coherence time must be larger than the right-hand side of the
asymptotic formula �51�.

It has been stressed above that the interpretation of tdec as
the decoherence time of the measurement relies on the as-
sumption tent� tdec. We now argue that this condition is ful-
filled if the pointer-bath coupling energy is of the order or
smaller than kBT �i.e., ��1� and s� /s is not very close to
unity. In fact, under these assumptions one has even
tent�s ,s��� tdec�s ,s��. This follows from �51�, the consistency
condition tdec�s ,s��� tB, and the inequality tB���, which
imply tdec�s ,s����� and thus tent�s ,s�����. In contrast, if
��2 and �s� /s−1��1, one sees by inspection of �47� that
c��s ,s��	��1−s� /s�1−��1. Hence the first factor on right-
hand side of �51� is small and one may have tent�s ,s��
� tdec�s ,s��. This corresponds to an initial superposition of
eigenstates �s� with closely lying eigenvalues, as discussed in
Sec. IV C. Similarly, one may have tent�s ,s��� tdec�s ,s�� for
a strong pointer-bath coupling—i.e., for ��1.

It is worthwhile comparing the strength of decoherence
for different values of the exponent � in the coupling Hamil-
tonian HPB, keeping its magnitude � /� constant. We find
that tdec is smaller in the nonlinear case ��1 in comparison
with the linear case �=1 by a factor of tdec

���1� / tdec
��=1� of the

order of c�
−1/��+1��tent / tdec

��=1����−1�/��+1��1. Interestingly, a lin-
ear pointer-bath coupling is much less efficient than a non-
linear one in suppressing the coherences �41� for s�s�. This
has the following important consequence: for a pointer-bath
coupling of the form HPB=Bf�X� with f�x� a smooth real
function, a dipolelike approximation consisting in linearizing
f�x� may lead to an overestimation of the decoherence time
tdec even if f��0�� / f��0� is small. Actually, the quadratic cou-

pling Bf��0�X2 /2 gives a smaller decoherence time than the
linear coupling Bf��0�X when tent /����−1�f��0�� / f��0��2

with �= f��0��B2�1/2��.
We can now give an explicit condition ensuring that tdec is

smaller than the time tint
W / �
�s� needed by object-pointer
entanglement to produce superpositions of pointer positions
separated by the mesoscopic length W, ��W��class: tent
must be large compared with �� /W��+1�� / ��c��. In this
limit decoherence is so fast that these mesoscopic superpo-
sitions do not appear at any moment during the measure-
ment.

As pointed out in Sec. VI A, it is appropriate to demon-
strate that the decay of the pointer matrix elements �49� re-
mains negligible for times t until well after the disappearance
of the off-diagonal �s�s�� terms in �PS�t�. Due to the peak
structure of the pointer density �first factor in the right-hand
side of �49��, the relevant values of x ,x� are such that
�xs�t�� , �xs��t����. Given tent� tdec, such x and x� are sepa-
rated by a distance �x−x���2� much smaller than the inter-
peak distance tdec
�s relevant for the decay of the �s ,s�=s
+�s� matrix elements of �PS�t�. We restrict ourself to the
case �=1 and consider the limit t� tB���. Setting s=s�,
inverting the sign of the time t, and replacing h��1−�2� by
�B2� in �33�, one finds that D−t�x ,x� ;s ,s�= �B2�t2�x
−x��2 / �2�2�. Note that this decoherence exponent is the
same as in �30�. If ��1 and x, x�, and t are in the range
mentioned above, then D−t�x ,x� ;s ,s��2�2t2����−2�1.
Hence the decoherence caused by the pointer-bath coupling
has a small effect on the pointer states �P

s �t� up to times t
� tdec�s�, the decoherence factor in �49� being still close to
unity. So, indeed, the bath does away with the “off-diagonal”
�s�s�� object-pointer matrix elements before the “diagonal”
ones change noticeably.

C. Markov regime tdecšTB

When tdec� tB the off-diagonal matrix elements �41� have
no time to decay between t=0 and tB. Decoherence may then
take place within the so-called Markov regime t�TB, also
known in the mathematical literature as the singular-coupling
limit �45,46�. Note that under our condition tdec�TS ,TP it is
not appropriate to use a rotating-wave approximation. Deco-
herence is governed in the Markov regime by the small-

frequency behaviors of the Fourier transforms �Reĥ���� and

�Imĥ���� of the real and imaginary parts of the bath cor-
relator h�t�. We shall make use of a few properties of these
Fourier transforms, which are explained in more detail in

Appendix C. We assume that �Imĥ�����−i�̂�m for ��TB
−1,

�̂ being a positive constant. Bearing in mind that �Imĥ���� is
an odd function of � and must be regular enough �i.e., admit
differentials of sufficiently high orders� in such a way that
Imh�t� decays rapidly to zero as t→ �
, we take m to be a
positive odd integer. By analogy with the case of a bath of
harmonic oscillators linearly coupled to P, we speak of
Ohmic damping when m=1 and of super-Ohmic damping

when m�1 �24,25�. The behavior of �Reĥ���� at small fre-

quencies can be deduced from that of �Imĥ���� thanks to the
Kubo-Martin-Schwinger �KMS� relation �C6�. Such a rela-
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tion holds because the average in the correlation function
h�t� is taken with respect to a bath Gibbs state �47�. It implies

�Reĥ�����2�̂�m−1 / ����.
Let us first discuss the super-Ohmic case m�3. The fre-

quency integral in �43� can be rewritten after an integration
by parts as

�
0


 d�

�

�Reĥ����
�

�
0

1

du�1 − u��−1sin��tu�

= t−1�
0


 d�

�

�Reĥ����
�2 �1 − ��1 cos��t� � �� − 1�

��
0

1

du�1 − u��−2cos��tu�� 	 t−1�
0


 d�

�

�Reĥ����
�2 ,

�52�

where we have neglected in the last expression the oscilla-
tory integrals by invoking t�TB. By inspection of �C8� we
conclude that for m�3 the frequency integral in �43� can be
approximated by t−1��0


d� � Reh����.
For an Ohmic bath m=1, the last integral in �52� diverges.

We now argue that one can replace �Reĥ���� by �Reĥ��0�
=2�̂����−1 on the left-hand side of �52�, which becomes

�
0


 d�

�

�Reĥ��0�
�

�
0

1

du�1 − u��−1sin��tu� =
�Reĥ��0�

2�

�53�

in the limit t�TB. �We have used �d� sin��tu� /�=� for
tu�0.� Note that this amounts to replacing Reh�t� by a
white-noise correlator 2�̂����−1��t� in �42�. Let us estimate
the error introduced in the frequency integral in �43� by this
substitution. This error is given by the left-hand side of �52�
modulo the replacement of �Reĥ���� by �Reĥ����
− �Reĥ��0�. Disregarding oscillatory integrals as in the case
m�3, the error is equal in the limit t�TB to

t−1�0

d���Reĥ����− �Reĥ��0���−2 /�. The latter integral con-

verges since �Reĥ����− �Reĥ��0� behaves like �2 for small
�. Comparing with �53� �see also �C9��, one concludes that
the relative error introduced in �43� by the substitution of

�Reĥ���� by its value for �=0 is small, of the order of TB / t.
Hence, for m=1 the frequency integral in �43� can be ap-

proximated by �Reĥ��0� / �2��=�−1�0

d� Reh���.

