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Generalized quantum measurements �positive operator valued measures or probability operator measures�
are important for optimally extracting information for quantum communication and computation. The standard
realization via the Neumark extension requires extensive resources in the form of operations in an extended
Hilbert space. For an arbitrary measurement, we show how to construct a binary search tree with a depth
logarithmic in the number of possible outcomes. This could be implemented experimentally by coupling the
measured quantum system to a probe qubit which is measured, and then iterating.
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I. INTRODUCTION

A crucial element of quantum information processing
�QIP� and communication is measurement of a quantum sys-
tem to access its information content, hence determining op-
timal measurements is important. As QIP steps out from the
pages of theory and into the laboratory, one has to find
implementations given the usual limited resources of the real
world. The most general measurement one can perform on a
quantum system is given by a positive operator valued mea-
sure �POVM� �1� which can be considered as a projective
measurement on an extended Hilbert space of which the
original state resides on a �proper� subspace. Its realization
via the Neumark extension �2,3� requires, broadly speaking,
that the extended Hilbert space should have as many dimen-
sions as there are possible outcomes of the POVM. This has
been described for atoms or ions �4,5� and for linear optics
�6�, and POVMs have been realized on optically encoded
quantum information �7–10�.

For many physical systems, however, it is difficult or im-
possible to find enough extra dimensions, let alone perform
operations on the extended system; hence, a more efficient
method is desirable. Recently, a method was discovered
which allows an arbitrary POVM to be performed by adding
only a single extra dimension to a system, essentially check-
ing the measurement outcomes one by one �11�. However,
when the number of possible measurement outcomes be-
comes large, more time efficient measurement strategies,
also carrying a minimal dimensional overhead, would be
useful. It is clear that a sequence of partial conditional mea-
surements implements a final effective POVM with many
elements �3,12�. Here we show, given any POVM, how to
construct a suitable binary search tree of two-outcome
POVMs by coupling the original system with a single qubit
�13�. This way, a measurement with N=2t outcomes can be
implemented in t steps, resulting in a significant speedup.
Current experimental realizations, e.g., that in �9�, could eas-
ily be adapted to this method.

II. GENERALIZED MEASUREMENT

A quantum measurement is often considered to be a pro-
jection in a complete basis of the d-dimensional Hilbert

space. However, many experimental measurements are not
well-described by this. More generally, we only require of a
measurement that the outcome probabilities are positive and
sum to one and satisfy convex linearity over mixtures of
states. This leads to the framework of generalized quantum
measurements, where a measurement is represented by a set
of positive operators �Mj� j=1

N , ���Mj��	�0∀ ��	, which sum
to unity, 
 jMj = I. Each outcome j is associated with an op-
erator Mj and occurs with probability pj =Tr�Mj��, where �
is the measured state. Hence a generalized measurement is
usually called a positive operator valued measure �POVM�
or probability operator measure �POM�.

The Neumark extension provides a way of performing
any POVM via projective measurements, albeit in an ex-
tended space. Without loss of generality, assume that each
measurement operator Mj is proportional to a one-
dimensional projector Mj = �� j	�� j� where �� j	 is not necces-
sarily normalized �14�. If N is the number of outcomes and d
the dimension of the Hilbert space, then N�d will hold. If
we form the d�N rectangular array �M� jk= �k �� j	, where
��k	� is the computational basis, then the completeness rela-
tion implies that the columns of �M� are orthonormal
N-dimensional vectors. Hence �M� can be completed to an
N-dimensional unitary matrix UM whose jth row represents a
state �� j

ext	 in an N-dimensional extended Hilbert space. The
normalized projector �� j

ext	�� j
ext� corresponds to outcome j

for the original system. This procedure corresponds to apply-
ing UM

† to the extended Hilbert space in which the original
system is embedded, and then making a projective measure-
ment in the computational basis. If N is large, it may be
infeasible to manipulate the required extended quantum sys-
tem all at once, and we will therefore look at a way to reduce
the number of ancillary dimensions by making sequential
measurements.

III. SEQUENTIAL MEASUREMENT

The �Mj� are sufficient to determine the measurement
probabilities, but the postmeasurement state is not uniquely
defined. However, for any realization we can find Kraus op-
erators �mj�, where Mj =mj

†mj ∀ j, which tell us how the
quantum state is affected �3,15�. If outcome j is obtained,
then the quantum state � transforms as*daniel.oi@strath.ac.uk
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� → � j =
mj�mj

†

Tr�mj�mj
†�

. �1a�

A subsequent measurement, in general depending on the out-
come j, acts on this transformed state.

