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There is a commonly recognized paradigm in which a multipartite quantum system described by a density
matrix having no product eigenbasis is considered to possess nonclassical correlation. Supporting this para-
digm, we define two entropic measures of nonclassical correlation of a multipartite quantum system. One is
defined as the minimum uncertainty about a joint system after we collect outcomes of particular local mea-
surements. The other is defined by taking the maximum over all local systems about the minimum distance
between a genuine set and a mimic set of eigenvalues of a reduced density matrix of a local system. The latter
measure is based on an artificial game to create mimic eigenvalues of a reduced density matrix of a local
system from eigenvalues of a density matrix of a global system. Numerical computation of these measures for
several examples is performed.
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I. INTRODUCTION

There has been a long-standing discussion on the defini-
tion of quantumness in a quantum state of a multipartite
system. One definition is, of course, entanglement which is
considered equivalent to inseparability according to the sepa-
rability paradigm �1–3�. The separability paradigm suggests,
as is well-known in this field, a classification of density ma-
trices of a system consisting of subsystems 1, . . . ,m. Sepa-
rable density matrices are those of the form

�sep
�1,. . .,m� = �

k

wk�k
�1�

� ¯ � �k
�m� �1�

with positive weights wk ��kwk=1� and density matrices �k
�·�

of subsystems. Inseparable density matrices are those that
cannot be represented in this form. A system �consisting of
remote subsystems� represented by a separable density ma-
trix is regarded as a classically correlated system because
local operations and classical communications �LOCC; see,
e.g., �4�� can create it from scratch: It can be prepared re-
motely when distant persons �Alice, Bob, …� receive in-
structions from a common source �Clare�.

A bipartite system is a typical system to investigate. Bi-
partite separable density matrices are those of the form

�sep
�A,B� = �

k

wk�k
�A�

� �k
�B� �2�

with positive weights wk ��kwk=1�. Bipartite inseparable
density matrices are those that cannot be represented in this
form. One supporting evidence for the paradigm is that a
bipartite system represented by a separable density matrix
does not violate Bell’s inequality �2,3�.

Detection methods of inseparability have opened a large
research field, many of which are based on the Peres-
Horodecki test �2,5� using positive but not completely posi-
tive linear maps.

It is still a challenging issue to find classes of density
matrices possessing nonlocal nature, other than the class of
inseparable density matrices. Bennett et al. �6� discussed a
certain nonlocality about locally nonmeasurable separable
states. Ollivier and Zurek �7� later introduced a measure
called quantum discord defined as a discrepancy of two ex-
pressions of mutual information that should be equivalent to
each other in a classical information theory. Another branch
of study on quantumness was started by Oppenheim and the
Horodecki family �8�; this was extensively studied by a
group consisting of the Horodecki family and other authors
�9�. They introduced a protocol called closed LOCC
�CLOCC�. This protocol allows only local unitary opera-
tions, attaching ancillas in separable pure states, and opera-
tions to send subsystems through a complete dephasing
channel. They also defined a measure of quantumness named
quantum deficit as a discrepancy between the information
that can be localized by applying CLOCC operations and the
total information of the system. The present work is in the
stream of these studies on quantumness in correlation.

One way to evoke a discussion on the validity of the
separability paradigm is to look at the persistent question
why a pseudopure state

�ps = p������ + �1 − p�1/d , �3�

with ��� an entangled pure state and d the dimension of the
Hilbert space, is often regarded as a classically correlated
state for small probability p because of its separability
proved by Braunstein et al. �10�. The state �ps can be re-
garded as a state possessing quantumness in correlation if we
choose another paradigm than the separability paradigm. It is
thus a rather conceptual question and is in relation to the
following discussion.

Suppose that we have a system consisting of two sub-
systems �local systems� and cannot eliminate a local and/or
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global superposition by local unitary operations. A system
described by �ps for any p�0 is a typical example. Then, can
correlation between those local systems be regarded as clas-
sical one? An answer is found in the paper by Oppenheim et
al. �8� �see also �9�� in which they made use of a class of
states having a biproduct eigenbasis for a certain classical-
nonclassical separation.

