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The best qubit one-way quantum-key-distribution �QKD� protocol can tolerate up to 14.6% in the error rate.
It has been shown how this rate can be increased by using larger quantum systems. The polarization state of a
biphoton can encode a three-level quantum system—a qutrit. The realization of a QKD system with biphotons
encounters several problems in generating, manipulating, and detecting such photon states. We define those
limitations and find within them a few protocols that perform almost as well as the ideal qutrit protocol. One
advantage is that these protocols can be implemented with minor modifications into existing single photon
systems. The security of one protocol is proved for the most general coherent attacks and the largest acceptable
error rate for this protocol is found to be around 17.7%. For comparison, the security of the best possible qutrit
protocol of four mutually unbiased bases was also rigorously analyzed against general attacks, with a proven
bound on the acceptable error rate of 21.1%.
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In order to establish an unconditionally secure communi-
cation channel between two parties �traditionally called Alice
and Bob�, they have to share a random sequence of bits
known only to them—a one time pad. Quantum key distri-
bution �QKD� is a scheme that exploits the details of quan-
tum measurements for generating such a key. In the most
basic protocol �referred to as BB84 after its inventors Ben-
nett and Brassard in 1984 �1��, Alice sends Bob a series of
two-level quantum systems, referred to as qubits. The states
are randomly chosen from two sets, each of them contains
two orthogonal states that represent the logical zero and one.
The two sets relate to each other in a mutually unbiased way,
i.e. the probability of measuring any particular state when
given a state from a different set is 1/2. Thus, if Alice
chooses to send a state from the first set, a measurement in
the basis of the other, either by Bob or by an eavesdropper
�called Eve�, will give no information about Alice’s choice.

To create the required secret key, a few more steps should
be carried out through a classical channel, not necessarily
secured. First, Alice and Bob compare their measurement
bases and sift only those bits which were measured in iden-
tical bases. From the remaining key, they reveal a portion
and compare the results in order to estimate the noise param-
eter. This noise can result either from a real physical noise in
the channel as well as from Eve’s measurements. Next, they
perform two transformations on the key, one to correct for
errors and the second, called privacy amplification, to reduce
the amount of mutual information between them and Eve.

A QKD protocol is characterized by a few parameters.
The ratio between the number of remaining bits after com-
pleting this procedure to the number of bits before it, is
called the rate of the protocol. The merit function that char-
acterizes a specific protocol shows its rate as a function of
the disturbance, the error probability that the channel and
Eve have created. The higher the critical disturbance, where
the rate approaches zero, the more useful is the protocol. In
recent years, the lower bound on the critical error rate of
BB84 was improved several times and the best known result
is about 12.9% �2�.

The BB84 protocol can be extended in many ways. The

first simple way is to add an extra base that is mutually
unbiased with both others �3�. It can be easily shown that
only one mutually unbiased base �MUB� can be added to the
BB84 protocol. According to Ref. �4�, the current critical
error rate of this three MUB protocol is around 14.6%. An-
other approach is to use quantum systems of higher dimen-
sionality �5�. A three-level system can represent a quantum
trit �qutrit� and a general d-level system can represent a qu-
dit. A possible advantage is the larger number of MUB, up to
d+1 for a d-dimensional protocol �6�. Previously, general-
ized protocols that use qutrits and higher dimensional quan-
tum systems have been suggested and their security was
studied �5,7�. A potential advantage of improved rates for
such protocols was shown by examining various attack
schemes �8–13�. However, the values of the critical error
rates for qutrit protocols subject to general attacks are still
unknown.

There are a few approaches for the realization of more
than two-level quantum systems with light. One is by dis-
criminating between modes of different orbital angular mo-
mentum �14,15�. Another approach is to use several spatial
modes �16� or time bins �17�. A different approach that has
been studied extensively in recent years is the qutrit repre-
sentation of the polarization state of two indistinguishable
photons—a biphoton �18,19�. A general biphoton state can
be written as

��2� = �0�2,0� + �1�1,1� + �2�0,2� , �1�

where �nh ,nv� is a Fock representation of nh �nv� horizontally
�vertically� polarized photons. The general state �2 is repre-
sented by a complex vector �̄= ��0 ,�1 ,�2� with four degrees
of freedom �three complex numbers less a general phase and
normalization�. This scheme can be also extended to higher
dimensions by adding more photons, but in this paper we
focus on qutrits.