Collecting the above results and integrating �43� with re-
spect to time, we find in the Ohmic case m=1

Dt
peak�s,s�� = � t

tdec�s,s��
�2�+1

�Ohmic� , �54�

tdec�s,s�� = � �2� + 1��B2���

c��s,s��2�
0




d� Reh����
1/�2�+1�

�� tent�s,s��
���1/� �

2�/�2�+1�

�� �55�

and in the super-Ohmic case m�3

Dt
peak�s,s�� = � t

tdec�s,s��
�2�

�super-Ohmic� , �56�

tdec�s,s�� = � 2�B2��2�2

c��s,s��2��
0




d� �Reh���� �
1/�2�� tent�s,s��

�1/� ,

�57�

with the proviso TB� tdec�s ,s���TS ,TP. We can interpret the
growth of Dt

peak like t2�+1 in the Ohmic case by saying that
for fixed x and x�, in the Markov regime Dt must be propor-
tional to t�x��−x��2 �the fact that Dt� t is well known �3��;
the indicated time behavior of Dt

peak then follows by replac-
ing �x ,x�� by �
ts ,
ts��.

By using �h����� �B2� and Reh���	0 for ��TB �Sec.
III A�, one finds that the integrals �0


d� Reh��� and
��0


d� � Reh���� are at most of the order of �B2�TB and
�B2�TB

2 , respectively. If �s� /s−1� is not close to unity �so that
c��s ,s�� in �47� is not very large�, the factor inside the pa-
rentheses in �57� is of the order of ��� /TB�2 or larger. Thus,
for coupling strength ���� /TB the condition tent�s ,s��
� tdec�s ,s�� holds in the Markov regime for super-Ohmic
baths. The situation is different for Ohmic baths: then, by
�55�, the condition in question is violated even for small � if
the entanglement time tent�s ,s�� is large enough compared
with ��. More precisely, still assuming that c��s ,s�� is of the
order of unity, tdec�s ,s�� becomes smaller than tent�s ,s��
when

tent�s,s��
��

�
�B2���

�2�
0




d� Reh���
�

��

�2TB
. �58�

For super-Ohmic baths, the decoherence time �57� de-
creases by increasing � for ���� /TB and �s� /s−1� not
close to unity, i.e., provided that tdec�s ,s��� tent�s ,s��. Then
tdec
���1� / tdec

��=1�� ��TB / �����1−1/��1. Thus, for fixed weak
enough coupling strength �, nonlinear pointer-bath couplings
always win over a linear coupling in efficiency for decoher-
ence. This is in striking contrast with what happens in the
Ohmic case. Actually, for a Ohmic bath nonlinear couplings
become less efficient than a linear coupling when tent�s ,s�� is
large enough so as to fulfill �58�. More precisely, we find by
using c��s ,s��
1 and �58� that the decoherence time �55� is
larger in the nonlinear case ��1 than in the linear case �
=1 by a factor of tdec

���1� / tdec
��=1� of the order of

�tent / tdec
��=1���2�−2�/�2�+1��1.
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Finally, it is worth mentioning that Ohmic baths win in
efficiency over super-Ohmic baths. This can be shown by
noting that �tdec

Ohm / tdec
sup-Ohm�2�+1 is equal �up to a numerical

factor of the order of unity� to the product of
��0


d� � Reh��������0

d�Reh����−1 by �� / tdec

sup-Ohm. Since the
last factor must be small compared with 1 for consistency
�recall that ���TB�, it follows that tdec

Ohm�s ,s�� is smaller
than tdec

sup-Ohm�s ,s��.
One may wonder if the results of this section could be

strongly modified if a direct coupling between the object S
and bath B �which we do not admit in the present model�
was allowed for. It is clear that one can answer this question
by the negative when the object-pointer coupling constant 

is large enough—i.e., for small enough tent. In order to esti-
mate how small must be tent, let us couple S and B via the
Hamiltonian HSB=���S /�s��B. This Hamiltonian has a mag-
nitude comparable with the pointer-bath coupling �3� in the
initial state �4a�. We first consider Ohmic baths. It is known
that the decay of the off-diagonal matrix elements �s��S�t��s��
resulting from the coupling HSB then goes like
exp�−t /Tdec�s ,s��� in the Markov regime �we ignore here the
object-pointer coupling� �3�. If Tdec�s ,s���TS, a condition
fulfilled if �S ,HS�=0 �pure dephasing regime TS=
�, the
corresponding decoherence time is given by Tdec�s ,s��
=�2��s /��2��s��−s��−2 /�0


d� Reh��� �21�. The ratio between
Tdec�s ,s�� and the decoherence time �55� for s�=s+�s is
��c���−2tent

−1����2�B2� /�0

d� Reh����2�/�2�+1� up to an irrel-

evant factor. Taking into account that �0

d� Reh���� �B2�TB,

we see that it is well justified to neglect the coupling of the
object with all degrees of freedom of the apparatus but the
pointer provided that tent / ����� ��� /TB��c���−2. For a
super-Ohmic bath, if �S ,HS�=0, then the modulus of the
off-diagonal matrix element �s��S�t��s�� decays to a nonzero
value under the coupling HSB �for a discussion on this satu-
ration of decoherence see, e.g., �48��, whereas indirect deco-
herence via the pointer leads to a complete decay of the
object-pointer coherences �this decay being given by the de-
coherence exponent �56��. It is also easy to show that
Tdec�s ,s�� is much larger than the decoherence time �51� pro-
vided that tent / ����� ��� /TB�1+1/��c���−2−1/�.

D. Bath of harmonic oscillators linearly coupled to P

To study the transition between the limiting time regimes
discussed in the two preceding subsections, let us consider a
bath of N�1 harmonic oscillators, HB=�	��	�b	

†b	+1 /2�,
coupled to the pointer via a coupling agent B linear in each
of its creation and annihilation operators b	

† and b	, B
=�	�!	b	

†+!	
�b	� /�N �24�. Here �	 is the frequency and !	

the coupling constant of the 	th oscillator. We shall take the
following specific choice for the power spectrum function:

J��� =
�

N
�
	=1

N

�!	�2��� − �	� = �̂�me−�2/�D
2

, �59�

wherein m is an odd positive integer, �̂�0, and �D is a
cutoff frequency. We recall that the case m=1 corresponds to
an Ohmic damping, whereas one speaks of super-Ohmic
damping for m�1. For instance, m=d or d+2 for a phonon

bath in d dimensions, depending on the underlying symme-
tries �25�. As is well known �24,25�, the imaginary part of
the bath correlation function h�t� is temperature independent,

its Fourier transform being given by i�Imĥ����=J��� for �

�0. By the KMS property �C6� this implies �Reĥ����
=coth���� /2�J�����. If wD=��D��1, the thermal time
TB=�� is the largest decay time of Reh�t�. The other time
scale characterizing the variations of Reh�t� is the inverse
cutoff frequency tB=�D

−1�TB. By �44�, the decoherence and
entanglement times in units of TB, �dec= tdec /TB and �ent
= tent /TB, are given by