Definition 1. Let us consider a joint system consisting of
subsystems A and B with Hilbert space dimensions d�A� and
d�B�, respectively. A complete orthonormal basis �CONB�
consisting of eigenvectors, 	�ei

�A,B��
i=1
d�A�d�B�

, of a density
matrix of the system is a biproduct eigenbasis if and only

if it is given by the direct product as 	�ei
�A,B��
i= 	�ej

�A��
 j=1
d�A�

� 	�ek
�B��
k=1

d�B�
where 	�ej

�A��
 j and 	�ek
�B��
k are eigenbases of in-

dividual subsystems.
If a density matrix ��A,B� has a biproduct �BP� eigenbasis

	�ei
�A,B��
i= 	�ej

�A��
 j=1
d�A�

� 	�ek
�B��
k=1

d�B�
, it can be written in the

form

�BP
�A,B� = �

jk

cjk�ej
�A���ej

�A�� � �ek
�B���ek

�B�� �4�

with coefficients 0�cjk�1 �� jkcjk=1�. A state represented
by this density matrix is called a properly classically corre-
lated state or, shortly, classically correlated state �9�. It is also
called a classical-classical state �18�. The state that cannot be
represented by a density matrix in the above form is called a
nonclassically correlated state.

It is trivial to extend the above definition to a multipartite
system. A density matrix having a �fully� product �FP� eigen-
basis is written in the form

�FP
�1,. . .,m� = �

j,. . .,x=1,. . .,1

d�1�,. . .,d�m�

cj,. . .,x�ej
�1�� ¯ �ex

�m���ej
�1�� ¯ �ex

�m�� ,

�5�

with the local CONBs 	�ej
�1��
 j=1

d�1�
, . . . , 	�ex

�m��
x=1
d�m�

�d�·� is the
dimension of the Hilbert space of a local system� and the
coefficients 0�cj,. . .,x�1 �� j,. . .,xcj,. . .,x=1� in use. This defi-
nition separates the class of density matrices having a prod-
uct eigenbasis �this is a nonconvex set� from the class of
density matrices having no product eigenbasis, as illustrated
in Fig. 1. The latter class is characterized by nonvanishing
superposition �namely, nonvanishing off-diagonal elements�
under local unitary transformations.

In relation to the discussion on biproduct eigenbasis,
Groisman et al. �11� recently introduced a measure of quan-
tumness given by

Q���A,B�� = min
�BP

�A,B�
F���A,B�,�BP

�A,B�� ,

where the minimum is taken over all density matrices �BP
�A,B�

having a biproduct eigenbasis; F is any properly defined dis-
tance function, such as the relative entropy function.
Q���A,B�� must be invariant under local unitary operations
and must be zero for ��A,B� having a biproduct eigenbasis.
They also suggested to use a special density matrix �Sch

�A,B�

�they called it Schmidt state� to define an easily computable

measure of quantumness F���A,B� ,�Sch
�A,B��. The density matrix

�Sch
�A,B� is created by keeping only diagonal elements of ��A,B�

under the special basis diagonalizing TrB ��A,B� � TrA ��A,B�.
Indeed, it is a natural statement that a measure M of non-

classical correlation should satisfy the following conditions.
�i� M =0 if a system is described by a density matrix hav-

ing a product eigenbasis �i.e., M =0 is a necessary but not
sufficient condition for a state to have a product eigenbasis�.

�ii� M is invariant under local unitary operations.
These conditions are considered to be prerequisite hereaf-

ter. In addition, one may test if a measure possesses either of
�iii� full additivity, �iv� weak additivity, �v� subadditivity, etc.
in the family of additivity properties. These properties are
defined in the following way. They are desirable properties
for measures of multipartite correlation and not exactly
based on the additivity concept for bipartite correlation often
seen for entanglement measures �12�. Let us denote a mea-
sure of m-partite nonclassical correlation by Mm��� where �
is the density matrix of an m-partite quantum system. First,
the measure is fully additive if and only if

Mm1�m2
��1 � �2� = Mm1

��1� + Mm2
��2�

with �1 the density matrix of an m1-partite system and �2 the
density matrix of an m2-partite system. Second, the measure
possesses weak additivity if and only if

Mmn���n� = nMm��� .

Third, the measure possesses subadditivity if and only if

Mm1�m2
��1 � �2� � Mm1

��1� + Mm2
��2� .

In this paper, we introduce two measures of nonclassical
correlation for a general multipartite system and numerically
evaluate them for several examples. One of them, defined in
Sec. II, is similar to but different from the measure proposed
by Groisman et al. and the other one, defined in Sec. III, is
totally independent. This paper is organized as follows. In
Sec. II, we quantify a nonclassical correlation by a measure
defined as the minimum uncertainty with respect to a joint
system after we collect outcomes of particular local measure-
ments. This measure satisfies the full additivity condition.
The other measure will be introduced in Sec. III, which is
defined in the following way: we consider the minimum dis-

Separable

Density matrices

Having a product
eigenbasis

FIG. 1. Class of density matrices having a product eigenbasis
�white regions in the class of separable density matrices� and the
class of density matrices having no product eigenbasis �shaded
region�.
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tance between a genuine set and a mimic set of eigenvalues
of a reduced density matrix of a local system on the basis of
an artificial game in which one creates mimic eigenvalues of
a reduced density matrix of a local system from eigenvalues
of a density matrix of a global system. The measure is de-
fined by taking the maximum of this minimum distance over
all local systems. It satisfies the subadditivity condition and a
slightly stronger condition. We perform numerical computa-
tion of the two introduced measures for several examples in
Sec. IV and compare them with negativity that is a common
entanglement measure based on the separability paradigm. A
discussion on definitions of nonclassical correlation is given
in Sec. V. Section VI summarizes the results of this paper.

