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A weak measurement on a system is made by coupling a pointer weakly to the system and then measuring
the position of the pointer. If the initial wave function for the pointer is real, the mean displacement of the
pointer is proportional to the so-called weak value of the observable being measured. This gives an intuitively
direct way of understanding weak measurement. However, if the initial pointer wave function takes complex
values, the relationship between pointer displacement and weak value is not quite so simple, as pointed out
recently by Jozsa �R. Jozsa, Phys. Rev. A 76, 044103 �2007��. This is even more striking in the case of
sequential weak measurements �G. Mitchison, R. Jozsa, and S. Popescu, Phys. Rev. A 76, 062105 �2007��.
These are carried out by coupling several pointers at different stages of the evolution of the system, and the
relationship between the products of the measured pointer positions and the sequential weak values can become
extremely complicated for an arbitrary initial pointer wave function. Surprisingly, all this complication van-
ishes when one calculates the cumulants of pointer positions. These are directly proportional to the cumulants
of sequential weak values. This suggests that cumulants have a fundamental physical significance for weak
measurement.
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I. INTRODUCTION

In physics, formal simplicity is often a reliable guide to
the significance of a result. The concept of weak measure-
ment, due to Aharonov and co-workers �1,2�, derives some
of its appeal from the formal simplicity of its basic formulas.
One can extend the basic concept to a sequence of weak
measurements carried out at a succession of points during the
evolution of a system �3�, but then the formula relating
pointer positions to weak values turns out to be not quite so
simple, particularly if one allows arbitrary initial conditions
for the measuring system. I show here that the complications
largely disappear if one takes the cumulants of expected val-
ues of pointer positions; these are related in a formally sat-
isfying way to weak values, and this form is preserved under
all measurement conditions.

The goal of weak measurement is to obtain information
about a quantum system given both an initial state ��i� and a
final, post-selected state �� f�. Since weak measurement
causes only a small disturbance to the system, the measure-
ment result can reflect both the initial and final states. It can
therefore give richer information than a conventional
�strong� measurement, including in particular the results of
all possible strong measurements �4,5�. To carry out the mea-
surement, a measuring device is coupled to the system in
such a way that the system is only slightly perturbed; this can
be achieved by having a small coupling constant g. After the
interaction, the pointer’s position q is measured �or possibly
some other pointer observable—e.g., its momentum p�. Sup-
pose that, following the standard von Neumann paradigm
�6�, the interaction between measuring device and system is
taken to be Hint=g��t�pA, where p is the momentum of a
pointer and the delta function indicates an impulsive interac-
tion at time t. It can be shown �2� that the expectation of the

pointer position, ignoring terms of order g2 or higher, is

�q� = g Re Aw, �1�

where Aw is the weak value of the observable A given by

Aw =
�� f�A��i�
�� f��i�

. �2�

As can be seen, �1� has an appealing simplicity, relating the
pointer shift directly to the weak value. However, this for-
mula only holds under the rather special assumption that the
initial pointer wave function � is a Gaussian or, more gen-
erally, is real and has zero mean. When � is a completely
general wave function—i.e., is allowed to take complex val-
ues and have any mean value �3,7�—Eq. �1� is replaced by

�q� = �q�i + g Re Aw + g Im Aw��pq + qp�i − 2�q�i�p�i� ,

�3�

where, for any pointer variable x, �x�i denotes the initial ex-
pected value ���x��� of x; so, for instance, �q�i and �p�i are
the means of the initial pointer position and momentum, re-
spectively. �Again, this formula ignores terms of order g2 or
higher.�

Equation �3� seems to have lost the simplicity of �1�, but
we can rewrite it as

�q� = �q�i + g Re��Aw� , �4�

where

� = − 2i��qp�i − �q�i�p�i� , �5�

and Eq. �4� is then closer to the form of �1�. As will become
clear, this is part of a general pattern.

One can also weakly measure several observables
A1 , . . . ,An in succession �3�. Here one couples pointers at
several locations and times during the evolution of the sys-
tem, taking the coupling constant gk at site k to be small. One
then measures each pointer and takes the product of the po-*g.j.mitchison@damtp.cam.ac.uk
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sitions qk of the pointers. For two observables and in the
special case where the initial pointer distributions are real
and have zero mean—e.g., a Gaussian—one finds �3�

�q1q2� =
g1g2

2
Re��A2,A1�w + �A1�w�A2�w� , �6�

ignoring terms in higher powers of g1 and g2. Here �A2 ,A1�w
is the sequential weak value defined by

�A2,A1�w =
�� f�WA2VA1U��i�

�� f�WVU��i�
, �7�

where U is a unitary taking the system from the initial state
��i� to the first weak measurement, V describes the evolution
between the two measurements, and W takes the system to
the final state. �Note the reverse order of operators in
�A2 ,A1�, which reflects the order in which they are applied.�
If we drop the assumption about the special initial form of
the pointer distribution and allow an arbitrary �, then the
counterpart of �6� becomes extremely complicated: see the
Appendix, Eq. �A1�.

Even the comparatively simple formula �6� is not quite
ideal. By analogy with �1� we would hope for a formula of
the form �q1q2��Re�A2 ,A1�w, but there is an extra term
�A1�w�A2�w. What we seek, therefore, is a relationship that
has some of the formal simplicity of �1� and furthermore
preserves its form for all measurement conditions. It turns
out that this is possible if we take the cumulant of the expec-
tations of pointer positions. As we shall see in the next sec-
tion, this is a certain sum of products of joint expectations of
subsets of the qi, which we denote by �q1¯qn�c. For a set of
observables, we can define a formally equivalent expression
using sequential weak values, which we denote by
�An , . . . ,A1�w

c . Then the claim is that, up to order n in the
coupling constants gk �assumed to be all of the same approxi-
mate order of magnitude�,

�q1 ¯ qn�c = g1 ¯ gn Re���An, . . . ,A1�w
c 	 , �8�

where � is a factor dependent on the initial wave functions
for each pointer. Equation �8� holds for any initial pointer
wave function, though different wave functions produce dif-
ferent values of �. The remarkable thing is that all the com-
plexity is packed into this one number, rather than exploding
into a multiplicity of terms, as in �A1�.

Note also that �4� has essentially the same form as �8�
since, in the case n=1, �A�w

c =Aw. However, there is an extra
term �q�i in �4�; this arises because the cumulant for n=1 is
anomalous in that its terms do not sum to zero.