�ent
2�

c�
2�2 =

�
0




dw coth�w/2�wme−w2/wD
2��

0

�dec

d� ��e−iw��2

2�
0




dw coth�w/2�wme−w2/wD
2

,

�60�

where we have expressed Reh�t� in terms of its Fourier trans-
form and relied on �59�. We did not write explicitly in �60�
the dependence of �ent, �dec, and c� on �s ,s��. The right-hand
side of �60� is shown in the inset in Fig. 3. We have com-
puted numerically the integrals appearing in this right-hand
side for various values of �, m, and wD, so as to obtain �dec
as a function of �ent and �. The main results are shown in
Figs. 3 and 4. For fixed � and �, the plain curves represent-
ing �dec in Fig. 3 split by increasing �ent into distinct branches
corresponding to distinct m’s, as predicted by �54� and �56�.
This splitting occurs when �dec is in the transition region
wD

−1��dec�1. After this splitting �dec is larger for larger m.
In particular, a Ohmic bath �m=1� has a smaller decoherence
time than a super-Ohmic bath �m=3,5 , . . .� as stated above.
For comparison, the power-law behaviors found in Secs.
VI B and VI C in the small-time ��dec�wD

−1� and Markov
��dec�1� regimes are also shown in Fig. 3 �dashed lines�. A
remarkably good agreement between the exact and
asymptotic behaviors of �dec is obtained: the exact results are
well approximated by their small-time behaviors �51� up to

-6 -5 -3 -1

-1.5

1

2

3
α = 1

α = 2

α = 3
ln η

ln τdec

FIG. 4. Decoherence time �dec in units of TB=�� as a function
of the pointer-bath coupling strength � for the same bath as in Fig.
3 with �ent=0.1, m=3, and c=1. Three distinct values of wD are
shown: wD=2 �solid curves�, wD=5 �dotted-dashed curves�, and
wD=10 �dashed curves�. For each of these values, �dec is shown for
�=1, 2, and 3 �from top to bottom�.
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�dec�wD
−1 and they are hardly distinguishable from the Mar-

kov approximation as soon as �dec�1. Our aforementioned
statement that a nonlinear pointer-bath coupling is more ef-
ficient for decoherence than a linear one when �ent is not too
large �and even for arbitrarily large �ent if m�3 and � is
small enough� is well confirmed. Indeed, it is seen in Fig. 4
that for a pointer-bath coupling strength ��1, �dec becomes
significantly smaller when the value of � is increased from
�=1 to �=3. If the dotted lines �Markovian results� in Fig. 3
were drawn farther to the right, the two lines corresponding
to �� ,m�= �1,1� and �� ,m�= �2,1� would intersect; after this
intersection �not shown in the figure�, the reverse situation of
higher values of � leading to higher values of �dec occurs. In
contrast, for m=3,5 , . . ., the dotted lines associated with �
=1 and �=2 never intersect �their are parallel�; hence, �dec
decreases with � and �ent��dec for all values of �ent �more
precisely, �ent�10−4�dec for �=1 and �ent�10−2�dec for �
=2�. We also emphasize that �dec increases in Fig. 4 with the
cutoff frequency �D. Even though the results in Figs. 3 and 4
correspond to the simplifying choice of a bath of harmonic
oscillators with power spectrum function �59�, for more gen-
eral baths they should still give the correct qualitative pic-
ture.

E. Bath at very low temperature

We have so far considered baths at finite temperature.
Motivated by experiments in solid-state physics, we shall
now discuss the case of a bath initially in thermal equilib-
rium at very low temperature. Strictly speaking, for the equi-
librium apparatus initial state �4b� extremely low tempera-
tures have to be proscribed because of our hypothesis ��
�TP. However, taking, e.g., TP=1 s, this separation of time
scales holds even for the smallest temperatures that can be
achieved in experiments. Furthermore, the stability condi-
tions �40� have a better chance to be met at low temperature
T since �th decreases with T. To be specific, we consider the
same bath of harmonic oscillators as in the previous subsec-
tion, but now in the limit wD=��D��1. Then only sponta-
neous emission plays a role in the pointer-bath interaction. In

other words, �Reĥ����=coth���� /2�J����� can be approxi-
mated by J�����. The zero-temperature variance of B equals
�B2�=�d� J����� / �2��. For our choice �59� of the power
spectrum function, this gives 2��B2�= �̂�D

m+1��m−1� /2�!.
The analog of �60� reads

��Dtent�2�

c�
2�D

2 =
1

��m − 1�/2�!�0




dv vme−v2��
0

�Dtdec

du u�e−ivu�2

,

�61�

where �D is now the pointer-bath coupling strength in units
of ��D, �D= �B�1/2�� / ���D�. Equation �61� holds provided
that �Dtdec�wD—i.e., tdec���. This equation is the same as
�60� apart from the substitutions �ent→�Dtent, �dec→�Dtdec,
�→�D, and coth�w /2�e−�w / wD�2→e−v2

. Explicit formulas for
tdec can be given as before when tdec is small or large com-
pared with �D

−1. One reads the small-time result directly
on �51� by transforming this expression according to the
recipe mentioned above. This gives �Dtdec

� �c�
−1/��D

−1/��Dtent��/��+1� for tdec��D
−1. Similarly, for a

super-Ohmic bath tdec�c�
−1/��D

−1/�tent when �D
−1� tdec���.

To find the proportionality factor, it is enough to realize that

��0

d� �Reh����=�0


d��Reĥ�����−2 /� has to be interpreted
in �57� as �̂�D

m−1�0

dv vm−2e−v2

/�=2�D
−2�B2� / �m−1�. The

Ohmic case requires some extra work. For indeed, replacing

�Reĥ���� by J����� leads to a vanishing second member in
�53�, even though the frequency integrals in the second and
third members in Eq. �52� are still divergent. One actually
finds

�
0




dv e−v2�
0

1

du�1 − u��−1sin��Dtuv�

�
ln��Dt� + k�

�Dt
as �Dt → 
 , �62�

with k1	0.2886 and k�=k1−1−1 /2− ¯−1 / ��−1� if ��2.
Substituting the frequency integral in �43� by the right-hand
side of �62�, one gets

tent�s,s�� = �c��s,s���D�1/�tdec�s,s��
ln��Dtdec�s,s��� + k�

− �2��−1�1/�2�� �Ohmic� ,

tent�s,s�� = �c��s,s���D/�m − 1�1/�tdec�s,s�� �super-Ohmic� .

�63�

Instead of going through a proof of �62�, which would lead
us too far into technical details, let us compare the formulas
�63� to the exact results obtained by numerical evaluations of
the integrals in �61�. It is seen in Fig. 5 that the approximate
values �63� closely follow the exact curves when �Dtdec be-
comes large �in fact, even for �Dtdec	2 in the Ohmic case
m=1�. Similar pictures are found for higher �’s. Let us re-
mark on �63� that for a given tent, the ratio between the de-
coherence times for Ohmic and super-Ohmic baths is loga-
rithmically small in the dimensionless time �Dtdec. Hence a
Ohmic bath is not dramatically more efficient than a super-
Ohmic bath at very low temperature, in contrast with our
previous findings at “high” temperatures.