II. MEASURE OF NONCLASSICAL
CORRELATION I

We introduce the first of two measures of nonclassical
correlation in this section. It is based on the paradigm in
which a system described by a density matrix having a prod-
uct eigenbasis is considered to possess only a classical cor-
relation; in contrast, a system described by a density matrix
having no product eigenbasis is considered to possess a non-
classical correlation. We have seen the form of a density
matrix having a product eigenbasis for a bipartite system in
Eq. �4� and that for a multipartite system in Eq. �5�. We will
begin with the bipartite case.

A. Bipartite case

To quantify nonclassical correlation between distant sub-
systems of a bipartite system, we consider the situation illus-
trated in Fig. 2. Let us introduce Alice, Bob, and Clare. Alice
and Bob have subsystems of a system and they are distant
from each other. They can send reports to Clare. Alice �Bob�
can choose a complete orthonormal basis of her �his� sub-
system �basis 	�ej

�A��
 j for Alice and basis 	�ek
�B��
k for Bob�

for local �projective� measurements. Suppose that Alice
and Bob use the observables MA=� j j�ej

�A���ej
�A�� and MB

=�kk�ek
�B���ek

�B��, respectively, and report the outcomes j and k
to Clare. The probability that Clare receives j from Alice and
k from Bob is pjk= �ej

�A���ek
�B����A,B��ej

�A���ek
�B��. The same pro-

cess is performed for many copies of the same system shared
by Alice and Bob without changing the bases initially cho-
sen. Then, minimum uncertainty �over all possible initial
choices of local bases� that Clare has about ��A,B� after re-
ceiving their reports is

D���A,B�� = min
local bases�− �

jk

pjk log2 pjk� − SvN���A,B�� , �6�

where SvN���A,B�� is the von Neumann entropy. We employ
this quantity as a measure of nonclassical correlation. It is
obvious that D���A,B��=0 for a density matrix with a bi-
product eigenbasis. Otherwise, there is a possibility that
D���A,B���0. Thus a bipartite separable density matrix hav-
ing no product eigenbasis �as well as a bipartite inseparable
density matrix� possibly has a nonlocal correlation that may
be quantified by D���A,B��. A typical example is a density
matrix shown in Eq. �3� for 0� p�1. For this density ma-
trix, D���A,B���0 holds. In addition, we should stress that
D���A,B�� is invariant under local unitary operations; this is
clear from its definition in which we search over all local
bases to obtain the minimum.

One may find that the above process involving Alice,
Bob, and Clare can be reconstructed in terms of CLOCC
operations �8,9� to define the same quantity: Consider the
minimum discrepancy between the von Neumann entropy of
the original state ��A,B� and that of the state Clare can achieve
by merging states received from Alice and Bob only after
Alice and Bob locally use dephasing operations 	D���X��
=�i=1

d�X�
�ei���X��ei��ei��ei� where X is subsystem A or B, d�X� is

the dimension of its Hilbert space, and 	�e�i
i is the CONB of
her �his� choice. The minimum is taken over all choices of
local CONBs. Then the discrepancy is equal to the measure
D���A,B��. In this way, D���A,B�� can be related to the CLOCC
protocol that was the base protocol for quantum deficit �9�.
We should note that, in general, D���A,B�� is not equal to
quantum deficit; this is clear by comparing Eq. �11� of Ref.
�9� with the above definition. The measure D���A,B�� is equal
to the quantum deficit in the case where the zero-way
CLOCC protocol �9� is considered �20�.

In addition, the measure D���A,B�� is similar to but not
included in the measure of quantumness defined by Grois-
man et al. �11� in the sense that we search over all local
bases while their measure is defined by taking a minimum
over all classical states �hence, over all possible combina-
tions of eigenvalues and local bases�.

B. Multipartite case

It is straightforward to extend the definition, Eq. �6�, of D
to that for general multipartite systems. Let us consider a
density matrix ��1,. . .,m� of an m-partite system. Consider local
CONBs 	�ej

�1��
 j , . . . , 	�ex
�m��
x. Then, a measure of nonclassi-

cal correlation is given by

D���1,. . .,m�� = min
local bases�− �

j,. . .,x
pj,. . .,x log2 pj,. . .,x�

− SvN���1,. . .,m�� �7�

with

pj,. . .,x = �ej
�1���ek

�2�� ¯ �ex
�m����1,. . .,m��ej

�1���ek
�2�� ¯ �ex

�m�� .