II. CUMULANTS

Given a collection of random variables, such as the
pointer positions qi, the cumulant �q1¯qn�c is a polynomial
in the expectations of subsets of these variables �8,9�; it has
the property that it vanishes whenever the set of variables qi
can be divided into two independent subsets. One can say
that the cumulant, in a certain sense, picks out the maximal
correlation involving all of the variables.

We introduce some notation to define the cumulant. Let x
be a subset of the integers �1, . . . ,n	. We write 
xq for


i=1
�x� qx�i�, where �x� is the size of x and the indices of the q’s

in the product run over all the integers x�i� in x. Then the
cumulant is given by

�q1 ¯ qn�c = �
b=�b1,. . .,bk	

ak

j=1

k �

bj

q , �9�

where b= �b1 , . . . ,bk	 runs over all partitions of the integers
�1, . . . ,n	 and the coefficient ak is given by

ak = �k − 1� ! �− 1�k−1. �10�

For n=1 we have �q�c= �q�, and for n=2,

�q1q2�c = �q1q2� − �q1��q2� . �11�

There is an inverse operation for the cumulant �9,10�:
Proposition II.1:

�q1 ¯ qn� = �
b=�b1,. . .,bk	



j=1

k �

bj

qc
. �12�

Proof. To see that this equation holds, we must show that
the term 
 j=1

k �
bj
q� obtained by expanding the right-hand

side is zero unless b is the partition consisting of the single
set �1, . . . ,n	. Replacing each subset bj by the integer j, this
is equivalent to �ak1

¯akr
=0, where the sum is over all par-

titions of �1, . . . ,k	 by subsets of sizes k1 , . . . ,kr and the ak’s
are given by �10�. In this sum we distinguish partitions with
distinct integers—e.g., �1,2	, �3,4	 and �1,3	, �2,4	. There are
� k

k1,. . .,kr
��l1 ! , . . . , lk!�−1 such distinct partitions with subset

sizes k1 , . . . ,kr, where li is the number of k’s equal to i, so
our sum may be rewritten as k !��−1�k1−1

¯

�−1�kr−1�l1 ! ¯ lk !k1¯kr�−1, where the sum is now over par-
titions in the standard sense �11�. This is k! times the coeffi-
cient of xk in

�1 + x +
x2

2!
+ ¯��1 + �− x2/2� +

�− x2/2�2

2!
+ ¯�

��1 + �x3/3� +
�x3/3�2

2!
+ ¯�¯ �13�

=ex−x2/2+x3/3¯ = eloge�1+x� = 1 + x . �14�

Thus the sum is zero except for k=1, which corresponds to
the single-set partition b. �

Definition II.2. If �1, . . . ,n	 can be written as the disjoint
union of two subsets S1 and S2, we say the variables corre-
sponding to these subsets are independent if

�

S1�

q

S2�

q = �

S1�

q�

S2�

q , �15�

for any subsets Si��Si.
We now prove the characteristic property of cumulants.
Proposition II.3. The cumulant vanishes if its arguments

can be divided into two independent subsets.
Proof. For n=2 this follows at once from �11� and �15�,

and we continue by induction. From �12� and the inductive
assumption for n−1, we have
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�q1 ¯ qn� = �q1 ¯ qn�c + �
b=�b1,. . .,bk	�S1



j=1

k �

bj

qc

� �
c=�c1,. . .,cl	�S2



j=1

l �

cj

qc
. �16�

This holds because any term on the right-hand side of �12�
vanishes when any subset of the partition b includes ele-
ments of both S1 and S2. Using �12� again, this implies

�q1 ¯ qn� = �q1 ¯ qn�c + �

S1

q�

S2

q , �17�

and by independence, �q1¯qn�c=0. Thus the inductive as-
sumption holds for n. �

In fact, the coefficients ak in �9� are uniquely determined
to have the form �10� by the requirement that the cumulant
vanish when the variables form two independent subsets
�12,13�.

For n=2, the cumulant �11� is just the covariance
�q1q2�c= ��q1− �q1���q2− �q2��� and the same is true for n=3:
namely, �q1q2q3�c= ��q1− �q1���q2− �q2���q3− �q3���. For n=4,
however, there is a surprise. The covariance is given by

�

i=1

4

�qi − �qi�� = �q1q2q3q4� − � �qiqjqk��ql�

+ � �qiqj��qk��ql� − 3�q1��q2��q3��q4� ,

�18�

where the sums include all distinct combinations of indices,
but the cumulant is

�q1q2q3q4�c = �q1q2q3q4� − � �qiqjqk��ql� − � �qiqj��qkql�

+ 2 � �qiqj��qk��ql� − 6�q1��q2��q3��q4� , �19�

which includes terms like �q1q2��q3q4� that do not occur in
the covariance. Note that, if the subsets �1,2	 and �3,4	 are
independent, the covariance does not vanish, since indepen-
dence implies we can write the first term in �18� as
�q1q2q3q4�= �q1q2��q3q4� and there is no canceling term.
However, as we have seen, the cumulant does contain such a
term, and it is a pleasant exercise to check that the whole
cumulant vanishes.

III. SEQUENTIAL WEAK VALUES AND CUMULANTS

To carry out a sequential weak measurement, one starts a
system in an initial state ��i�, then weakly couples pointers at
several times tk during the evolution of the system, and fi-
nally post-selects the system state �� f�. One then measures
the pointers and finally takes the product of the values ob-
tained from these pointer measurements. It is assumed that
one can repeat the whole process many times to obtain the
expectation of the product of pointer values. If one measures
pointer positions qk, for instance, one can estimate �q1¯qn�,
but one could also measure the momenta of the pointers to
estimate �p1¯pn�.

If the coupling for the kth pointer is given by
Hint=��t− tk�rkp, and if the individual initial pointer wave

functions are Gaussian, or, more generally, are real with zero
mean, then it turns out �3� that these expectations can be
expressed in terms of sequential weak values of order n or
less. Here the sequential weak value of order n,
�An , . . . ,A1�w, is defined by

�An, . . . ,A1�w =
�� f�Un+1AnUn ¯ A1U1��i�

�� f�Un+1 ¯ U1��i�
, �20�

where Ui defines the evolution of the system between the
measurements of Ai−1 and Ai.