1 2 3 4 5 6
ΩDtent

2

4

6

8

10

ΩDtdec

FIG. 5. Decoherence against entanglement times in units of �D
−1

for the bath at zero temperature of Sec. VI E with �=1, �D=1, and
m=5,3 ,1 �solid curves, from top to bottom�. The approximations
�51� and �63� for �Dtdec�1 and �Dtdec�1 are shown as dashed
lines.
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VII. DERIVATION OF THE RESULT

We here fill in the derivation of the results presented in
Sec. V. An alternative derivation of �32� based on the time-
dependent Redfield equation can be found in �49�. Our ap-
proach below is nonperturbative in the pointer-bath coupling,
but makes use of the QCLT �Sec. III A� which holds due to
the additivity �3� of the bath coupling agent.

A. Object-pointer dynamics

According to the results of Sec. III we may drop the
Hamiltonians HS and HP in the full Hamiltonian H, with the
proviso that the object initial state �S is replaced by �S

0�t�
given by �16�. This means that at times t�TS ,TP the exact
evolution operator of S+P+B in �8� can be approximated as

e−itH/�	e−itHB/�W̃�t ,0�e−it�HS+HP�/�, where

W̃�t,0� = eitHB/�e−it�HB+HPS+HPB�/�

= T exp�−
i

�
�

0

t

d��
SP + X�B̃����� �64�

is the approximate evolution operator in the interaction pic-

ture. Note that B̃��� is different from B as soon as �� tB.
Since we do not assume here t to be small compared with tB,
we keep the time dependence of the bath coupling agent in
�64�. In view of the product structure ��0�=�S � �PB of the
initial state and by cyclic invariance of the trace, the object-
pointer state �8� becomes

�PS�t� 	 trB�W̃�t,0��S
0�t� � �PBW̃�t,0�†�, t � TS,TP.

�65�

The pointer Hamiltonian HP is absent in �65� since
e−itHP/��PBeitHP/�	�PB at times t�TP for the initial states
under study; see Sec. III.

The approximate evolution operator �64� can be simpli-
fied by using the exact identity

W̃�t,0� = e−it
SP/�T exp�−
i

�
�

0

t

d��X + �
S��B̃���� .

�66�

We forego the proof of this �generalized Baker-Campbell-
Haussdorff� identity, which uses the role of the momentum
as generator of displacements, e−it
SP/��X+ t
S��ei
tSP/�=X�.
Employing �66� in �65� and setting xs�t�=x− t
s and xs��t�
=x�− t
s� as before we get

�s,x��PS�t��s�,x��

= �s��S
0�t��s���xs�t��trB�T exp�−

i

�
�

0

t

d� xs�t − ���

�B̃�����PB�T exp�−
i

�
�

0

t

d� xs�
� �t − ���B̃�����†�

��xs�
� �t�� . �67�

The next step consists in evaluating the trace over the bath in

�67� by taking advantage of Wick’s theorem �12�. We discuss
the two initial states �4a� and �4b� separately.

B. Partial-equilibrium initial state

For the partial-equilibrium initial state �4a� one has �PB
=�P � �B

�eq� and the last matrix element in �67� is the product
of a pointer and a bath expectation values,

�s,x��PS�t��s�,x�� = �s��S
0�t��s��

��xs�t���P�xs�
� �t��Kt„xs�t�,xs�

� �t�;s,s�…

�68�

with

Kt�x,x�;s,s�� =��T exp�−
i

�
�

0

t

d� xs�
� �− ���B̃�����†

�T exp�−
i

�
�

0

t

d� xs�− ���B̃����� .

�69�

Here �¯�=ZB
−1trB�¯e−�HB� denotes the average with respect

to the free bath thermal state. The QCLT and the additivity
�3� of the bath coupling agent imply

Ft,0�k,l� =��T exp�−
i

�
�

0

t

d� k���B̃�����†

�T exp�−
i

�
�

0

t

d� l���B̃�����
= exp�−

1

�2�
0

t

d�1�
0

�1

d�2�k��1� − l��1��

��k��2�h��2,�1� − l��2�h��1,�2��� , �70�

where k��� and l��� are two arbitrary real-valued functions
and h��1 ,�2�=h��1−�2� is the two-point bath correlator; see
�10�. The identity �70� is equivalent to Wick’s theorem �12�.
For ordered times t� t1� t2� ¯ � tn�0 one actually gets
�12� from �70� by setting k=0 in �70� and taking the func-
tional derivative of both members with respect to
l�t1� , . . . , l�tn� at l=0. The proof of the converse statement is
deferred to Appendix D. By using the parity properties
Reh���=Reh�−�� and Imh���=−Imh�−�� of the real and
imaginary parts of h and employing �70� in �69� we get

Kt�x,x�;s,s�� = e−Dt�x,x�;s,s��−i�t�x,x�;s,s��, �71�

with a decoherence exponent Dt and a phase �t given by

�Dt + i�t��x,x�;s,s��

=
1

�2�
0

t

d�1�
0

�1

d�2�xs�
� �− �1�� − xs�− �1���

�
�xs�
� �− �2�� − xs�− �2���Reh��1 − �2�

− i�xs�
� �− �2�� + xs�− �2���Imh��1 − �2�� .
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Thus �68� reduces to the result �32� announced in Sec. V A.

C. Equilibrium apparatus initial state

Before deriving the expression corresponding to �68� in
the case �PB=�PB

�eq�, we determine the pertinent initial density
matrix of the pointer,

R0�x,x�� = �x�trB��PB
�eq���x�� . �72�

It is convenient to introduce the x-dependent bath average

�OB�x = Zx
−1trB�OBe−��HB+x�B��, Zx = trB�e−��HB+x�B�� ,

�73�

with x a real number �the pointer position, for us�. Note that

e−��HB+x�B� = e−�HBT exp�−
x�

�
�

0

��

dz B̃�− iz�� , �74�

with B̃�−iz�=ezHB/�Be−zHB/�. The normalization factor Zx can
be determined by applying Wick’s identity �70� with t
=−i��, k���=0, and l���=x�. This gives

Zx = Z0 exp� x2���0

�
� , �75�

with

�0 =
1

��
�

0

��

dz1�
0

z1

dz2h�− iz2� . �76�

By using the analyticity and KMS properties of the bath
correlator h���, one can show that 0��0����B2� /2 and
that �0=��0� coincides with the following integral evaluated
at t=0:

��t� = �
−


t

d� Imh��� . �77�

Details of this derivation are deferred to Appendix C.
Employing �75� in the approximation �17� for the appara-

tus initial state and inserting the high-temperature expression
of �x�e−�HP/2�y� �see Sec. II� yields

R0�x,x�� = ZPB
−1� dy Zy�x�e−�HP/2�y��y�e−�HP/2�x��

= Z0ZPB
−1� dy e��0y2�/�e−��V�x�+V�x��+2V�y��/4

�e−4�2��x − y�2+�x� − y�2�/�th
2

, �78�

with �th=2���� /M�1/2. The stability condition �40� does not
guarantee that V�x� compensates −�0x2� /� when x→ �
. If
this is not the case—i.e., if the effective potential Veff�x�
=V�x�−�0x2� /� has the shape shown in Fig. 2—the integrals
in �78� diverge. This reflects the fact that the pointer inter-
acting with the bath will tunnel to infinity after a certain
time. Since we restrict our attention to initial states describ-
ing a pointer initially localized inside the potential well of
Veff�x�, we shall disregard this convergence problem by add-
ing to V�x� a positive potential vanishing for �x � �Weff and

diverging exponentially for x→ �
. This regularization
trick amounts to replace �PB