An interpretation of this measure from an operational view-
point is possible. Let L1 �L2� be the average code length of
an optimal classical data compression, focusing on only di-
agonal elements, acting on a register of qudits subsequent to
local �global� unitary operations. Then the minimum discrep-
ancy between L1 and L2 leads to the definition of the mea-

Alice Bob

Clare

MA MB

j k

FIG. 2. System for which nonclassical correlation between Al-
ice’s part and Bob’s part of a quantum state is discussed. A measure
of nonclassical correlation is defined as a minimum uncertainty for
Clare about the state after receiving their reports.
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sure. The value of D���1,. . .,m�� is zero if ��1,. . .,m� has a �fully�
product eigenbasis. In addition, D���1,. . .,m�� is invariant under
local unitary operations as is clear from its definition in
which the minimum is taken over all local bases. Further-
more, we can prove that it is fully additive.

The proof of full additivity uses only a general property of
an entropy function in a particular form. Suppose that there
is a system consisting of subsystems X and Y described by
the reduced density matrices �X and �Y, respectively. Con-
sider an entropy function E of the product density matrix
�X � �Y and CONBs 	�x�
, 	�y�
 of the reduced density ma-
trices, written as

E�	�x�
,	�y�
,�X � �Y� = − �
�x��y�

�x��y��X � �Y�x��y�

�log2�x��y��X � �Y�x��y� .

We rewrite it as

E�	�x�
,	�y�
,�X � �Y� = E�	�x�
,�X� + E�	�y�
,�Y�

with entropies of subsystems

E�	�x�
,�X� = − ��x� �x��X�x�log2�x��X�x� ,

E�	�y�
,�Y� = − ��y� �y��Y�y�log2�y��Y�y� .

It is obvious that E�	�x�
 , 	�y�
 ,�X � �Y� is minimized if and
only if E�	�x�
 ,�X� and E�	�y�
 ,�Y� are individually mini-
mized. We conclude that D�� � 
�=D���+D�
� holds for
density matrices � and 
 accordingly. Thus the measure D
satisfies the full additivity condition.

C. Numerical method to estimate D

A pure random search of local bases is a practical method
to compute an estimated value of D���1,. . .,m��, defined by Eq.
�7�, for a small size of a multipartite density matrix ��1,. . .,m�.
Let us consider the bipartite case for clarity, where the den-
sity matrix is ��A,B�. We employ an ad hoc random search
algorithm introduced in Fig. 3 in which a Gram-Schmidt
process �see, e.g., p. 108 of Ref. �13�� is utilized. In addition,
it is needless to say that a similar algorithm can be used to
estimate a value of D���1,. . .,m�� for a general m numerically.

The random CONB generation is equivalent to a genera-
tion of random unitary matrices acting on fixed CONBs 	�j�

and 	�k�
. This is clear from the fact that for any local unitary
operations UA and UB, we have UA�j�= �ej� and UB�k�= �ek�.
The probabilities pjk are the diagonal elements of UA

†

� UB
†��A,B�UA � UB. �It is now trivial to generalize this to the

multipartite case.� Thus random matrix theories �14� will be
hopefully used to refine the algorithm. The present algorithm
is still fast enough to estimate a value of D���1,. . .,m�� for a
small number of qubits in a reasonable time. We show nu-
merical results in Sec. IV.

III. MEASURE OF NONCLASSICAL CORRELATION II

The previous measure, D, is defined as a minimum uncer-
tainty about a global system after collecting outcomes of

local measurements. Although the definition itself looks
quite reasonable, we have to stress the difficulty to find the
value of D because we need to try all possible product eigen-
bases to find the minimum, in principle. Strictly speaking,
we need to try an infinite number of product eigenbases, but
we would rather find an estimate value by using a random
search as we have seen. In this section, we will introduce the
second measure derived from an artificial game to mimic a
set of eigenvalues of a reduced density matrix of a local
system by using a set of eigenvalues of a density matrix of a
global system. The advantage of this measure is that it can be
calculated deterministically within a finite time. The disad-
vantage is its artificial definition, which may be insignificant
taking account of its advantage.