When the Ak are projectors, Ak= �xk��xk�, we can write the
sequential weak value as �3�

�An, . . . ,A1�w =
�� f�Un+1�xn��xn�Un�xn−1� ¯ �x1�U1��i�

�y
�� f�Un+1�yn��yn�Un�yn−1� ¯ �y1�U1��i�

=
amplitude�x�

�y
amplitude�y�

, �21�

which shows that, in this case, the weak values has a natural
interpretation as the amplitude for following the path defined
by the xk. Figure 1 shows an example taken from �3� where
the path �labeled by “1” and “2” successively� is a route
taken by a photon through a pair of interferometers, starting
by injecting the photon at the top left �with state ���i� and
ending with post-selection by detection at the bottom right
�with final state ��� f�.

In the last section, the cumulant was defined for expecta-
tions of products of variables. One can define the cumulant
for other entities by formal analogy—for instance, for den-
sity matrices �10� or hypergraphs �9�. We can do the same for
sequential weak values, defining the cumulant by �9� with

�
bj
q� replaced by �Abj��bj��

, . . . ,Abj�1�
� �w, where the arrow in-

dicates that the indices, which run over the subset bj, are
arranged in ascending order from right to left. For example,
for n=1, �Aw�c=Aw, and for n=4,

�A4,A3,A2,A1�w
c = �A4,A3,A2,A1�w − � �Ai,Aj,Ak

� �w�Al�w

− � �Ai,Aj
� �w�Ak,Al

� �w

+ 2 � �Ai,Aj
� �w�Ak�w�Al�w

− 6�A1�w�A2�w�A3�w�A4�w. �22�

ψi

ψf

Pointer 1

Pointer 2

FIG. 1. The double interferometer. A sequential weak measure-
ment is made by weakly coupling the pointers marked 1 and 2, then
measuring them and finally multiplying the values so obtained.

WEAK MEASUREMENT TAKES A SIMPLE FORM FOR … PHYSICAL REVIEW A 77, 052102 �2008�

052102-3



There is a notion of independence that parallels �15�: given a
disjoint partition S1�S2= �1, . . . ,n	 such that

�AS1��S2�
� �w = �AS1�

��w�AS2�
��w, �23�

for any subsets Si��Si; then, we say the observables labeled
by the two subsets are weakly independent. There is then an
analog of Lemma II.3.

Lemma III.1. The cumulant �An , . . . ,A1�w
c vanishes if the

Ak are weakly independent for some subsets S1 and S2.
As an example of this, if one is given a bipartite system

HA � HB and initial and final states that factorize as ��i�

= ��i�A � ��i�B and �� f�= �� f�A � �� f�B, then observables on the
A and B parts of the system are clearly weakly independent.
Another class of examples comes from what one might de-
scribe as a “bottleneck” construction, where at some point
the evolution of the system is divided into two parts by a
one-dimensional projector �the bottleneck� and its comple-
ment, and the post-selection excludes the complementary
part. Then, if all the measurements before the projector be-
long to S1 and all those after the projector belong to S2, the
two sets are weakly independent. This follows because we
can write

�AS1��S2�
� �w =

�� f�Un+1An ¯ Uk+1AkWk��b���b�VkAk−1 ¯ A1U1��i�
�� f�Un+1 ¯ Uk+1Wk��b���b�Vk ¯ U1��i�

=
�� f�Un+1An ¯ Uk+1AkWk��b���b�Vk ¯ U1��i�

�� f�Un+1 ¯ Uk+1Wk��b���b�Vk ¯ U1��i�
�� f�Un+1 ¯ Uk+1Wk��b���b�VkAk−1 ¯ A1U1��i�

�� f�Un+1 ¯ Uk+1Wk��b���b�Vk ¯ U1��i�
= �AS1�
��w�AS2�

��w,

where Wk��b���b�Vk is the part of Uk lying in the post-
selected subspace. As an illustration of this, suppose we add
a connecting link �Fig. 2, “L”� between the two interferom-
eters in Fig. 1, so ��b���b�, the bottleneck, is the projection
onto L, and post-selection discards the part of the wave func-
tion corresponding to the path L�. Then measurements at “1”
and “2” are weakly independent; in fact, �A1�w=1 /2, �A2�w
=1 /2, and �A2 ,A1�w=1 /4. Note that the same measurements
are not independent in the double interferometer of Fig. 1,
where �A1�w=0, �A2�w=0, and yet, surprisingly, �A2 ,A1�w
=−1 /2 �3�.

IV. MAIN THEOREM

Consider n system observables A1 , . . . ,An. Suppose sk, for
k=1, . . . ,n, are observables of the kth pointer—namely, Her-
mitian functions sk�qk , pk� of pointer position qk and momen-
tum pk—and the interaction Hamiltonian for the weak mea-
surement of system observable Ak is Hk=gkskAk, where gk is
a small coupling constant �all gk being assumed of the same

order of magnitude g�. Suppose further that the pointer ob-
servables rk are measured after the coupling. Let �k be the
kth pointer’s initial wave-function. For any variable xk asso-
ciated with the kth pointer, write �xk�i for ��k�xk��k�.

We are now almost ready to state the main theorem, but
first need to clarify the measurement procedure. When we
evaluate expectations of products of the rk for different sets
of pointers—for instance, when we evaluate �r1r2�—we have
a choice. We could either couple the entire set of n pointers
and then select the data for pointers 1 and 2 to get �r1r2�. Or
we could carry out an experiment in which we couple just
pointers 1 and 2 to give �r1r2�. These procedures give differ-
ent answers. For instance, if we couple three pointers and
measure pointers 1 and 2 to get �r1r2�, in addition to the
terms in g1, g2, and g1g2 we also get terms in g2g3 and g1g3
involving the observable A3. This means we get a different
cumulant �r1¯rn�c, depending on the procedure used. In
what follows, we regard each expectation as being evaluated
in a separate experiment, with only the relevant pointers
coupled. It will be shown elsewhere that, with the alternative
definition, the theorem still holds but with a different value
of the constant �.