�eq� in �72� by the local thermal
state of the apparatus discussed in Sec. V B. After this regu-
larization, the main contribution in the y integral in �78�
comes from small values of y, �y���th. In fact, the first
exponential in this integral is a slowly varying function on
the scale �th since ���0 /��−1/�2���21/��th��th, as follows
from �40� and �0����B2� /2. Due to the presence of the last
exponential in �78�, this first exponential can be approxi-
mated by e��0�x + x��2�/�22��� and taken out of the integral.
Similarly, the second exponential varies noticeably on the
scale �th��th and can be approximated by
e−��V�x�+V�x��+2V�x/2+x�/2��/4 and taken out of integral in �78�.
Thus �40� and �th��th entail

R0�x,x�� 	 ZP,eff
−1 e−��Veff�x�+Veff�x���/2e−2�2�x − x��2/�th

2
�79�

with Veff�x� given by �35� and ZP,eff=�dx e−�Veff�x�. We have
used in �79� the approximations �V�x /2+x� /2�	��V�x�
+V�x��� /2 and ��0�x+x��2� / �22���	��0�x2�+x�2�� / �2��.
This introduces an error which is negligible against �x
−x��2 /�th

2 for �x� , �x����th and �th��th. Hence the pointer is
in a Gibbs-type state with an effective potential Veff�x�, as
announced in �38�.

We can now proceed to evaluating �67�. Repeating the
steps yielding to �78� and using the notation �73�,

�s,x��PS�t��s�,x�� = ZPB
−1 �s��S

0�t��s��� dy Zy�xs�t��e−�HP/2�y�

��y�e−�HP/2�xs�
� �t����T exp�−

i

�
�

0

t

d�

�xs�
� �t − ���B̃�����†

T exp�−
i

�
�

0

t

d�

�xs�t − ���B̃�����
y

. �80�

We set �B̃�� ,y�= B̃���− �B̃����y and consider the �quantum�
characteristic functional

Ft,y�k,l� =��T exp�−
i

�
�

0

t

d� k����B̃��,y���†

�T exp�−
i

�
�

0

t

d� l����B̃��,y���
y

. �81�

It is shown in Appendix D that all the correlation functions

��B̃��1 ,y�¯�B̃��n ,y��B,y are independent of y—i.e.,

Ft,y�k,l� = Ft,0�k,l� �82�

for any y, t, k���, and l���. Wick’s theorem �12� also entails
�see Appendix D�

�B̃����x = −
2x�

�
���� , �83�

with ���� given by �77�. Formula �83� is reminiscent of lin-
ear response theory since ��t�=�0−��d� "���#�t−�� /2,
where #��� is the Heaviside function and "���
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=−�2 /��#���Imh��� the linear susceptibility. Let us point
out, however, that �83� is exact to all orders in x�. Collecting
the above results one finds

�s,x��PS�t��s�,x�� = �s��S
0�t��s��Rt„xs�t�,xs�

� �t�;s,s�…

�Kt„xs�t�,xs�
� �t�;s,s�… , �84�

where Kt�x ,x� ;s ,s�� is given by �69�

Rt�x,x�;s,s�� = C e−��Veff�x�+Veff�x���/2e−4�2�x2+x�2�/�th
2

�� d$ exp�− $2 + �8�2$
x + x�

�th

− 2i$�gt�x,x�;s,s��� , �85�

C is a time-independent normalization constant, and

gt�x,x�;s,s�� = �8�2�−�/2�th
�

�2�
0

t

d� �����xs�
� �− ��� − xs�− ���� .

�86�

Therefore, �71� and �84� account for �37�. Moreover, by us-
ing �4b�, �16�, �72�, and �84�, and K0=1 one easily estab-
lishes that R0�x ,x� ;s ,s��=R0�x ,x��. Taking t=0 in �85�,
evaluating the Gaussian integral, and comparing with �79�,
one gets C=�−1/2ZP,eff

−1 .

D. Justification of the approximation (38) for R0

We here want to derive the inequality

gt�x,x�;s,s��2 � �8�2�−�
�th

2���0

�
Dt�x,x�;s,s�� . �87�

Let us first point out that, putting together �87�, the stability
condition �40�, the separation of length scales �th��th, and
the bound 2��0 /���th

2 /�th
2�, it follows that gt�x ,x� ;s ,s��2

�Dt�x ,x� ;s ,s�� uniformly for all �x ,x�� and �s ,s��. This ex-
plains why the general expression �85� reduces to �38� for
short times t satisfying Dt�x ,x� ,s ,s���1; then,
�gt�x ,x� ;s ,s����1 and the phase factor inside the integral in
�85� can be neglected; by performing the resulting Gaussian
integral, one gets Rt�x ,x� ;s ,s��	R0�s ,s��. In the special
case �=1, the integral in �85� can be evaluated exactly for all

times t. This leads to Rt=R0e−�gt�
2−i�t�. Here and in what fol-

lows �t�, �t�, etc., denote real phases irrelevant for decoher-
ence. Replacing the latter value of Rt into �37�, the factor
e−�gt�

2
can be dropped by invoking gt

2�Dt again. We are thus
led to

e−Dt�x,x�;s,s��Rt�x,x�;s,s�� 	 e−Dt�x,x�;s,s��−i�t�R0�x,x�� �� = 1� ,

�88�

which is now valid for all times t�TS ,TP. The integral �85�
can be evaluated exactly for �=2 as well. By �87� and the
same arguments as above, for ��1 the stronger condition
gt�x ,x� ;s ,s��2� ��th /�th�2Dt�x ,x� ;s ,s�� holds. Using also
the restriction �x� , �x����eff
�th coming from the factor in

front of the integral in �85�, one obtains for all times t
�TS ,TP

e−Dt�x,x�;s,s��Rt�x,x�;s,s�� 	
e−Dt�x,x�;s,s��−i�t�R0�x,x��
�1 + 4gt

2�x,x�;s,s���1/4

�� = 2� . �89�

Notice that this equation is consistent with Rt	R0 at times t
satisfying Dt�1.

Proceeding toward the inequality �87� we rewrite �86� as

�8�2���4

�th
2� gt�x,x�;s,s��2 = ��

−



 d�

2�
�̂����

0

t

d�

�cos�����xs�
� �− ��� − xs�− �����2

,

�90�

where �̂���= �̂�−���0 is the Fourier transform of ��t�; see
�77�. By using �0=��0�=�d� �̂��� /2� and the Cauchy-
Schwarz inequality, one gets

�8�2���4

�th
2� gt�x,x�;s,s��2 � �0�

−



 d�

2�
�̂�����

0

t

d� cos����

��xs�
� �− ��� − xs�− �����2

. �91�

The integral over � on the right-hand side of �91� can be
bounded with the help of �C11� by

��

2
�

−



 d�

2�
�Reĥ�����Re�

0

t

d� e−i���xs�
� �− ���

− xs�− �����2

. �92�

Comparing �92� with �34�, we bound the last quantity by
�3�Dt�x ,x� ,s ,s�� and have thus established the inequality
�87�.