A. Bipartite case

Consider an artificial game pertaining to Alice, Bob, and
Clare. A system consisting of two parts, A �Alice’s part� and
B �Bob’s part�, is described by the density matrix ��A,B�. Alice
and Bob cannot measure the system at all. Clare knows the

set of all eigenvalues 	ejk
 jk=11
d�A�d�B�

where d�A� and d�B� are the
dimension of the Hilbert space of Alice’s part and that of
Bob’s part, respectively. Alice �Bob� wants to know the ei-
genvalues of her �his� part. This setup is illustrated in Fig. 4.
Let us concentrate on Alice’s strategy. She asks Clare to send
all the eigenvalues. Alice will partition d�A��d�B� eigenval-
ues received from Clare into d�A� sets

	a1,1, . . . ,a1,d�B�
, . . . ,	ad�A�,1, . . . ,ad�A�,d�B�
 .

To mimic an eigenvalue of the reduced density matrix of A,
she sums up all elements of each set to make a set of d�A�

mimic eigenvalues:

FIG. 3. Algorithm to compute an estimated value of D���A,B��.
See the text for the symbols used herein.
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	ẽ1, . . . , ẽj, . . . , ẽd�A�
 ,

where each element is calculated as

ẽj = �
k=1

d�B�

aj,k.

The number of possible combinations to partition d�A��d�B�

eigenvalues into d�A� sets is

�d�A� � d�B�

d�B� ���d�A� − 1� � d�B�

d�B� �¯ �d�B�

d�B� � .

Let us write the genuine eigenvalues of the reduced density

matrix of A by 	ej
 j=1
d�A�

. The minimum uncertainty for Alice
with respect to the set of these eigenvalues in the artificial
game may be given by

FA���A,B�� = min
partitionings

�
j

�ẽj log2 ẽj − ej log2 ej� . �8�

We may also consider the minimum uncertainty FB���A,B��
for Bob with respect to the set of eigenvalues for his local
part in the same game. The larger one of their minimum
uncertainties is then given by

G���A,B�� = max	FA���A,B��,FB���A,B��
 . �9�

This function can be used as a measure of nonclassical cor-
relation since G���A,B��=0 if ��A,B� has a product eigenbasis.
In addition, G���A,B�� is invariant under local unitary opera-
tions according to the definition since local unitary opera-
tions preserve the eigenvalues of reduced density matrices of
individual components and those of the density matrix of the
total system.

B. Multipartite case

An extension of the measure G to a multipartite case is
straightforward. Let us consider an artificial game to find out
eigenvalues of the reduced density matrix of a subpart from
eigenvalues of the density matrix of the total system. Sup-
pose that Kate has the kth part of an m-partite quantum sys-
tem. Let the dimension of the Hilbert space of the kth part be
d�k� and that of the Hilbert space of the total system be dtot.

She wants to know the eigenvalues 	ej
�k�
 j=1

d�k�
of the reduced

density matrix of the kth part. Kate receives dtot eigenvalues
from Tony who knows the eigenvalues of the total system.
Kate partitions them into d�k� sets. Summing up elements in
individual sets, she has d�k� mimic eigenvalues 	ẽj

�k�
. Thus a
measure of nonclassical correlation for Kate can be

Fk���1,. . .,m�� = min
partitionings

�
j=1

d�k�

�ẽj
�k� log2 ẽj

�k� − ej
�k� log2 ej

�k�� .

We may take the maximum over k to have the measure

G���1,. . .,m�� = max
k

Fk���1,. . .,m�� . �10�

This is equal to zero if ��1,. . .,m� has a �fully� product eigen-
basis. In addition, it is invariant under local unitary opera-
tions as is clear from the fact that these operations preserve
the eigenvalues of a density matrix of the total system and
those of the reduced density matrices of individual compo-
nents. The measure does not satisfy the �full or weak� addi-
tivity condition because the number of possible choices of
partitioning eigenvalues grows rapidly as the system size
grows. We can, however, prove its subadditivity.

The proof for its subadditivity is accomplished in the fol-
lowing way. Suppose the following story: there is a density
matrix � of an m�-partite system having the set of eigenval-
ues, 	�a
a=1

d� �here, d� is the dimension of the Hilbert space of
the system�. With this set of eigenvalues, Kate has created a
set of d�k� mimic eigenvalues of the reduced density matrix
of the kth part. There is another density matrix 
 of an
m
-partite system having the set of the eigenvalues, 	�b
b=1

d
 .
With this set of eigenvalues, Leo has created a set of d�l�

mimic eigenvalues of the reduced density matrix of the lth
part. Then a new game starts with a joint state � � 
. The
game for Kate �Leo� is to make a set of mimic eigenvalues
for her �his� part by partitioning the product set of eigenval-
ues 	�a
� 	�b
 of � � 
. Then, Kate �Leo� may make the
same set of mimic eigenvalues as before because she �he�
can make the set 	�a
 �	�b
� first by partitioning 	�a

� 	�b
. Thus Fk�� � 
��Fk��� and Fl�� � 
��Fl�
� hold.
Hence the next inequalities are satisfied.