Theorem IV.1 �cumulant theorem�. For n�2, for any
pointer observables rk and sk and for any initial pointer wave
functions �k, up to total order n in the gk,

�r1 ¯ rn�c = g1 ¯ gn Re���An, . . . ,A1�w
c 	 , �24�

where � �sometimes written more explicitly as �r1. . .rn
� is

given by

� = 2�− i�n�

k=1

n

�rksk�i − 

k=1

n

�rk�i�sk�i� . �25�

For n=1 the same result holds, but with the extra term �r�i:

ψi

ψf
Pointer 2

L’

Pointer 1

L

FIG. 2. A “bottleneck” �L� is added to the double interferometer
of Fig. 1. This makes the measurements at 1 and 2 weakly
independent.
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�r� = �r�i + g Re��Aw� . �26�

Proof. We use the methods of �3� to calculate the expec-
tations of products of pointer variables for sequential weak
measurements. Let the initial and final states of the system be
��i� and �� f�, respectively. Consider some subset b
= �b1 , . . . ,b		 of �1, . . . ,n	, with b1
b2
 ¯ 
b	. The state
of the system and the pointers b1 , . . . ,b	 after the coupling of
those pointers is

�S,M = Un+1 ¯ Ub	+1e−igb	
sb	

Ab	Ub	
¯ e−igb1

sb1
Ab1

�Ub1
¯ U1��i��b1

�rb1
� ¯ �b	

�rb	
� , �27�

and following post-selection by the system state �� f�, the
state of the pointers is

�M = �� f�Un+1 ¯ Ub	+1e−igb	
sb	

Ab	Ub	
¯ e−igb1

sb1
Ab1

�Ub1
¯ U1��i��b1

�rb1
� ¯ �b	

�rb	
� . �28�

Expanding each exponential, we have

�rb1
¯ rb	

� =
� �̄Mrb1

¯ rb	
�Mdrb1

¯ drb	

� ��M�2drb1
¯ drb	

�29�

=
�i1,. . .,in�b;j1,. . .,jn�b

�i1,. . .,in
�̄ j1,. . .,jn

uib1
jb1

b1
¯ uib	

jb	

b	

�i1,. . .,in�b;j1,. . .,jn�b
�i1,. . .,in

�̄ j1,. . .,jn
vib1

jb1

b1
¯ vib	

jb	

b	
,

�30�

where ik�0 are integers, i1 , . . . , in�b means that il=0 for
l�b, and

�i1,. . .,in
= �


k=1

n

gk
ik��An

in, . . . ,A1
i1�w, �31�

ulm
k =� �m!�−1�− isk�m�k�rk�rk�l!�−1�− isk�l�k�rk�drk,

�32�

vlm
k =� �m!�−1�− isk�m�k�rk��l!�−1�− isk�l�k�rk�drk.

�33�

Let us write �30� as

�rb1
¯ rb	

� =
�i�b,j�b

xi;j

�i�b,j�b
yi;j

, �34�

where

xi;j = �i1,. . .,in
�̄ j1,. . .,jn

uib1
jb1

b1
¯ uib	

jb	

b	 , �35�

yk;l = �k1,. . .,kn
�̄l1,. . .,ln

vkb1
lb1

b1
¯ vkb	

lb	

b	 , �36�

and i denotes the index set �i1 , . . . , in	, etc. Define

Xb = �
i�b,j�b

xi;j, Yb = �
k�b,l�b

yk;l. �37�

Then

�r1 ¯ rn�c = �
b1,. . .,bk

�k − 1� ! �− 1�k−1

l=1

k

�rbl�1� ¯ rbl��bl��
�

�38�

= �
b1,. . .,bk

�k − 1� ! �− 1�k−1

l=1

k Xbl

Ybl

. �39�

Set Y=
b��1,. . .,n	Yb, where b in the product ranges over all
distinct subsets of the integers �1, . . . ,n	. Then Y�r1¯rn�c is
an �infinite� weighted sum of terms

zI = �xi�1�;j�1� ¯ xi�m�;j�m���yk�1�;l�1� ¯ yk�m��;l�m��� , �40�

where

I = Ii � I j � Ik � Il = �i�1�, . . . ,i�m�	 � �j�1�, . . . ,j�m�	 � �k�1�, . . . ,k�m��	 � �l�1�, . . . ,l�m��	 �41�

denotes the set of all the index sets that occur in zI. The
strategy is to show that, when the size of the index set I is
less than n, the coefficient of zI vanishes; by �31�, this im-
plies that all coefficients of order less than n in g vanish. We
then look at the index sets of size n, corresponding to terms
of order gn, and show that the relevant terms sum up to the
right-hand side of �24�. But if Y�r1¯rn�c=gnx+O�gn+1� for
some x, then we also have �r1¯rn�c=gnx+O�gn+1�, since
Y=1+O�g�.

Let b= �b1 , . . . ,bs	 be a partition of �1, . . . ,n	. We say that

b is a valid partition for I if the following is true.
�i� For each r with 1
r
m, i�r�+ j�r��bl, for some bl,

and we can associate a distinct bl to each r. �Here i+ j means

the index set �i1+ j1 , . . . , in+ jn	.�
�ii� For each r with 1
r
m�, k�r�+ l�r��S, for some

subset S� �1, . . . ,n	 that is not in the partition b—i.e., for

which S�bl for any l—and we can associate a distinct S to
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each r. Let �I ,b� be the number of ways of associating a
subset S to each r.

Lemma IV.2. The coefficient of zI in Y�r1¯rn�c is zero if
all the index sets in I have a zero at some position r.

Proof. If we expand Y�r1¯rn�c using �39�, each term in
this expansion is associated with a partition b of �1, . . . ,n	.
Let b be a valid partition for I, and let c= �c1 , . . . ,cs	 denote
the partition derived from b by removing r from the subset bl
that contains it and deleting that subset if it contains only r.
Then the following partitions include b and are all valid:

c�1� = ��rc1�,c2, . . . ,cs	 ,

c�2� = �c1,�rc2�, . . . ,cs	 ,

, . . . ,

c�s� = �c1,c2, . . . ,�rcs�	 ,

c�s+1� = �r,c1,c2, . . . ,cs	 . �42�

Each partition c�i�, for 1
 i
s+1, contributes �I ,b� to the
coefficient of zI in Y
l=1

k Xc�i� /Yc�i�, and since this term has
coefficient �s−1� ! �−1��s−1� in �39� for partitions
c�1� ,c�2� , . . . ,c�s�, and s ! �−1�s for c�s+1�, the sum of all contri-
butions is zero. �

From Eqs. �31� and �41�, the power of g in the term zI is
�I�= �Ii�+ �Ij�+ �Ik�+ �Il�. This, together with the preceding
lemma, implies that the lowest-order nonvanishing terms in
Y�r1¯rn�c are zI’s that have a “1” occurring once and once
only in each position; we call these complete lowest-degree
terms.