VIII. CONCLUSION

Let us summarize the main results of this paper. We have
investigated a model for a quantum measurement in which
the entanglement produced by the interaction between the
measured quantum object and the pointer is simultaneous
with decoherence of distinct pointer readouts; the apparatus
�pointer and bath� is taken initially in a metastable local ther-
mal equilibrium, not correlated with the object. Our model
has four parameters: the object-pointer coupling constant 
,
the thermal variance �B2� of the bath coupling agent, the
temperature T= �kB��−1 of the bath, and the exponent � in
the pointer-bath Hamiltonian �3�. One may construct out of
the first three parameters two relevant dimensionless con-
stants. The first one is the entanglement time �ent
=��
�s���−1 in units of the thermal time ��. Here �s is the
separation between neighboring eigenvalues of the measured
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observable and � the uncertainty in the initial pointer posi-
tion. That entanglement time �ent describes the efficiency of
the pointer-bath interaction �a coupling is efficient if �ent is
small�. More precisely, �ent is the time after which pointer
positions corresponding to distinct eigenvalues s begin to be
resolved. The second dimensionless combination is the cou-
pling energy �= �B2�1/2��� in units of kBT, which measures

the strength of the pointer-bath coupling. We have found
that, after a certain time tdec, the object-pointer state is close
to a statistical mixture of separable states �sps�s��s� � �P

s ,
with ps= �s��S�s�, �S the object initial state, and �P

s a distin-
guished pointer state depending on s. The decoherence time
tdec=���dec�TS ,TP is given by �we ignore here numerical
factors, given explicitly in �51�, �55�, and �57��

�dec � ��−1/��ent��, � =�
�

� + 1
if tdec � tB �interaction-dominated regime� ,

2�

2� + 1
if tdec � TB for an Ohmic bath �Markov� ,

1 if tdec � TB for a super-Ohmic bath �Markov� .
� �93�

For reasonably strong pointer-bath coupling and not too
strong object-pointer coupling, the decoherence time tdec
�needed for the transformation of linear superpositions into
statistical mixtures� can be so small that the whole measure-
ment is performed without producing a Schrödinger cat state
as an intermediate step. Two distinct regimes ought to be
identified in �93�: in the interaction-dominated regime, tdec is
shorter than the characteristic time tB after which the bath
correlation function h�t� differs significantly from its value
�B2� at t=0; in the opposite Markov regime, one must wait
more than the bath correlation time TB—i.e., the largest de-
cay time of h�t�—to obtain the required statistical mixture.
While tdec presents a universal behavior in the interaction-
dominated regime �it depends on the bath through the single
parameter ��, in the Markov regime it is determined by the
small-frequency behavior of Imh�t�, �Imĥ�����−i�̂�m.
Larger values of tdec are found for larger m’s, with a signifi-
cant change of behavior between m=1 �Ohmic bath� and m
�1 �super-Ohmic bath�; see �93�. In both time regimes, tdec
strongly depends on the nonlinearity exponent �, as illus-
trated in Figs. 3 and 4. Smaller decoherence times are ob-
tained for larger �’s save for the Markov regime if m�1 and
���� /TB or if m=1 and �2�ent��� /TB, where the reverse
statement holds. The linearization of the pointer-bath inter-
action with respect to the pointer position �dipole approxi-
mation� may then lead to an overestimation of tdec in the
interaction-dominated regime or for super-Ohmic baths in
the Markov regime. For a bath at very low temperature, �93�
still holds with �dec and � replaced by tdec / tB and �D
= �B2�1/2��tB /�, save for the Ohmic case where tdec / tent be-
comes logarithmically small in tdec / tB.

Several generalizations of our results may be of interest.
The first one concerns measurements of observables with
continuous or dense spectra. One must then allow for a finite
resolution �s in the measurement result. Unlike in the case of
discrete nondegenerate spectra studied in this work, the “fi-
nal” object-pointer state will not be a separable state because
coherences for pairs �s ,s�� of close eigenvalues ��s−s��
��s� are damped on a smaller time scale exceeding the time

duration of the measurement. A second generalization con-
cerns the bath, assumed in this paper to consist of indepen-
dent degrees of freedom. As stated in Sec. II, it can be shown
that the validity of the QCLT extends to baths of interacting
degrees of freedom if the correlator �B�B	� decays more rap-
idly than 1 / ��−	� �see �23� for a related version of the QCLT
in this context�. This implies that our results apply to a broad
class of baths including certain interacting spin chains.

It would be interesting to investigate concrete models for
the object and pointer involving projective measurements in
the “no-cat” regime �decoherence fast compared with en-
tanglement�, in connection with recent experiments in solid-
state physics. We should also mention that our results can be
of interest in a broader context. Actually, we have studied
quantitatively another scenario for decoherence. In this “in-
direct decoherence” scheme, the decay of the quantum co-
herences of the small system �object� does not result from a
direct coupling to the many degrees of freedom of a bath, but
rather from a strong coupling to few degrees of freedom of
the environment only �here, to the pointer�. These few de-
grees of freedom are in turn coupled to all others bath coor-
dinates and serve as an intermediate in the decoherence pro-
cess.
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APPENDIX A: APPARATUS AS A NONINTERACTING
INFINITE GAS

Let us consider a gas of N=N+1 noninteracting particles
with mass m	, momentum P	, and position X	 �	=0, . . . ,N�
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submitted to a slowly varying external potential V�x�. To
simplify the discussion we restrict ourselves to a one-
dimensional geometry. Let M =�	m	 and P=�	P	 be the
total mass and momentum and X=�	m	X	 /M the center-of-

mass position; R	0=N−1/2�X	−X0� and P	0 are the relative
positions and their conjugate momenta. Expanding V�X	� as
V�X�+ �X	−X�V��X� and using X	−X=�N�R	0
−��m�R�0 /M�, the Hamiltonian of the gas reads

Happ =
P2

2M
+ NV�X�

HP

+ �N�
�=1

N �1 −
Nm�

M
�R�0V��X�

HPB

+ �
�,�=1

N
���

2Nm�

P�0P�0

HB

,

�A1�

where � is the N�N matrix with inverse �−1= ���	

−m	 /M��,	=1
N . The pointer P is the center-of-mass degree of

freedom. Its Hamiltonian HP is given by the two first terms
in �A1�. The bath B is constituted by the N relative degrees
of freedom. Its Hamiltonian HB is the last term in �A1�. The
third term in �A1� describing the coupling between P and B
has the form �3� if V�x�=N−1��+1�−1x�+1 and B is given by
�3� with B	= �1−Nm	 /M�R	0. If the measured system is
strongly coupled to the total momentum P of the gas, one
obtains a tripartite model of the kind discussed in Sec. II
�although HB does not satisfies all our hypothesis�.

