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Emergence of atom-light-mirror entanglement inside an optical cavity
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We propose a scheme for the realization of a hybrid, strongly quantum-correlated system formed of an
atomic ensemble surrounded by a high-finesse optical cavity with a vibrating mirror. We show that the steady
state of the system shows tripartite and bipartite continuous variable entanglement in experimentally accessible

parameter regimes, which is robust against temperature.
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Recently, there has been an increasing convergence be-
tween condensed-matter physics and quantum optics, which
has manifested in different ways. On the one hand, systems
of cold trapped atoms [1], ions [2], and electrons [3] may
realize quantum simulators able to reproduce and study
condensed-matter concepts such as Fermi surfaces and
Heisenberg models in a controllable and tunable way. On the
other hand, circuit cavity QED [4] provides an example in
which nano- and microstructured condensed-matter systems
are specifically designed in order to reproduce the phenom-
ena and control of quantum coherence typical of quantum
optics system. Alternatively, one can design schemes in
which one has a direct, strong coupling between an atomic
degree of freedom and a condensed-matter system. Examples
of this latter kind are ion-nanomechanical oscillators [5],
ion—Cooper-pair box [6] systems, or a Bose-Einstein conden-
sate coupled to a cantilever via a magnetic tip [7]. An addi-
tional important example is provided by cavity optomechani-
cal systems for which strong coupling between an optical
cavity mode and a vibrational mode by radiation pressure
was already demonstrated [8—18], and for which schemes
able to show quantum entanglement [19-22] and even quan-
tum teleportation [23] have already been proposed. In these
systems, the radiation pressure interaction can be made con-
siderably large so that genuine quantum effects can be real-
ized when microcavities and extremely light acoustic resona-
tors [10-15,18] are used.

In this Rapid Communication, we propose a hybrid sys-
tem formed by an atomic ensemble placed within an optical
Fabry-Perot cavity, in which a micromechanical resonator
represents one of the mirrors [see Fig. 1(a)]. The atoms are
indirectly coupled to the mechanical oscillator via the com-
mon interaction with the intracavity field. As a first step to-
ward quantum state engineering of mechanical oscillators
and quantum state transfer between atoms and mirrors, we
show that by using state-of-the-art technology, it is possible
to generate stationary and robust continuous variable (CV)
tripartite entanglement in the field-atoms-mirror system. To
this purpose, we consider N, two-level atoms placed in an
optical cavity under weak-coupling conditions and far from
the cavity main resonance w.. CV tripartite entanglement can
be generated by choosing as a working point for the optical
cavity with a vibrating mirror the parameter regime corre-
sponding to the ground-state cooling of the mechanical reso-
nator [24-27]. In fact, preferential scattering of cavity light
into a higher-frequency motional sideband of the driving la-
ser is responsible for cooling of the mechanical system. It
was shown in [22] that in this cooling regime, field-mirror
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entanglement can be generated, which can be explained in
terms of sideband scattering because such an entanglement is
mostly carried by the Stokes sideband. All these facts make
up the basis for the robust tripartite atom-resonator-field en-
tanglement reported here. In fact, if the laser anti-Stokes
sideband is resonant with the cavity, the mechanical resona-
tor is cooled by photon leakage, and if then the atomic fre-
quency matches the red (Stokes) sideband frequency, a reso-
nant atoms-mirror coupling mediated by the cavity field is
established. We shall see that in such a regime, robust CV
tripartite and bipartite entanglement is generated.

Description of the system. We consider an optical cavity
with a fixed input mirror and a second oscillating mirror,
which is driven by a laser at frequency w;. An ensemble of
two-level atoms is placed inside the cavity and it is off-
resonantly coupled by a collective Tavis-Cummings-type in-
teraction to the optical field [28]. Mirror vibrational motion
can be modeled by a harmonic-oscillator of frequency w,,
and a decay rate v,,. In the absence of dissipation and fluc-
tuations, the total Hamiltonian of the system is given by the
sum of a free evolution term,
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FIG. 1. (Color online) (a) The cavity is driven by a laser at
frequency w; and the moving mirror at frequency w,, scatters pho-
tons on the two sidebands at frequency w;* w,,. (b) If the cavity
with frequency w,. and bandwidth « is put into resonance with the
anti-Stokes sideband (blue), outgoing cavity photons cool the mir-
ror vibrational mode. If the atoms are off-resonance with the cavity
but resonantly coupled to the red sideband, an entangled tripartite
atom-field-mirror system emerges.
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H;=hg(S,a+S_a") —hGoa'ag +ihE(a’e” — aei®’). (2)