Lemma IV.3. The coefficient of a complete lowest-degree
term zI in Y�r1¯rn�c is zero unless only one of the four
classes of indices in I—viz., Ii, I j, Ik,. or Il—has nonzero
terms.

Proof. Consider first the case where the indices in I j and
Il are zero and where both Ii and Ik have some nonzero
indices. Let b= �b1 , . . . ,br	 be the partition whose subsets
consists of the nonzero positions in index sets i�t� in Ii, and
let c= �c1 , . . . ,cs	 be some partition of the remaining integers
in �1, . . . ,n	. Suppose s
r. Then we can construct a set of
partitions by mixing b and c; these have the form

d�w� = �ci1
, . . . ,cit

,�x1b1�, . . . ,�xrbr�	 , �43�

where each xi is either empty or consists of some ci and all
the subsets ci are present once only in the partition. If any
d�w� is valid, all the other mixtures will also be valid. Fur-
thermore, the set of all valid partitions can be decomposed
into nonoverlapping subsets of mixtures obtained in this way.

Any mixture d�w� gives the same value of �I ,d�w��,
which we denote simply by ; so to show that all the contri-
butions to the coefficient of zI cancel, we have only to sum
over all the mixtures, weighting a partition with t subsets by
�t−1� ! �−1�t−1. This gives

coefficient of zI = �
i=0

s

�s + r − 1� ! �− 1�s+r−i�s

i
��r

i
�i!

= �− 1�s+r−1s ! � �s + r − i − 1� ¯

��s − i + 1��r

i
��− 1�i

=�− 1�s+r−1s !
�r−1

�xr−1 ��xs−1�x − 1�r	�x=1 = 0.

The above argument applies equally well to the situation
where Ii and Il both have some nonzero indices and indices
in I j and Ik are zero. If the nonzero indices are present in Ii
and I j, we can take any valid partition a= �a1 , . . . ,ar	 and
divide each subset ak into two subsets bk and ck with the
indices from Ii in bk and those from I j in ck. All the mixtures
of type �43� are valid, and they include the original partition
a. By the above argument, the coefficients of zI arising from
them sum to zero. Other combinations of indices are dealt
with similarly.

Note that, for n=4 and for the index sets �1,1 ,0 ,0��Ii
and �0,0 ,1 ,1��I j, the “mixture” argument shows that co-
efficient of zI coming from �r1r2r3r4� cancels that coming
from �r1r2��r3r4� to give zero. This cancellation occurs with
the cumulant �19�, but not with the covariance �18�, where
the term �r1r2��r3r4� is absent. �

The only terms that need to be considered, therefore, are
complete lowest-degree terms with nonzero indices only in
one of the sets Ii, I j, Ik, and Il. It is easy to calculate the
coefficients one gets for such terms. Consider the case of Ii.
We only need to consider the single partition b whose subsets
are the index sets of Ii. For this partition, by �40�, �35�, and
�36�:

zI = 

e=1

t

�i�e�

k=1

n

u1,0
k v0,0

k

= g1 ¯ gn

e=1

t

�Ai�e���i�e���, . . . ,Ai�e��1��w

k=1

n

�rksk�i. �44�

From �39�, zI appears in Y�r1¯rn�c with a coefficient �t
−1� ! �−1�t−1. So summing over all zI with indices in Ii, one
obtains g1¯gn�An , . . . ,A1�w

c 
k=1
n �−i�rksk�i�. Similarly, from

�31�–�33�, summing over the zI with indices in I j gives the
complex conjugate of g1¯gn�An , . . . ,A1�w

c 
k=1
n �−i�rksk�i�.

Thus Ii and I j together give g1¯gn�2
k=1
n

�−i�rksk�i��Re��An , . . . ,A1�w
c 	.

This corresponds to �24�, but with only the first half of �
as defined by �25�. The rest of � comes from the index sets Ik
and Il. However, the sum of the coefficients of zI for the
same index set in Ii and Ik is zero. This is true because, for
any complete lowest degree index set, the sum of coefficients
for all zI with the indices divided in any manner between Ii
and Ik is zero, being the number ways of obtaining that
index set from Y times �t=1

n �t−1��−1�t−1. But by Lemma
IV.3, the coefficient of zI is zero unless the index set comes
wholly from Ii or Ik. Now �40�, �35�, and �36� tell us that,
for an index set in Ik,
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zI = 

e=1

t

�i�e�

k=1

n

u0,0
k v1,0

k

= g1 ¯ gn

e=1

t

�Ai�e���i�e���, . . . ,Ai�e��1��w

k=1

n

�rk�i�sk�i,

�45�

and from the above argument, this appears in Y�r1¯rn�c

with coefficient −�t−1� ! �−1�t−1. Again, the index sets in Il
give the complex conjugate of those in Ik. Thus we obtain
the remaining half of �, which proves �24� for n�2. For
n=1 the constant terms �of order zero in g� in Y�r� do not
vanish, but the proof goes through if we consider Y��r�
− �r�i� instead. �

V. EXPLORING THE THEOREM

Consider first the simplest case, where n=1 and r=q. We
take Hint=g��t�pA throughout this section, so s= p. Then
�26� and �25� give

�q� = �q�i + g Re��qAw� , �46�

with

�q = − 2i��qp�i − �q�i�p�i� ,

which we have already seen as Eqs. �4� and �5�. If we mea-
sure the pointer momentum, so r= p, we find

�p� = �p�i + g Re��pAw� , �47�

with

�p = − 2i��p2�i − �p�i
2� ,

which is equivalent to the result obtained in �7�.
For two variables, our theorem for r1=q1 ,r2=q2, is

�q1q2�c = g1g2 Re��qq�A2,A1�w
c � , �48�

with

�qq = 2��q1�i�p1�i�q2�i�p2�i − �q1p1�i�q2p2�i� . �49�

The calculations in the Appendix allow one to check �48�
and �49� by explicit evaluation; see �A3�. Note in passing
that, if one writes �q=���q1− �q1��2�, the Cauchy-Schwarz
inequality

��q1q2�c	2 = ���q1 − �q1���q2 − �q2���	2


 ��q1 − �q1��2���q2 − �q2��2�

implies a Heisenberg-type inequality

�q1�q2 � g1g2 Re��qq�A2,A1�w
c 	 ,

relating the pointer noise distributions of two weak measure-
ments carried out at different times during the evolution of
the system.