APPENDIX B: APPROXIMATION FOR THE APPARATUS
EQUILIBRIUM STATE

In this appendix we justify the approximation �17� for the
initial Gibbs state �PB

�eq� of the apparatus. Moreover, we show
that �P

0 �t�=e−itHP/��PeitHP/�	�P when t�TP for the quasi-
classical pointer states �P considered in Sec. II. A similar
result holds for �PB

�eq�.
We recall that TP is defined by TP= �M /V��0��1/2. Taking

V�x�	V��0�x2 /2 and invoking �6�, �7�, and �9� one easily

finds that trP�X̃�t�2�P�−�2 and trP�P̃�t�2�P�−�p2 are equal
to lowest order in time to �−�2TP

−2+�p2M−2�t2
�2TP
−2t2 and

�−�p2TP
−2+V��0�2�2�t2
�p2TP

−2t2, respectively. Hence TP
can be identified with the time scale for significant evolution

of X̃�t� and P̃�t� when the pointer is in the quasiclassical state
�7� �Sec. III A�. One easily convinces oneself that �P
=�P�X , P� is an operator-valued function of the position and
momentum operators X and P. Letting �P evolve under the
Hamiltonian HP up to time t amounts to substituting X by

X̃�t� and P by P̃�t�; see �9�. This shows that �P
0 �t�

=�(X̃�t� , P̃�t�)	�P as X̃�t�	X and P̃�t�	 P for t�TP.
In order to approximate �PB

�eq� we shall rely on the Baker-
Campbell-Haussdorff formula

eAeC = eA+C+�A,C�/2+†A,�A,C�‡/12+†C,�C,A�‡/12+¯ �B1�

wherein A and C are any two operators. After a few trans-
formations, �B1� becomes

eAe2CeA = e2A+2Ce−†A,�A,C�‡/3+2†C,�C,A�‡/3+¯. �B2�

We write �X̃����0� and �X̃����0�, the two first time derivatives
at t=0 of the free-evolved observable X� �see �9�� and simi-
larly for B. Let us take A=−�HP /2 and C=−��HB
+HPB� /2. Then

†A,�A,C�‡ =
�2�3

8
�X̃����0�B , �B3�

†C,�C,A�‡ = −
�2�3

8
��X̃����0�B̃��0� −

�2

M
X2�−2B2� .

�B4�

Each time derivative of X̃� �of B̃� gives a extra factor of TP
−1

�tB
−1�. Therefore, the right-hand side of �B3� is smaller than

�HPB=�X�B by a factor of the order of ��� /TP�2�1. By
virtue of �th= ��V��0��−1/2 and TP= �M /V��0��1/2, the right-
hand side of �B4� is of the order of ����2�TP

−1tB
−1

+TP
−2�th��HPB with �th given by �40�. Assuming that �th is at

most of order 1 �this is the case in particular if �40� holds
true� this indicates that the double commutators �B3� and
�B4� are much smaller than C and can be neglected in �B2�
when ���TP and ����2�TPtB. Neglecting these commuta-
tors, �B2� reduces to �17� for the aforementioned choices of
A and C. Notice that our approximation of �PB

�eq� is self-adjoint
and is better than ZPB

−1 e−�HPe−��HB+HPB� �the error is of
one order smaller in �� /TP�. The approximation
e−itHP/��PB

�eq�eitHP/�	�PB
�eq� for t�TP is obtained similarly, by

using �B1� with A=−itHP /� and C=−��HP+HB+HPB�. One
can check explicitly by means of similar arguments as in
Sec. VII C that the relative errors are small. Indeed, one can
show that if one multiplies �B3� or �B4� by the approximate
equilibrium state ZPB

−1 e−�HP/2e−��HB+HPB�e−�HP/2, traces out the
bath variables, and takes the matrix elements between �x� and
�x��, the matrix elements so obtained are much smaller than
�79� if �40� is satisfied and ���TP.
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APPENDIX C: PROPERTIES OF THE BATH
CORRELATION FUNCTION

In this appendix, we establish some general properties of
the bath two-point autocorrelation function

h�t1,t2� = �B̃�t1�B̃�t2�� = h�t1 − t2� �C1�

and its Fourier transform

ĥ��� = �
−





dt h�t�ei�t. �C2�

Most �but perhaps not all� of these properties are well
known. The average �¯� in �C1� is taken with respect to the

Gibbs state �B
�eq�, B̃�t� is the bath coupling agent in the inter-

action picture, and �B�=0; see �9�–�11�. The fact that h�t1 , t2�
depends only on the time difference t1− t2 is a consequence
of the stationarity of �B

�eq� �50�.
Real and imaginary parts. The real and imaginary parts of

h�t� are given by Reh�t�= �B̃�t�B+BB̃�t�� /2 and Imh�t�
=−i��B̃�t� ,B�� /2. We write �Reĥ���� and �Imĥ���� their
Fourier transforms. Then

Reh�t� = Reh�− t�, Imh�t� = − Imh�− t�

�Reĥ���� = �Reĥ��− ��, �Imĥ���� = − �Imĥ��− �� .

�C3�

The imaginary part Imh�t� is linked to the linear susceptibil-
ity by "�t�=−2#�t�Imh�t� /�, where #�t� denotes the Heavi-
side function �50�. Such a susceptibility characterizes the re-
sponse of the bath when its Hamiltonian is perturbed by the
time-dependent potential VB�t�=−x��t�B, where x��t� is a
real-valued function of time. More precisely, if B�t� is the
observable B in the Heisenberg picture (i.e., dB�t� /dt
= �i /���HB+VB�t� ,B�t��), then �B�t��=�d� "�t�x��t−�� up to
terms of order x2�.

The function h�t� is of positive type. This means that for
any integer n�1, complex numbers c1 , . . . ,cn, and times
t1 , . . . , tn, one has

�
i,j=1

n

ci
�cjh�ti − tj� � 0. �C4�

This property can be easily checked on �C1�. It is equivalent

to ĥ����0 for any real �. The real part of h�t� is also of

positive type, as 2�Reĥ����= ĥ���+ ĥ�−���0 for any real �.
By using the Cauchy-Schwarz inequality for the Hermitian
sesquilinear form �A ,B�� �A†B�, one shows that �h�t��
�h�0�= �B2� for any time t.

KMS property. This property is specific to our choice of
the Gibbs state for the bath average. It says that h�t� can be
extended to an analytic function in the strip 
z�C ;−���z
�0�, continuous on 
z�C ;−���z�0�, and such that �47�

h�t� = h�− t − i���, t � R . �C5�

Deforming the path of integration in �C2�, one can show that

�C5� is equivalent to ĥ���=e���ĥ�−��. In view of �C3�, this
means that

�Reĥ���� =
i�Imĥ����

tanh����/2�
. �C6�

By replacing in this equation �Reĥ���� and �Imĥ���� by their
Fourier integrals, expanding and identifying each power of
�, and using the parity properties �C3�, one finds relations
between the integrals �dt tah�t� for even and odd a’s. For
instance, the identification of the zeroth power in � in �C6�
yields

�
−





dt th�t� = − i
��

2
�

−





dt h�t� . �C7�

We now assume that i�Imĥ����� �̂�m as �→0 with m a
positive odd integer and �̂�0 �such a choice is motivated in

Sec. VI C�. By �C6�, this entails �Reĥ�����2�̂�m−1����−1.
Let a be a non-negative integer, a�m−2. Then

�
0




dt taReh�t� = lim
%→0+

�
−



 d�

2�
�Reĥ�����

0




dt tae−i��−i%�t

= − �− i�a−1a ! �
−



 d�

2�

�Reĥ����
�1+a . �C8�

Note that the frequency integral converges for a�m−2, van-
ishes for even a’s, a�m−2, and diverges for a�m−1. For
a=m=1, a similar formula holds,

�
0




dt tReh�t� = − �
−



 d�

2�

�Reĥ���� − �Reĥ��0�
�2 , �C9�

where the diverging frequency integral has been regularized

by subtracting �Reĥ��0� to �Reĥ����. This is equivalent to

subtracting �Reĥ��0���t� from Reh�t� in �C8�, and this does
affect the left-hand side of this equation. The integral on the

right-hand side of �C9� converges since �Reĥ����− �Reĥ��0�
behaves like �2 as �→0.