The laser drives significantly only a single cavity mode with
frequency w,, bandwidth «, and annihilation operator a (with
[a,a"]=1). The atomic ensemble is comprised of N, two-
level atoms with natural frequency w, each described by the
spin-1/2 algebra of Pauli matrices o, 0'_, and o,. Collective
spin operators are defined as S, _ —E{l}cr . for l—l N, and
satisfy the commutation relations [S,.S_ ] S and [SZ,S+]

= *+2§.. The mechanical mode dlmensmnless position and
momentum operators ¢ and p satisfy [¢,p]=i. The atom-
cavity coupling constant is given by g=u\w,./2%€,V, where
V is the cavity mode volume and w is the dipole moment of
the atomic transition. The radiation pressure coupling con-
stant is instead given by Go=(w,/L)VA/maw,, where m is the
effective mass of the mechanical mode and L is the length of
the cavity. The last term describes the driving of the cavity
by the laser with amplitude E;, which is related to the input
power P, and the cavity decay rate k by |E;|=V2Pk/fw,.

The dynamics of the tripartite atom-field-mirror system
can be described by a set of nonlinear Langevin equations in
which dissipation and fluctuation terms are added to the
Heisenberg equations of motion derived from the Hamil-
tonian of Egs. (1) and (2) [29]. However, we consider a
simplified version of such equations, which is valid in the
low atomic excitation limit, i.e., when all the atoms are ini-
tially prepared in their ground state, so that S,=(S,)=-N,
and this condition is not appreciably altered by the interac-
tion with the cavity. This is satisfied when the excitation
probability of a single atom is small. In this limit, the dy-
namics of the atomic polarization can be described in terms
of bosonic operators: in fact, if one defines the atomic anni-
hilation operator ¢=S_/+ )|, one can see that it satisfies
the usual bosonic commutation relation [c,c™]=1 [30]. In the
frame rotating at the laser frequency w,; for the atom-cavity
system, the quantum Langevin equations (QLE) can then be
written as

g=w,p, (3a)

p=—w,q—yp+Goa'a+é, (3b)

a=-(k+iApa+iGoaq—iG,c+E + V’E(ain, (3¢)

¢=—(y,+iA)c —iG,a+\2y,F,, (3d)

where Aj=w.~w; and A,=w,~w; are, respectively, the cav-
ity and atomic detuning with respect to the laser, G, g\N
and 27, is the decay rate of the atomic excited level. The
Langevin noise operators affecting the system have zero
mean value, the Hermitian Brownian noise operator ¢ has
correlation function

(ED &)Y = (y,/2Tw,,) J dwe‘iw(t_”>w[coth(ﬁw/ZkBT) +1]

(kg is the Boltzmann constant and 7 is the temperature of the
mechanical oscillator reservoir) [31], while the only nonva-
nishing correlation function of the noises affecting atoms and
cavity field is (ay()aj (1) =(F . (OF (t"))=8(t-1") [29].
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We now assume that the cavity is intensely driven, so that
at the steady state, the intracavity field has a large amplitude
a,, with |a;| > 1. In the strong-driving limit, one has a semi-
classical steady state; the corresponding mean values can be
determined by setting the time derivatives to zero, factoriz-
ing the averages in Egs. (3), and then solving the correspond-
ing set of nonlinear algebraic equations. The resulting sta-
tionary values are p,=0, ¢,=Gy|a,|*/w,, c,=—iG,a,/(y,
+iA,), where the stationary intracavity field is the solution of
the nonlinear ~  equation o[ k+ilp— iG3l e,/ @,
+G2/(y,+iA,)]=E,. We are interested in establishing the
presence of quantum correlations among atoms, field, and
mirror at the steady state. This can be done by analyzing the
dynamics of the quantum fluctuations of the system around
the steady state. It is convenient to consider the vector of
quadrature fluctuations u=(8g,8p,8X,8Y,dx,8y)", where
SX=(da+da") /2, 8Y = (ba— sa’) /2, Sx=(dc+ch)/\2,
and Sy=(c—éoct)/ iV2, and linearize the QLE (3) around
the steady-state values. The linearization is justified when-
ever |a;|>1 [22]. The resulting evolution equation for the
fluctuation vector is

u=Au+n, (4)

where the drift matrix A is given by

0 w, 0 0 0 0
— Wy —Ym Gm 0 0 0
0 0 -x A 0 G,
A= (5)
G, 0 -A -x -G, 0
0 0 0 G, -y, A,

0 0 -G, 0 -A, —v,

with the effective optomechanical coupling G,,=Gya, V2 (we
have chosen the phase reference so that «, can be taken real)
and the effective cavity detuning A=Af G2 /2w,,. The vec-
tor of  noises _n is glven by n
—(O § N 2KXm’ N 2KYm’ N 27;1_ in» \27aym) where Xm (am
+aT)/ \2 Yin=(an—al)/iN2, x,,=(F, +FT)/\2 and y;,=(F.