A series of measurements can be viewed as an effective
single generalized measurement, the sequence of outcomes
determining the cumulative measurement operator. If the se-
quence j1 , j2 , . . . , jt of outcomes has �Mj1

1 ,Mj2
2 , . . . ,Mjt

t � and
�mjk

k � as corresponding measurement and Kraus operators,
then the final effective measurement operator and Kraus op-
erator are given by

Mj1,j2,. . .,jt
= mj1,j2,. . .,jt

† mj1,j2,. . .,jt
, �1b�

mj1,j2,. . .,jt
= mjt

t mjt−1

t−1
¯ mj1

1 . �1c�

Here we assume that the measurement operators and the
Kraus operators are d�d operators, i.e., the measurements
map the system to a Hilbert space of the same dimension
�16�. Hence a sequence of measurements requires nonde-
structive measurement, e.g., indirect measurement of a sys-
tem by measuring a probe after it has interacted with the
system.

A series of binary outcome measurements is shown in Fig.
1. The simplest probe is a two-level system �qubit�, giving a
binary measurement, a d-level probe allowing a d-outcome
measurement. A unitary operator couples the probe with the
system, e.g., via a coupling Hamiltonian over a set period.
This in general entangles the state of the probe with the state
of the system. Measuring the probe performs an indirect
measurement of the system. From the Stinespring dilation
�17�, this effectively implements a completely positive map
with Kraus operators given by bj = �j�U�0	, where ��j	� is the
computational basis of the probe. Outcome j corresponds to
the measurement operator Bj =bj

†bj and the conditional post-
measurement state is � j =bj�bj

† /Tr�bj�bj
†�. By choosing suit-

able unitaries, any binary outcome POVM can be imple-
mented at each stage.

Conditioned on the result of the first measurement, a sec-
ond measurement is performed, a third, and so on �Fig. 1�.
This builds up a binary measurement tree with each pair of
branches representing a different binary POVM, depending
on the previous results �18�. Each node represents the effec-
tive measurement operator �given by Eq. �1c�� obtained at
that point. Hence, after t measurements, the effective POVM
may have as many as N=dt elements at the lowest level for a
d-level probe.

IV. BINARY MEASUREMENT TREES

It is easy to build up POVMs with many elements from a
binary measurement tree. However, given an arbitrary
POVM with elements Mj, constructing such a measurement
tree which implements it is not so obvious. Here we show
how it may be done.

It is instructive to look at the simplest nontrivial binary
POVM tree with t=2 �Fig. 2�. Let Bi and Bij denote the
binary measurement operators performed at the first and sec-
ond stages, and Mi ,Mij denote the cumulative measurement
operators. The following should hold, where j ,k=0,1:

Mj = Bj ,

I = B0 + B1 = Bj0 + Bj1,

Mj = Mj0 + Mj1,

mjk = bjkmj .

Let us take b0=m0, b1=m1 and use the ansatz bij =mijb̃i
−1

where the Moore-Penrose pseudoinverse Ã−1 of an operator
A is uniquely defined by �19�

AÃ−1A = A ,

Ã−1AÃ−1 = Ã−1,

AÃ−1 = �AÃ−1�†,

Ã−1A = �Ã−1A�†.

The bij so constructed are POVM operators which solve the
task.

First, since Mi is a positive operator, Mi=
k=1
r �ik�eik	�eik�,

with positive eigenvalues �ik and corresponding eigenvectors
�eik	; r is the rank of Mi. The Mij are positive operators and

 jMij =Mi, so the null space of Mi is contained in the null
spaces of Mij; hence, Mij =
k,l=1

r �ij,kl�eik	�eil� for some �ij,kl.
Similarly, mij =
kl=1

r �ij,kl�eik	�eil� for some �ij,kl.

We can expand bi=mi=
k
��ikVi�eik	�eik� for some unitary

Vi, similarly b̃i
−1=
k1 /��ik�eik	�eik�Vi

†. Hence we can see that

U Ui
i

Uij
j

Uij...t-1
k t

ρ
…|0〉 |0〉|0〉|0〉

FIG. 1. Sequential POVM. A probe system in the state �0	 inter-
acts with the measured system � via unitaries. The probe is mea-
sured in the computational basis. Subsequent measurements, deter-
mined by Ux, are conditional upon the preceding results i , j ,k , . . ..
The probe is reset before each measurement.

M00 M10M01 M11

B0 B1

B00 B01 B10 B11
M0 M1

FIG. 2. Four-outcome POVM. The effective measurement op-
erators �Mij� are given by the B measurements at each step. We
want to determine what binary measurements B are required to
implement �Mij�.
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�mijb̃i
−1�bi = 


kl=1

r

�ij,kl�eik	�eil�

s=1

r
1

��is

�eis	�eis�Vi
†

�

t=1

r

��itVi�eit	�eit� = mij .