When one or both of the qk in �48� is replaced by the
pointer momentum pk, we get

�q1p2�c = g1g2 Re��qp�A2,A1�w
c � , �50�

�p1p2�c = g1g2 Re��pp�A2,A1�w
c � , �51�

with

�qp = − 2��q1p1�i�p2
2�i − �q1�i�p1�i�p2�i

2� , �52�

�pp = − 2��p1
2�i�p2

2�i − �p1�i
2�p2�i

2� . �53�

Consider now the special case where � is real with zero
mean. Then the very complicated expression for �q1q2� in
�A1� reduces to

�q1q2� =
g1g2

2
Re��A2,A1�w + �A1�w�Ā2�w� , �54�

as shown in �3�. Two further examples from �3� are

�q1q2q3� =
g1g2g3

4
Re��A3,A2,A1�w + �A3,A2�w�Ā1�w

+ �A3,A1�w�Ā2�w + �A2,A1�w�Ā3�w� , �55�

�q1q2q3q4� =
g1g2g3g4

8
Re��A4,A3,A2,A1�w

+ �A4,A3,A2�w�Ā1�w + ¯ + �A4,A3�w�A2,A1�w

+ ¯� . �56�

We can use these formulas to calculate the cumulant
�q1¯qn� and thus check Theorem IV.1 for this special class
of wave functions �. Each formula contains on the right-
hand side a leading sequential weak value, but there are also

extra terms, such as �A1�w�Ā2�w in �54� and �A2 ,A1�w�Ā3�w in
�55�. All these extra terms are eliminated when the cumulant
is calculated, and we are left with �24� with �q1,. . .,qn
= �1 /2�n−1.

This gratifying simplification depends on the fact that the
cumulant is a sum over all partitions. For instance, it does
not occur if one uses the covariance instead of the cumulant.
To see this, look at the case n=4: The term �q1q2q3q4� in
Cov�q1 ,q2 ,q3 ,q4�, the covariance of pointer positions, gives
rise via �56� to weak value terms like �A4 ,A3�w�A2 ,A1�w.
However, �18� together with �54�–�56� show that
Cov�q1 ,q2 ,q3 ,q4� has no other terms that generate any mul-
tiple of �A4 ,A3�w�A2 ,A1�w, and consequently this weak value
expression cannot be canceled and must be present in
Cov�q1 ,q2 ,q3 ,q4�. This means that there cannot be any equa-
tion relating Cov�q1 ,q2 ,q3 ,q4� and Cov�A4 ,A3 ,A2 ,A1�w.
This negative conclusion does not apply to the cumulant
�q1q2q3q4�c, as this includes terms such as �q1q2��q3q4�; see
�19�.

VI. SIMULTANEOUS WEAK MEASUREMENT

We have treated the interactions between each pointer and
the system individually, the Hamiltonian for the kth pointer
and system being Hk=gk��t− tk�skAk, but of course we can
equivalently describe the interaction between all the pointers
and the system by H=�kgk��t− tk�skAk. For sequential mea-
surements we implicitly assume that all the times tk are dis-
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tinct. However, the limiting case where there is no evolution
between coupling of the pointers and all the tk’s are equal is
of interest and is the simultaneous weak measurement con-
sidered in �14–16�. In this case, the state of the pointers after
post-selection is given by

�M = �� f�e−i�g1s1A1+¯+gnsnAn���i��1�r1� ¯ �n�rn� . �57�

The exponential e−i�g1s1A1+¯+gnsnAn� here differs from the se-
quential expression e−ignsnAn

¯e−ig1s1A1 in �28� in that each
term in the expansion of the latter appears with the operators
in a specific order—viz., the arrow order ← as in �22�—
whereas in the expansion of the former the same term is
replaced by a symmetrized sum over all orderings of opera-
tors. For instance, for arbitrary operators X, Y, and Z, the
third degree terms in eXeYeZ include X3 /3!, X2Y /2!, and
XYZ, whose counterparts in e�X+Y+Z� are, respectively, X3 /3!,
�X2Y +XYX+YX2	 /3!, and �XYZ+XZY +YXZ+YZX+ZXY
+ZYX	 /3!. Apart from this symmetrization, the calculations
in Section IV can be carried through unchanged for simulta-
neous measurement. Thus if we replace the sequential weak
value by the simultaneous weak value �14–16�

�Aik
, . . . ,Ai1

�ws =
1

k! �
��Sk

�Ai��k�
, . . . ,Ai��1�

�w, �58�

where the sum on the right-hand side includes all possible
orders of applying the operators, we obtain a version of
Theorem IV.1 for simultaneous weak measurement:

�r1 ¯ rn�c = g1 ¯ gn Re���An, . . . ,A1�ws
c 	 . �59�

Likewise, relations such �54� and �55�, etc., hold with simul-
taneous weak values in place of the sequential weak values;
indeed, these relations were first proved for simultaneous
measurement �14,15�.

From �58� we see that, when the operators Ak all com-
mute, the sequential and simultaneous weak values coincide.
One important instance of this arises when the operators Ak
are applied to distinct subsystems, as in the case of the si-
multaneous weak measurements of the electron and positron
in Hardy’s paradox �17,18�.

When the operators do not commute, the meaning of si-
multaneous weak measurement is not so obvious. One pos-
sible physical interpretation follows from the well-known
formula

eX+Y = lim
N→�

�eX/NeY/N�N �60�

and its analogs for more operators. Suppose two pointers,
one for A1 and one for A2, are coupled alternately in a se-

quence of N short intervals �Fig. 3� with coupling strength
gk /N for each interval. This is an enlarged sense of sequen-
tial weak measurement �3� in which the same pointer is used
repeatedly, coherently preserving its state between couplings.
The state after post-selection is

�M = �� f��e−i�g2/N�s2A2e−i�g1/N�s1A1�N��i��1�r1��2�r2� .

�61�

From �60� we deduce that

�M � �� f�e−i�g2s2A2+g1s1A1���i��1�r1��2�r2� . �62�

This picture readily extends to more operators Ak.
One can also simulate a simultaneous measurement by

averaging the results of a set of sequential measurements
with the operators in all orders; in effect, one carries out a set
of experiments that implement the averaging in �58�. There is
then no single act that counts as simultaneous measurement,
but weak measurement in any case relies on averaging many
repeats of experiments in order to extract the signal from the
noise. In a certain sense, therefore, sequential measurement
includes and extends the concept of simultaneous measure-
ment. However, if we wish to accomplish simultaneous mea-
surement in a single act, then we need a broader concept of
weak measurement where pointers can be reused; indeed, we
can go further and consider generalized weak coupling be-
tween one time-evolving system and another, followed by
measurement of the second system. However, even in this
case, the measurement results can be expressed algebraically
in terms of the sequential weak values of the first system �3�.