G�� � 
� � max	G���,G�
�
 � G��� + G�
� .

In this way, the subadditivity G�� � 
��G���+G�
� has
been proved. We found that a slightly stronger condition
G�� � 
��max	G��� ,G�
�
 is satisfied as a result. This
property can be named submaximizability.

IV. NUMERICAL RESULTS

A. Examples for bipartite cases

We compare the measures D and G with the negativity

�15,16� N���A,B��=
��I�	T���A,B��−1

2 �here the map 	T is the
transposition map acting on B�.

The first example is the two-qubit pseudopure state

�ps = p������ + �1 − p�1/4

with ���= ��00�+ �11�� /�2. We used a pure �numerical� ran-
dom search of local bases, as introduced in Sec. II C, to
estimate a value of D��ps�. The number of trials of local
bases is 4.0�104 for each data point �namely, for each p in
this example� of D��ps�. �The number of trials is 4.0�104 for
the other examples of two-qubit cases and is 4.0�105 for the
examples involving an 8�8 density matrix.� Computation of

Alice Bob

Clare
e11

e12 ed d
[A] [B]

?? ??

FIG. 4. Illustration of the artificial game in which Alice �Bob�
tries to find the eigenvalues of the reduced density matrix of her
�his� part by the strategy described in the text. Clare knows the
eigenvalues of the total system.
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a value of G��ps� is, in contrast, performed analytically. The
eigenvalues of �ps are �1+3p� /4 and �1− p� /4 with the mul-
tiplicity three for the latter one. The eigenvalue of the re-
duced density matrix of a subpart is 1/2 with the multiplicity
two. Thus we have

G��ps� = 1 − H�1 + p

2
� ,

where

H�x� = − x log2 x − �1 − x�log2�1 − x�

is the binary entropy function �0�x�1�.
Figure 5 shows the plots of D��ps�, G��ps�, and N��ps�

against p �0� p�1�. The measures D and G reflect nonclas-
sical correlation for ∀p except for p=0.

The next example is a mixture of Bell basis states, repre-
sented by the density matrix

�b = p�b1��b1� + �1 − p��b2��b2�

with �b1�= ��00�+ �11�� /�2 and �b2�= ��01�+ �10�� /�2.
This density matrix has a product eigenbasis if p=0.5:
�b�p=0.5�= 1

2 ��+ ��+ ��+��+�+ �−��−��−��−�� with � �
= ��0� �1�� /�2.

With the same basis search method as the previous ex-
ample, we can estimate the values of D��b�. For this ex-
ample, however, it can be analytically found: The von Neu-
mann entropy of �b is given by H�p� and the remaining term
of Eq. �6� becomes 1 irrespective of the choice of a local
basis. Thus

D��b� = 1 − H�p� .

In addition, analytical computation of G��b� is easy: the ei-
genvalues of �b are p, 1− p, and 0 with the multiplicity two.
The eigenvalue of the reduced density matrix of a subpart is
1/2 with the multiplicity two. Thus taking the minimum over
partitionings of the eigenvalues of �b, we have

G��b� = 1 − H�p� .

We find that D��b�=G��b� for this particular example.
Figure 6 shows the plots of D��b�, G��b�, and N��b�

against p �0� p�1�. All of these measures vanish at p

=0.5 and have positive values for p�0.5. Thus the differ-
ence among measures is not significant for �b.

The third example is the density matrix �this is also of a
2�2 system�:

� =�
1/2 − p 0 0 0

0 p p 0

0 p p 0

0 0 0 1/2 − p
� �11�

with 0� p�1 /2. This may be seen as a mixture of pure
states �00�, �11�, and ��01�+ �10�� /�2 with certain weights. It
is separable for p�1 /4 because the eigenvalues of �I
� 	T�� are 1 /2−2p, p �with the multiplicity two�, and 1/2.
D��� is, in contrast, nonzero unless p=0 as shown in Fig. 7.
In the figure, we also plot

G��� = min�1 − H�1

2
+ p�,1 − H�2p�� .

This is derived from the following values: the eigenvalues of
� are 0, 1 /2− p �with the multiplicity two�, and 2p; the ei-
genvalue of TrB � and that of TrA � are both 1/2 with the
multiplicity two. Interestingly, the shape of the curve of G���
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FIG. 5. Plots of D��ps�, G��ps�, and N��ps� against p.
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FIG. 6. Plots of D��b�, G��b�, and N��b� against p. As we see in
the text, D��b�=G��b� in this example.
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FIG. 7. Plots of D���, G���, and N��� against p.
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is similar to that of D���. One drawback in using G��� is
that it vanishes at p=0.25 although � has no product eigen-
basis for this value.