Jrl)/ i2. Owing to the Gaussian nature of the quantum
noise terms &, a;,, and F., and to the linearization of the
dynamics, the steady state of the quantum fluctuations of the
system is a CV tripartite Gaussian state, which is completely
determined by the 6X6 correlation matrix (CM) V;
=(u;(@)u () +u;(*)u,(>))/2. The Brownian noise &(t) is not
o-correlated and therefore does not describe a Markovian
process [31]. However, entanglement can be achieved only
with a large mechanical quality factor, O=w,,/ 7,,> 1. In this
limit, &) becomes S-correlated [32],
(ENEQ")+&E(1)ED) 2=, (2n+1)8(t-1"), ~ where 7
=(exp{hw,,/kgT}—1)"" is the mean vibrational number. In
this Markovian limit, the steady-state CM can be derived
from the following equation [22,33]:

AV+ VAT =—-D, (6)

where D=diag[0, v,,(2n+1), «, k, y,, v,] is the diffusion ma-
trix stemming from the noise correlations.

We have solved Eq. (6) for the CM V in a wide range of
the parameters G,,, G,, A, and A,. We have studied first of
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FIG. 2. (Color online) (a) Logarithmic negativity of the mirror-
field subsystem versus the normalized cavity detuning in the ab-
sence of the atoms. Entanglement is maximized around the optimal
cooling regime (shown in the inset), namely around A= w,, (see
text for the other parameter values). (b) Logarithmic negativity for
the three bipartite entanglements as a function of the normalized
atomic detuning (see text for the value of atomic parameters). At
A,=-w,, a decrease in the mirror-field (i, blue line) entanglement
is associated with an increase of the mirror-atoms (ii, red line) and
atoms-field (iii, green line) entanglement. (c) Same as in (b) but for
the larger temperature 7T=5T,. (d) Temperature robustness of
mirror-atoms entanglement up to 407, (24 K).

all the stationary entanglement of the three possible bipartite
subsystems, by quantifying it in terms of the logarithmic
negativity [34] of bimodal Gaussian states. We will denote
the logarithmic negativities for the mirror-atom, atom-field,
and mirror-field bimodal partitions as E,,,, E,;, and E, re-
spectively.

The results on the behavior of the bipartite entanglement
are shown in Fig. 2. We have considered experimentally fea-
sible parameters [11,13], i.e., an oscillator with w,,/27
=107 Hz, Q=10°, and m=10 ng coupled to a cavity driven
by a laser of power P=35 mW at \;=1064 nm (correspond-
ing to G,,/2m=8 X 10% Hz), with length L=1 mm and fi-
nesse F=3 X 10*. The properties of the chosen working point
of the cavity system are shown in Fig. 2(a), showing the
mirror-cavity mode logarithmic negativity and, in the inset,
the effective mean excitation number of the mechanical os-
cillator, n.y, in the absence of the atoms, versus the normal-
ized cavity detuning. The inset shows that we are close to
ground-state cavity cooling of the mirror vibrational mode
because n.g is decreased from the initial value 7=1250 (cor-
responding to a reservoir temperature T;=0.6 K) to n.
=0.2 when A=w,, i.e., the cavity is resonant with the anti-
Stokes sideband of the laser. This cooling regime allows us
to reach simultaneously a significant optomechanical en-
tanglement. This can be understood in view of the results of
[23,35], where the entanglement between a vibrating mirror
and the scattered optical sidebands is analyzed; when the
mirror effective temperature is low enough, one can have
strong mirror-Stokes sideband entanglement. This latter en-
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tanglement is then exploited when the atomic ensemble is
placed within the cavity. In Figs. 2(b) and 2(c), the logarith-
mic negativity of the three bipartite cases is plotted versus
the normalized atomic detuning when 7,/27=5X 10° Hz
and G,/2m=6X10° Hz. It is evident that one has a sort of
entanglement sharing: due to the presence of the atoms, the
initial cavity-mirror entanglement is partially redistributed to
the atom-mirror and atom-cavity subsystems and this effect
is predominant when the atoms are resonant with the Stokes
sideband (A,=-w,,). It is remarkable that, in the chosen pa-
rameter regime, the largest stationary entanglement is the
one between atoms and mirror, which are only indirectly
coupled. Moreover, the nonzero atom-cavity entanglement
appears only due to the effect of the mirror dynamics, be-
cause in the bosonic approximation we are considering and
with a fixed mirror, there would be no direct atom-cavity
entanglement. We also notice that atom-mirror entanglement
is not present at A,=w,,. This is due to the fact that the
cavity-mirror entanglement is mostly carried by the Stokes
sideband and that, when A,=w,,, mirror cavity-cooling is
disturbed by the anti-Stokes photons being recycled in the
cavity by the absorbing atoms.