VII. LOWERING OPERATORS

Lundeen and Resch �16� showed that, for a Gaussian ini-
tial pointer wave function, if one defines an operator a by

aLR = �p2�i
1/2�q +

ip

2�p2�i
� ,

then the relationship

�aLR� = g�p2�i
1/2Aw

holds. They argued that aLR can be interpreted physically as
a lowering operator, carrying the pointer from its first excited
state �1�, in number-state notation, to the Gaussian state �0�
�despite the fact that the pointer is not actually in a harmonic
potential�. Although aLR is not an observable, �aLR� can be
regarded as a prescription for combining expectations of
pointer position and momentum to get the weak value.

If instead of aLR one takes

a = q +
ip

2�p2�i
, �63�

then the even simpler relationship

�a� = gAw �64�

holds. We refer to a as a generalized lowering operator.
Lundeen and Resch also extended their lowering operator

concept to simultaneous weak measurement of several ob-

1

2

FIG. 3. An approximation to simultaneous weak measurement is
obtained by alternately coupling two pointers, 1 and 2 , weakly and
for short intervals, many times in succession.
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servables Ak. Rephrased in terms of our generalized lowering
operators ak defined by �63�, their finding �16� can be stated
as

�a1 ¯ an� = g1 ¯ gn�A1, . . . ,An�ws. �65�

This is of interest for two reasons. First, the entire simulta-
neous weak value appears on the right-hand side, not just its
real part; and second, the “extra terms” in the simultaneous
analogs of �54�–�56� have disappeared. The lowering opera-
tor seems to relate directly to weak values.

We can generalize these ideas in two ways. First, we ex-
tend them from simultaneous to sequential weak measure-
ments. Second, instead of assuming the initial pointer wave
function is a Gaussian, we allow it be arbitrary; we do this by
defining a generalized lowering operator

a = q + i
p

�
, �66�

with

� = − i�̄p/�̄q.

For a Gaussian �, �=2�p2�i, so the above definition reduces
to �63� in this case. In general, however, � will not be anni-
hilated by a and is therefore not the number state �0� �this
state is a Gaussian with complex variance �−1�. Nonetheless,
there is an analog of Theorem IV.1 in which the whole se-
quential weak value, rather than its real part, appears:

Theorem VII.1 �cumulant theorem for lowering operators�.
For n�1,

�a1 ¯ an�c = g1 ¯ gn��An, . . . ,A1�w
c , �67�

where � is given by

� = �
�i1,. . .,in���0,1	n

�− 1��ij�ri1
,. . .,rin

��̄r1−i1
¯ �̄r1−in

�

2��̄p1
¯ �̄pn

�
. �68�

For n=1 the same result holds, but with the extra term �a�i:

�a� = �a�i + �gAw. �69�

Proof. Put r0=q and r1= p. Then

�a1 ¯ an�c = ��q1 + ip1/�1� ¯ �qn + ipn/�n��c

= �
�i1,. . .,in���0,1	n

�− 1��ij�ri1
¯ rin

�c��̄r1−i1
¯ �̄r1−in

�

��̄p1
¯ �̄pn

�

=g1 ¯ gn���An, . . . ,A1�w
c + ��An, . . . ,A1�w

c � ,

where we used Theorem IV.1 to get the last line, and where
� is given by �68� and � by

� = �
�i1,. . .,in���0,1	n

�− 1��ij�̄ri1
,. . .,rin

��̄r1−i1
¯ �̄r1−in

�

2��̄p1
¯ �̄pn

�

�note the bar over �̄ri1
,. . .,rin

that is absent in the definition of �

by �68��.

We want to prove �=0, and to do this it suffices to prove
that the complex conjugate of the numerator is zero—i.e.,

�� = �
�i1,. . .,in���0,1	n

�− 1��ij�ri1
,. . .,rin

��r1−i1
¯ �r1−in

� = 0.

Let ak= �qksk�i, bk= �qk�i�sk�i, ck= �pksk�i, and dk= �pk�i�sk�i.
Using the definition of � in �25�, the above equation can be
written

��/�2n+1�− 1�n� = 

k=1

n

�ak�ck − dk� − ck�ak − bk�	

− 

k=1

n

�bk�ck − dk� − dk�ak − bk�	

= 
 �bkck − akdk� − 
 �bkck − akdk� = 0.

�
Suppose the interaction Hamiltonian has the standard von

Neumann form Hint=gpA, so s= p in the definition of �

by Eq. �25�. Then for n=1, since �̄p=�p and �qp�i= �pq�i,

�= �−i���q− �̄q�= �−i���qp�i− �pq�i�=1, so we get the even
simpler result

�a� = �a�i + gAw. �70�

This is valid for all initial pointer wave functions, and there-
fore extends Lundeen and Resch’s equation �64�. It seems
almost too simple: there is no factor corresponding to � in
Eq. �46�. However, a dependence on the initial pointer wave
function is of course built into the definition of a through �.

For n�1 it is no longer true that �=1, even with the
standard interaction Hamiltonian. However, if in addition
�p�i=0, then

� = �− i�n

k=1

n

��qkpk�i − �pkqk�i� = �− i�n�i�n = 1.

Thus �a1¯an�c=g1¯gn�An , . . . ,A1�w
c for all n. Applying the

inverse operation for the cumulant, given by Proposition II.1,
we deduce the following.

Corollary VII.2. If �p�i=0—e.g., if the initial pointer wave
function � is real—then for n�1

�a1 ¯ an� = g1 ¯ gn�An, . . . ,A1�w. �71�

This is the sequential weak value version of the result for
simultaneous measurements, Eq. �65�, but is more general
than the Gaussian case treated in �16�.

We might be tempted to try to repeat the above argument
for pointer positions qk instead of the lowering operators ak
by applying the anticumulant to both sides of �24�. This fails,
however, because of the need to take the real part of the
weak values; in fact, this is one way of seeing where the
extra terms come from in �54�–�56� and their higher analogs.