As the final example for the bipartite case, we consider
the density matrix of a 2�4 system originally introduced by
Horodecki �17�:

�b
�A,B� =

1

7b + 1�
b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0 0 0 0 b

0 0 0 b 0 0 0 0

0 0 0 0
1 + b

2
0 0

�1 − b2

2

b 0 0 0 0 b 0 0

0 b 0 0 0 0 b 0

0 0 b 0
�1 − b2

2
0 0

1 + b

2

�
�12�

�0�b�1�. This is known to be bound entangled for 0�b
�1, i.e., it is positive after partial transposition although it is
inseparable for 0�b�1. Hence N��b

�A,B��=0. We find, in
contrast, that D��b

�A,B�� and G��b
�A,B�� are nonzero for b�0 as

shown in Fig. 8. The measure G��b
�A,B�� is also plotted in the

figure. This is accomplished by using the definition Eq. �9�
together with the following values. We have the eigenvalues
of �b

�A,B�:

2b + 1  �2b2 − 2b + 1

14b + 2
,

b

7b + 1
,

2b

7b + 1
�multiplicity two� ,

and 0 �multiplicity three�;

the eigenvalues of TrB �b
�A,B�: �3b+1� / �7b+1� and 4b / �7b

+1�; and the eigenvalues of TrA �b
�A,B�: �3b

+1�1−b2� / �14b+2� and 2b / �7b+1� with the multiplicity
two.

B. Tripartite examples

Numerical computation of D and G defined by Eqs. �7�
and �10�, respectively, is easy also for a tripartite density
matrix ��1,2,3� of three qubits. We will compare D���1,2,3��,
G���1,2,3��, and the minimum and maximum negativities of
��1,2,3� over all bipartite splittings.

Consider the pseudo-GHZ �PGHZ� state:

�PGHZ = p��GHZ���GHZ� + �1 − p�1/8

with ��GHZ�= ��000�+ �111�� /�2, the Greenberger-Horne-
Zeilinger �GHZ� state. For this state, it is possible to find
G��PGHZ� analytically: The eigenvalues of �PGHZ are �1
+7p� /8 and �1− p� /8 with the multiplicity seven for the lat-
ter one; the reduced density matrix of any subpart has the
eigenvalue 1/2 with the multiplicity two. Thus G��PGHZ�=1
−H��1+ p� /2�. We can easily find that this equation holds for
any number of qubits �larger than two� for the PGHZ state.

Figure 9 shows the plots of D��PGHZ�, G��PGHZ�, and the
minimum and maximum of the negativity for �PGHZ over all
bipartite splittings against p �0� p�1�. D and G reflect non-
classical correlation for ∀p except for p=0.

The density matrix of the final example for a 2�4 bipar-
tite case can be also interpreted as a density matrix of a 2
�2�2 tripartite case. Let us consider the density matrix
�b

�1,2,3� of three qubits given by the matrix of Eq. �12�. Figure
10 shows the plot of D��b

�1,2,3��, the plot of G��b
�1,2,3��, and

the plots of the maximum and minimum negativities over all
bipartite splittings. The computation of G��b

�1,2,3�� is per-
formed by using the eigenvalues of �b

�1,2,3� �found in the pre-
vious subsection� and the sets of eigenvalues of the reduced
density matrices of subsystems k �k=1,2 ,3 and the follow-
ing sets are given in this order�: 	�4b� / �7b+1� , �3b+1� / �7b
+1�
, 	1 /2,1 /2
, and 	1 /2,1 /2
. It is found that D��b

�1,2,3��
behaves similarly to the maximum negativity over all bipar-
tite splittings although the convergence values are different.
The use of G��b

�1,2,3�� seems to be improper for this example
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FIG. 8. Plots of D��b
�A,B��, G��b

�A,B��, and N��b
�A,B�� against b.

Note that N��b
�A,B�� is zero.
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because its value is very small for b�0.15 despite the fact
that �b

�1,2,3� has no �fully� product eigenbasis for any b.

V. DISCUSSION

We have considered a nonclassical correlation based on a
commonly recognized paradigm other than the separability
paradigm. We have introduced two measures of a nonclassi-
cal correlation for the paradigm claiming that a multipartite
system described by a density matrix having no product
eigenbasis possesses a nonclassical correlation.

A motivation to consider a paradigm other than the sepa-
rability paradigm is connected to a conceptual investigation
of the separability paradigm. Let us consider a bipartite sys-
tem to simplify the discussion. The separability paradigm
says that a system described by a bipartite separable density
matrix can be prepared remotely when two distant persons
�Alice and Bob� receive instructions from a common source.
Hence there is no quantumness possessed by the system de-
scribed by such a density matrix in the context of remote
preparation. This assumes that a density matrix is a temporal
average of instantaneous density matrices or an ensemble
average whose component density matrices are accessible
independently because Alice and Bob prepare component
states one by one.