Figure 2(c) shows the same plot but at a higher tempera-
ture, T=57,=3 K, showing that the three bipartite entangle-
ments are quite robust with respect to thermal noise. This is
studied in more detail in Fig. 2(d), where the atom-mirror
entanglement at A ,=—w,), is plotted versus the reservoir tem-
perature: such an entanglement vanishes only around 20 K.

The simultaneous presence of all three possible instances
of bipartite entanglement witnesses the strong correlation be-
tween the atoms, the intracavity field, and the mechanical
resonator at the steady state. This is also confirmed by the
fact that such a state is a fully inseparable tripartite CV en-
tangled state in the parameter regime of Fig. 2, for a wide
range of atomic detuning (-3w,,<A,<3w,,) and up to tem-
peratures of about 30 K. This has been checked by applying
the results of Ref. [36], which provide a necessary and suf-
ficient criterion for the determination of the entanglement
class of a tripartite CV Gaussian state.

Let us discuss the limits of validity of the model. The
bosonic description of the atomic polarization is valid when
the single-atom excitation probability, g?|a,|*/(A2++72), is
much smaller than 1. Instead, the linearization of the QLE is
valid when |a,| > 1. Therefore, the two conditions are simul-
taneously satisfied only when g?/(A2+ %) <|a,[2<1. This
implies requiring a very weak atom-cavity mode coupling.
However, the assumed regime of strong laser cooling of the
mirror implies assuming a small cavity mode volume (V
=10""2 m%. As a consequence, g is not small if we consider
a standard optical dipole transition. Nonetheless, the required
weak-coupling condition can still be satisfied in two cases of
interest. (i) An atomic vapor cell much larger than the cavity
mode: if the (hot) atoms move in a cylindrical cell with axis
orthogonal to the cavity axis, with diameter ~0.5 mm and
height ~1 cm, they will roughly spend only one-thousandth
of their time within the cavity mode region. This yields an
effective, much smaller, time-averaged coupling constant g
~10* Hz, so that the required assumptions are satisfied for
|at;| =10%. The chosen value G,/2m=6X 10° Hz can then be
obtained with N,~107. (ii) A similar solution can be ob-
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tained by choosing a dipole-forbidden transition and a cold
atomic ensemble.

The entanglement properties of the steady state of the
tripartite system can be verified by experimentally measuring
the corresponding CM. This can be done by combining ex-
isting experimental techniques. The cavity field quadratures
can be measured directly by homodyning the cavity output,
while the mechanical position and momentum can be mea-
sured with the setup proposed in [22], in which by adjusting
the detuning and bandwidth of an additional adjacent cavity,
both position and momentum of the mirror can be measured
by homodyning the output of this second cavity. Finally, the
atomic polarization quadratures x and y (proportional to S,
and S,) can be measured by adopting the same scheme of
Ref. [37], i.e., by making a Stokes parameter measurement
of a laser beam, shined transversal to the cavity and to the
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cell and off-resonantly tuned to another atomic transition.
In conclusion, we have proposed a scheme for the realiza-
tion of a hybrid quantum correlated tripartite system formed
by a cavity mode, an atomic ensemble inside it, and a vibra-
tional mode of one cavity mirror [38]. We have shown that,
in an experimentally accessible parameter regime, the steady
state of the system shows both tripartite and bipartite CV
entanglement. The realization of such a scheme will open
new perspectives for the realization of quantum interfaces
[39] and memories for CV quantum information processing
and also for quantum-limited displacement measurements.
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