Note also that �71� does not hold for general �, since then
different subsets of indices may have different values of �.
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VIII. DISCUSSION

The procedure for sequential weak measurement involves
coupling pointers at several stages during the evolution of
the system, measuring the position �or some other observ-
able� of each pointer and then multiplying the measured val-
ues together. In �3� it was argued that we would really like to
measure the product of the values of the operators A1 , . . . ,An
and that this corresponds to the sequential weak value
�An , . . . ,A1�w. Multiplication of the values of pointer observ-
ables is the best we can do to achieve this goal. However,

this brings along extra terms, such as �A1�w�Ā2�w in �54�,
which are an artifact of this method of extracting informa-
tion. From this perspective, the cumulant extracts the infor-
mation we really want.

In �3�, a somewhat idealized measuring device was being
considered, where the pointer position distribution is real and
has zero mean. When the pointer distribution is allowed to be
arbitrary, the expressions for �q1¯qn� become wildly com-
plicated �see, for instance, �A1��. Yet the cumulant of these
terms condenses into the succinct Eq. �24� with all the com-
plexity hidden away in the one number �. Why does the
cumulant have this property?

Recall that the cumulant vanishes when its variables be-
long to two independent sets. The product of the pointer
positions q1 , . . . ,qn will include terms that come from prod-
ucts of disjoint subsets of these pointer positions, and the
cumulant of these terms will be sent to zero, by Lemma II.3.
For instance, with n=2, the pointers are deflected in propor-
tion to their individual weak values, according to �4�, and the
cumulant subtracts this component, leaving only the compo-
nent that arises from the O�g2� influence of the weak mea-
surement of A1 on that of A2. The subtraction of this compo-

nent corresponds to the subtraction of the term �A1�w�Ā2�w
from �54�. In general, the cumulant of pointer positions
singles out the maximal correlation involving all the qi and
the theorem tells us that this is directly related to the corre-
sponding “maximal correlation” of sequential weak values,
�An , . . . ,A1�c, which involves all the operators.

The simple relationship between the cumulants of weak
values and pointer positions also suggests an experimental
strategy. Suppose one wishes to estimate weak values of
some system from measurements of coupled pointers. One
can evaluate the cumulants of the pointer positions, deduce

the cumulants of weak values, and then derive the individual
weak values by applying the anticumulant �12�. In this way
one avoids having to unravel the immensely complicated re-
lations that occur, for example, in �A1�. This procedure is
further simplified by using lowering operators, since then
cumulants of pointer positions and weak values are directly
proportional �67� without the intervening operation of taking
the real part �24�.

Finally, we emphasize an important feature of our theo-
rem. There are many choices of pointer observable
r�p ,q�—e.g., position, momentum, or some Hermitian com-
bination of them—and likewise many ways of coupling the
pointer with the system, which can be via a Hamiltonian
Hint=gs�p ,q�A with any Hermitian s�p ,q�. Different choices
of these variables r and s lead only to a different multiplica-
tive constant � in front of �An , . . . ,A1�w

c in �24�. We always
extract the same function of sequential weak values,
�An , . . . ,A1�w

c , from the system. This argues both for the fun-
damental character of sequential weak values and also for the
key role played by their cumulants.
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APPENDIX: AN EXPLICIT CALCULATION

To calculate �q1q2� for arbitrary pointer wave functions �1
and �2, we use �28� to determine the state of the two pointers
after the weak interaction and then evaluate the expectation
using �29�, keeping only terms up to order g2. We define

�k = �qk�i, �k = �pk�i, �k = �pk
2�i,

�k = �qkpk�i, �k = �qkpk
2�i, �k = �pkqkpk�i.

Then, expanding the exponential in �28� and substituting �
in �29� gives, up to order g2:

�q1q2� = �1�2 − ig1���A1�w − �Ā1�w��1�1�2 − �Ā1�w�̄1�2 + �A1�w�1�2	 − ig2���A2�w − �Ā2�w��1�2�2 − �Ā2�w�1�̄2

+ �A2�w�1�2	 + g1
2���A1�w�2��1�2 − �1�1�2� + ��A1

2�w + �Ā1
2�w�

�1�1�2

2
� − g1

2���A1�w − �Ā1�w�2�1�1
2�2 + �A1

2�w
�1�2

2

+ �Ā1
2�w

�̄1�2

2
� + g2

2���A2�w�2��1�2 − �1�2�2� + ��A2
2�w + �Ā2

2�w�
�1�2�2

2
� − g2

2���A2�w − �Āw�2�2�1�2�2
2

+ �A2
2�w

�1�2

2
+ �Ā2

2�w
�1�̄2

2
� + g1g2��A1�w�Ā2�w�1�̄2 + �Ā1�w�A2�w�̄1�2 − �A2,A1�w�1�2 − �A2,A1�w�̄1�̄2	

− g1g2�2��A1�w − �Ā1�w���A2�w − �Ā2�w��1�1�2�2	 + g1g2���A2,A1�w + �A2,A1�w − �A1�w�Ā2�w
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− �Ā1�w�A2�w��1�1�2�2	 + g1
2���A1�w − �Ā1�w��A1�w�1�1�2 − ��A1�w − �Ā1�w��Ā1�w�1�̄1�2	 + g2

2���A2�w − �Ā2�w�

���A2�w�1�2�2 − ��A2�w − �Ā2�w��Ā2�w�1�2�̄2	 + g1g2���A1�w − �Ā1�w��A2�w�1�1�2 − ��A1�w − �Ā1�w��Ā2�w�1�1�̄2	

+ g1g2���A2�w − �Ā2�w��A1�w�1�2�2 − ��A2�w − �Ā2�w��Ā1�w�̄1�2�2	 . �A1�

To calculate the cumulant �q1 ,q2�c= �q1q2�− �q1��q2� we need �q� up to order g2:

�q� = � + ig�Aw��� − �� − Āw��� − �̄�	 + g2�Aw�2�� − �� + 2��2 − �� − ��̄� + g2

���A2�w���

2
−

�

2
� − �Ā2�w���

2
−

�̄

2
� + �Aw�2��� − ��2� + �Āw�2���̄ − ��2�� . �A2�

Substituting from �A1� and �A2� a radical simplification occurs:

�q1q2�c = g1g2��A2,A1�w − �A1�w�A2�w	��1�1�2�2 − �1�2� + complex conjugate. �A3�

This, of course, is what Theorem IV.1 tells us.
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