Integration in the complex plane. Let us denote by ��t�
=��−t� the primitive of Imh�t� vanishing at t→ �
,

��t� = �
−


t

d� Imh��� = − �
t




d� Imh���

= �
0


 d�

�
�̂���cos��t� . �C10�

The KMS property �C6� and the bound tanh�u��u for u
�0 imply

0 � �̂��� =
i�Imĥ����

�
�

��

2
�Reĥ���� . �C11�
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Employing �C11� in �C10� we obtain the following inequali-
ties for �0=��0�:

0 � �0 �
��

2
h�0� . �C12�

We can exploit the KMS property further to obtain the two
identities

�
0

��

dz h�− iz − t� = 2��t� , �C13�

�
0

��

dz1�
0

z1

dz2h�− iz2� = �
0

��

dz h�− iz�z = ���0.

�C14�

To show �C13�, we deform the contour of integration in the
complex plane to get

�
0

−i��

dz h�z − t� = �
0




d��h�� − t� − h�� − t − i����

�C15�

and then use �C5�, �C3�, and �C10�. The second equality in
�C14� is established in a similar way, relying also on �C7�.
Finally, we note that the left-hand side of �C14� reads

���
0

��

dz2h�− iz2� − �
0

��

dz2h�− iz2�z2. �C16�

Therefore, the first equality in �C14� is a consequence of the
second one and of �C13�.

APPENDIX D: WICK’s THEOREM

We show in this appendix that Wick’s theorem �12� im-
plies formulas �70� and �82�—i.e.,

Ft,y�k,l� = �Ũt,0�k�†Ũt,0�l��yexp�−
i

�
�

0

t

d��k��� − l����

��B̃����y� = exp�−
1

�2�
0

t

d�1�
0

�1

d�2�k��1�

− l��1���k��2�h��2,�1� − l��2�h��1,�2��� , �D1�

where t and y are real numbers �time and position�, k and l
are �smooth� real functions, �¯�y is the bath average �83�,
h��1 ,�2� is the bath function �C1�, and

Ũt,0�k� = T exp�−
i

�
�

0

t

d� k���B̃���� . �D2�

Let us first recall that Wick’s theorem �12� can be rephrased
as the following recursive relation for the bath n-point func-
tions �10�, n�2:

hn�t1, . . . ,tn� = �
1�j�i

h�tj,ti�hn−2�t1, . . . ,tn�

+ �
i�j�n

h�ti,tj�hn−2�t1, . . . ,tn� , �D3�

wherein i is a fixed integer between 1 and n and the time
arguments of the �n−2�-point functions are the times appear-
ing in the n-point function on the left-hand side except for ti
and tj. Wick’s theorem �D3� holds for any value of N if the
bath consists of N harmonic oscillators linearly coupled to
the pointer �Sec. VI D�. For the more general baths consid-
ered in this work, its validity relies on the limit N�1 and is
a consequence of the additivity of the bath coupling agent B
and Hamiltonian HB in single-degree-of-freedom contribu-
tions and of the QCLT of Ref. �22�. This theorem provides a
mapping between the correlation functions hn�t1 , . . . , tn� and
the correlation functions of a certain bath of harmonic oscil-
lators in thermal equilibrium. In such a mapping, B	 is iden-
tified with the position of the 	th oscillator �22�.

We now proceed to proving �D1�. Let us first consider the
case y=0. To shorten the notation, we write dk��� in place of
k���d�. The two members of �D1� being equal at time t=0, it
is enough to prove that they satisfy the same first-order time
differential equation. Hence, we need to show that Ft,0�k , l�
= �Ũt,0�k�†Ũt,0�l�� satisfies

�Ft,0�k,l�
�t

= −
1

�2 �k�t� − l�t���
0

t

�dk���h��,t�

− dl���h�t,���Ft,0�k,l� . �D4�

But i� � Ũt,0�k� /�t=k�t�B̃�t�Ũt,0�k�; hence, �D4� is equivalent
to

�Ũt,0�k�†B̃�t�Ũt,0�l��0 =
i

�
�

0

t

�dk���h��,t� − dl���h�t,���

��Ũt,0�k�†Ũt,0�l��0. �D5�

To show �D5�, let us expand the two time-ordered exponen-

tials on left-hand side of �D5�. Invoking also �D3�, �B̃�t��0
=0, and setting h0=1, this left-hand side reads

DOMINIQUE SPEHNER AND FRITZ HAAKE PHYSICAL REVIEW A 77, 052114 �2008�

052114-22



�
n+m�1

N
in�− i�m

�n+m �
0��n�¯��1�t

dk��1� ¯ dk��n��
0�tm�¯�t1�t

dl�t1� ¯ dl�tm�

���1 − �n,0��
p=1

n

h��p,t�hn+m−1��n, . . . ,�p+1,�p−1, . . . ,�1,t1, . . . ,tm�

+ �1 − �m,0��
q=1

m

h�t,tq�hn+m−1��n, . . . ,�1,t1, . . . ,�q−1,�q+1, . . . ,tm�� . �D6�

One may perform variable substitutions in the integrals in
such a way that the time arguments of the first
�n+m−1�-point function become ��n−1 , . . . ,�1 , t1 , . . . tm� and
those of the second become ��n , . . . ,�1 , t1 , . . . , tm−1�. Doing
so and resuming the series, we find that �D6� reduces to
�D5�.

Turning to the case y�0, we invoke �74� to write

�Ũt,0�k�†Ũt,0�l��y =
Z0

Zy
�Ũ−i��,0�y��Ũt,0�k�†Ũt,0�l��0,

�D7�

wherein Ũ−i��,0�y�� is obtained by choosing the complex
time −i�� and the constant function y� in �D2�. By expand-
ing the three time-ordered exponentials in the right-hand side
of �D7� and using Wick’s theorem �D3�, one obtains in a
similar way as above

�

�t
�Ũt,0�k�†Ũt,0�l��y = −

1

�2 �k�t� − l�t����
0

t

�dk���h��,t�

− dl���h�t,��� + iy��
0

��

dz h�− iz,t��
��Ũt,0�k�†Ũt,0�l��y . �D8�

Therefore, the functional

Gt,y�k,l� = �Ũt,0�k�†Ũt,0�l��yexp� iy�

�2 �
0

t

d��
0

��

dz�k���

− l����h�− iz,��� �D9�

satisfies the same time differential equation �D4� as Ft,0�k , l�.
Moreover, it is equal to 1 for t=0. Thus Gt,y�k , l�=Ft,0�k , l�
for any t, y, k, and l. Setting k=0 in this equation and dif-
ferentiating with respect to l��� at l=0 yields

−
iy�

�2 �
0

��

dz h�− iz,�� −
i

�
�B̃����y = −

i

�
�B̃����0 = 0.

�D10�

This identity and �C13� imply �83�. We may now replace
�D10� into �D9� to get �D1�. Let us stress that, although �D1�
and �D10� coincide with the lowest-order results of perturba-
tive expansions in k and l, these formulas are in fact valid to
all orders in k and l in the limit N�1 as a consequence of the
QCLT.
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