In general, completeness of �Bij� j requires us to modify our
original ansatz by adding an extra operator,

bij = mijb̃i
−1 + ajgi, �2�

where gi=
 j=r+1
d �eij	�eij�Vi

† is an isometry on the null space of
bi

† and the coefficients satisfy 
 j�aj�2=1. We have defined gi
so that gibi=0. With this slight modification, it is easy to
show that 
kBjk= I.

For a general POVM �Mk� with K elements, we first pad
the set with null operators until it contains N elements for
N=2t , t= �log2 K� �Fig. 3�. In a convenient change of nota-
tion, the cumulative POVM at the jth level consists of 2 j

operators Mx where x is a sequence of 2t−j numbers indicat-

ing which of the possible outcomes Mx=
i=1
2t−j

Mxi
sit in the

corresponding branches below. A binary POVM �Bxa
,Bxb

�
splits each node into two possible branches, each containing
half of the remaining outcomes. We now determine the bi-
nary POVMs B which take us from a higher to lower branch.

At the first level, B12,. . .,N/2=
i=1
N/2Mi=M12,. . .,N/2 and

BN/2,. . .,N=
i=n/2+1
N Mi=MN/2+1,. . .,N. At the second level, from

the previous section we have

b12,. . .,N/4 = m12,. . .,N/4b̃12,. . .,N/2
−1 + g12,. . .,N/2,

bN/4+1,. . .,N/2 = mN/4+1,. . .,N/2b̃12,. . .,N/2
−1 + g12,. . .,N/2,

bN/2+1,. . .,3N/4 = mN/2+1,. . .,3N/4b̃N/2+1,. . .,N
−1 + gN/2+1,. . .,N,

b3N/4+1,. . .,N = m3N/4+1,. . .,Nb̃N/2+1,. . .,N
−1 + gN/2+1,. . .,N,

where we have absorbed the normalization of the gx opera-
tors. At subsequent levels, we can express the required bi-
nary POVMs as

bxa
= mxa

m̃xaxb

−1 + gxaxb
, �3a�

bxb
= mxb

m̃xaxb

−1 + gxaxb
, �3b�

where xaxb is the concatenation of the strings xa and xb. At
the last level b1=m1m̃12

−1+g12 and b2=m2m̃12
−1+g12. Note that

the unitary freedom mx→Vxmx leaves the observed prob-
abilities invariant but simply rotates the postselected states
after each measurement.

For an N element POVM, we need only a probe qubit and
�log2 N� rounds of binary measurements. Let us determine the
number of operations required to implement this measure-
ment compared to other methods. For a measurement with N
outcomes on a d-dimensional quantum system, the standard
Neumark extension requires an N�N unitary transform.
This can be realized with N�N−1� /2 operations between
pairs of basis states �20�, followed by a projective measure-
ment in the N-dimensional space. The realization using just a
single extra degree of freedom �11� requires a �d+1�
� �d+1� unitary transform to be implemented a maximum of
N−d times, giving in total a maximum of �N−d��d+1�d /2
operations �21�. The binary search requires a 2d�2d trans-
form to be implemented �log2 N� times, that is, �log2 N�d�2d
−1� pairwise interactions, a significant speedup if N is large.

V. EXAMPLE: TETRAD MEASUREMENT

As an example of the method, consider the symmetric
informationally complete POVM of a single qubit, the so-
called tetrad measurement, with measurement operators �22�

��0	 =
1
�2

�0	 ,

��1	 =
1
�6

��0	 + �2e2	i/3�1	� ,

��2	 =
1
�6

��0	 + �2e4	i/3�1	� ,

��3	 =
1
�6

��0	 + �2�1	� .

Although the tetrad POVM can be performed in one projec-
tive step with the addition of just one extra qubit, we use it to
demonstrate the binary tree approach.

At the first stage, we are free to choose which two final
measurement operators to group together, for instance,

M03 = B03 = M0 + M3 =
1

3� 1
1
�2

1
�2

2 
 ,

B12...N/2 BN/2+1...N

M1 M2 MNM3 M4 MN-1
M12 M34

M1234

B1 B2 B B4
B34B12

M12...N/2

M12...N/4

B12...N/4 BN/4+1...N/2
Mk/4+1...N/2

3

FIG. 3. �Color online� Binary POVM tree. An arbitrary POVM
is given by operators Mj =mj

†mj. A sequence of binary outcomes
with measurement operators B
 ,B� , . . . ,B� leads to the measure-
ment Mj =mj

†mj where mj =b�¯b�b
. Half of the possible results in
the branches below are eliminated at each step.
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M12 = B12 = M1 + M2 =
1

3� 2
− 1
�2

− 1
�2

1 
 .

We are also free to choose the Kraus operators mx=�Mx,
e.g.,

m03 = ��+�e+	�e+� + ��−�e−	�e−� ,

m12 = ��−�e+	�e+� + ��+�e−	�e−� ,

where the eigenvalues and eigenvectors are

�
 = �1 
 �3�/2,

�e
	 = �
�3 
 �3�0	 + �3 � �3�1	�/�6.