Nevertheless, this seems to be a nonmixing process be-
cause Alice and Bob have accesses to individual instances or
components; this is in contrast to usual processes in en-
semble dynamics which are mixing. To make it a mixing
process, they should lose their memories about time ordering
of instances when the averaging is temporal averaging; in the
case of ensemble averaging, they should lose their memories
about indices of components. In contrast, Alice and Bob do
not have any memory to lose when subparts of a system are
distributed to them after a joint preparation of a quantum
state. Thus it is questionable to compare the amount and
quality of correlation of a remotely prepared state with those
of a jointly prepared state because the two contexts are dif-
ferent.

The paradigm that we support in this work assumes that a
density matrix having no product eigenbasis possesses non-
classical correlation. A discussion on the state preparation is
not involved in its context. It is based on the problem as to
whether or not off-diagonal elements of the density matrix of
a multipartite system can be completely eliminated by local
unitary operations. This paradigm has been widely recog-
nized in the community while it is not considered to be a
replacement of the separability paradigm. It is a highly con-
ceptual problem as to which protocol should be a base pro-
tocol to think about correlation.

We have studied two measures D and G of nonclassical
correlation based on the paradigm. The former is defined as a
global uncertainty while the latter is defined as a local un-
certainty. These two measures are quite different in their
naturalness: the former can be interpreted as the minimum
uncertainty for a global observer on the total system after
receiving reports on local systems; the latter is based on
some quite artificial game and is, of course, unnatural. It is
thus unexpected that plotted curves of these measures are
sometimes similar to each other as we have seen in numeri-
cal results. We may enjoy the advantage to use the measure
G, namely its easiness of computation. In contrast to D,
which requires a numerical search for computing its value, G
can be computed by considering a finite number of eigen-
value partitionings. A drawback is that G is possibly small
for a density matrix having many nonzero eigenvalues, as we
have seen in Fig. 10 for an example. It is easy to produce
mimic eigenvalues of a subsystem close to genuine ones if
the number of possible partitionings is large. This drawback
is related to the fact that G is not �fully or weakly� additive
but subadditive, in contrast to D that is fully additive. A
measure with �full or weak� additivity is more reliable to
quantify nonclassical correlation as the system size grows.

As we mentioned, there is a similarity between D and the
measure defined by Groisman et al. �11�. Let us consider a
bipartite case. Suppose that we change the definition of D in
the way that we choose the basis written as a product of two
eigenbases of local systems A and B instead of searching the
minimum over all product bases. Then, this redefined mea-
sure is included in the distance measures using the discrep-
ancy between the given bipartite density matrix ��A,B� and the
Schmidt state �Sch

�A,B�. The measure D is thus close to the mea-
sures defined as a discrepancy between ��A,B� and some spe-
cific density matrix having product eigenbasis �this can be
the one that minimizes the distance, or some particular one to
simplify the computing process�.

Finally, we take a brief look at an ongoing development in
measures of nonclassical correlation. One of the measures
very recently proposed by Piani et al. �18� is designed to
quantify nonclassical correlation in the same paradigm as
presently employed. It is their measure �CC defined in a
similar way as that of quantum discord �7�: �CC is a discrep-
ancy between the quantum mutual information �19�, I���A,B��,
calculated for a bipartite density matrix ��A,B� and
minMA,NB

I��MA � NB���A,B�� with two measurement maps
MA and NB associated to POVMs. They also showed a
straightforward extension of their theory to the multipartite
case. An advantage of �CC is that it vanishes if and only if
��A,B� has a biproduct eigenbasis. A disadvantage is the diffi-
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culty of finding the minimum as is similar to the above-
discussed disadvantage of D.

There must be a large number of measures to quantify
nonclassical correlation for the paradigm; this is reminiscent
of the dawn of entanglement measures. It is hoped that the
paradigm will be studied extensively to extend another
branch of quantum-information science than the branch of
the separability paradigm.

VI. SUMMARY

Two measures of nonclassical correlation have been intro-
duced to support the paradigm claiming that a multipartite
system described by a density matrix having no product
eigenbasis possesses nonclassical correlation. The measure D
has been defined as the minimum uncertainty about a joint
system after we collect outcomes of particular local measure-
ments. The measure G has been defined in the following
way: consider the minimum distance between a set of mimic

eigenvalues and a set of genuine eigenvalues of a local sys-
tem on the basis of an artificial game. The measure is defined
by taking the maximum of this minimum distance over all
local systems. We have shown that D is fully additive and G
is subadditive. Numerical computations of D and G have
been performed by using a random search of local bases and
a nonprobabilistic search of mimic eigenvalues, respectively.
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