Although M03 and M12 share eigenbases, we need a full
4�4 Neumark extension binary POVM so that the postmea-
surement state is ready for the next stage. We couple the
system via U to an auxiliary probe qubit prepared in the state
�0	a. Then, projecting the probe onto states �0	a and �1	a cor-
responds to operations a�0�U�0	a=m03 and a�1�U�0	a=m12 on
the system. A suitable coupling U is constructed by making a
4�4 Neumark extension of the two-column matrix with its
first two rows given by m03, and the last two rows by m12. In
the basis ��e
	�j	a�, one possible U is

U =�
��+ 0 ��− 0

0 ��− 0 ��+

��− 0 − ��+ 0

0 ��+ 0 − ��−


 . �5�

In this example, the positive operators mjk are invertible so
the bj for the next step are easily obtained as

b0 = �M0
�M03

−1,

b1 = �M1
�M12

−1,

b2 = �M2
�M12

−1,

b3 = �M3
�M03

−1,

which give

B0 = b0
†b0 =

1

2�1 +�2

3

− 1
�3

− 1
�3

1 +�2

3

 ,

B1 = b1
†b1 =

1

2
�1 − i

i 1
� ,

B2 = b2
†b2 =

1

2
� 1 i

− i 1
� ,

B3 = b3
†b3 =

1

2�1 −�2

3

1
�3

1
�3

1 −�2

3

 .

The bj are rank one operators but are not Hermitian. We can
visualize the sequence of measurements on the Bloch ball
�Fig. 4�.

VI. CONCLUSION

In conclusion, we provide a constructive proof of the uni-
versality of sequential two-outcome POVMs. We show how
to construct binary measurement trees to implement any gen-
eralized measurement through a sequence of indirect binary
POVMs requiring only an extra auxiliary qubit. This avoids
having to manipulate extended Hilbert spaces �larger than
twice the dimension of the measured system� and reduces the
number of required operations when the number of outcomes
becomes large. The number of steps is logarithmic in the
number of measurement outcomes.

For some experimental implementations, e.g., linear op-
tics, POVMs on a single qubit can be carried out using a path
degree of freedom as the probe qubit, and partially polarizing
beam splitters and wave plates as binary POVMs. This has
the added advantage over the method of �11� that interfero-
metric alignment is not required between separate paths �e.g.,
as in the implementation of the tetrad measurement in �9��.
No feed-forward is necessary though the trade-off is the re-
quirement for extra detectors. Also for the trapped ions, the
full set of universal unitary gates between qubits is available;
hence, there is no restriction in principle on the size of the
measured system and the type of POVM. The binary tree
approach reduces the number of extra levels per ion or the
number of auxiliary ions. This is an issue for Paul traps as
the number of ions which can be trapped in a single trapping
zone is limited.

A potential candidate for the binary POVM is cavity QED
where the system to be measured is the cavity field and the
probe qubits Rydberg atoms passing through the cavity �23�.

M0

M3

M1

M2

M12

M03

a) b)

B2

B1

B3

B0 M0

M3

M1

M2

FIG. 4. �Color online� Tetrad POVM. �a� The first binary mea-
surement is a partial filtering with operators �M03,M12�. �b� The
second �projective� measurements depend on the outcome of the
first measurement. If M03 �M12� was obtained, then �B0 ,B3�
��B1 ,B2�� is measured. The second binary measurements are pro-
jective measurements in the plane perpedicular to the directions of
the first measurement and the Bj lie in the direction of the projection
of the Mj upon this plane.
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This allows in principle the measurement of an infinite di-
mensional system �a single mode of the cavity� by a se-
quence of atomic probes. For practical purposes, the system
may be restricted to a finite dimensional Fock subspace. The
key issues are the availability of the necessary interactions
and the ability to apply real-time feed-forward control of
these interactions. By tuning the atomic transition, a resonant
or dispersive interaction, or a combination of the two, can be
induced between the probe and system. In the strong inter-
action regime, nonlinear coupling for different cavity photon
number states may be possible through polaritonic states
�24�. It is an interesting question what class of measurement
operators can be implemented using a restricted set of inter-
actions and control.

We should note that this method is equally amenable to
the implementation of any completely positive �CP� map de-
fined by the Kraus operators corresponding to the measure-

ment outcomes. The measurement outcomes represent an un-
raveling of the evolution, and if we discard these results, on
average we implement the desired CP map. To implement an
arbitrary CP map, the minimum number of steps is the loga-
rithm of the rank of the Choi matrix �25�.

We could also use the binary tree construction to analyze
information flow between system and environment �the role
of feed-forward� in the context of open quantum systems and
non-Markovian evolution.
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