There are a few difficulties with generating arbitrary bi-
photon states �20� as well as when trying to manipulate �21�
and detect them. Optical parametric down conversion �PDC�
is the obvious choice as a generating scheme, but there are
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only two types of processes available; type I that creates
states of the �2,0� and �0,2� forms, and type II that creates
�1,1� �both in a collinear scheme�. If a noncollinear scheme
is used, type I can create the �1,1� type as well. In order to
create a general state as in Eq. �1�, a sensitive interferometer
that includes both type I and II crystals is required. More-
over, as we will show later, it is impossible to transform
efficiently by means of linear optics a state created with one
PDC process into an arbitrary biphoton state. Finally, as
transformations are limited, efficient detection is only pos-
sible for the three basic vectors �the components of Eq. �1�,
defined as the “measurement basis”� and their available
transformations within those limits. Detection of a general
state is only possible with a beam-splitter setup that detects a
general state only 1 out of 4 attempts.

In this paper, we define the subset of biphoton states,
which is easily generated, manipulated and detected. We find
biphoton QKD protocols within these limits that are more
secure and efficient than the best single photon protocol.
Critical error rates are derived for various one-way qutrit
protocols subject to general attacks, and compared to the best
possible qutrit protocol of 4 MUB �5�.

First, we shall define the set of allowed transformations.
When a biphoton is transmitted through a linear optics setup,
the polarization state of both of its photons experience the
same single photon unitary transformation. The set of all
possible unitary transformations on a single photon polariza-
tion can be mapped onto the Poincaré sphere �or the Bloch

sphere for a general qubit realization�, such that Û�� ,�� de-
scribes the operation that transforms the state at the north
pole to the coordinates �� ,��. Thus, if we position the state
�1,0� at the north pole, a general operation will transform it
into

Û��,���1,0� = cos��/2��1,0� + sin��/2�ei��0,1� . �2�

We name the north pole state as the “anchor” state and the

set of Û operators as the single photon operations. In this
single photon case it is trivial to show that whatever anchor

state is chosen, the Û operators will always cover the whole
single photon polarization space. There are a few simple
rules to note. A trivial 2� rotation along any great circle will
bring any state to itself, while a � rotation will transform any
state to its orthogonal state. Moreover, a rotation by only
� /2 along such a path always transforms between two mu-
tually unbiased states.

We shall now find the set of states that can be reached by

applying Û to the biphoton measurement basis. Choosing the
states �2,0� and �1,1� as the anchors and applying the single
photon operations, we get

Û��,���1,0,0� = �cos2��

2
	,

1

2

sin���ei�,sin2��

2
	e2i�� ,

�3�

Û��,���0,1,0� = � 1

2

sin���,cos���ei�,
− 1

2

sin���e2i�� ,

�4�

as the new �̄ vectors, respectively. By allowing only two
parameter operations from a finite set of anchor states, we
defined a two-dimensional subset of the general biphoton
four-dimensional space. As the �0,2� state appears at the
south pole of the sphere defined by the �2,0� anchor, there is
a full overlap between spheres defined by these two states.
On the other hand, the �1,1� state does not appear on the
�2,0� sphere, thus defining a non-overlapping sphere that
cannot be reached from the �2,0� sphere by single photon
operations.

It is possible to identify a few great circle rotation rules
for the two new spheres, that would be useful later when we
will look for possible QKD protocols in this subset. First, the
�2,0� sphere inherited all of the properties from the �1,0�
single photon sphere. A 2� rotation returns to the original
state, a � rotation transforms between two orthogonal states
and � /2 between two states whose projection on each other
is 1/2. In the case of the �1,1� sphere, there is an interesting
difference. The same rules still apply, but for half the angles.
A � rotation returns to the original state, a � /2 rotation
transforms between two orthogonal states and � /4 between
two states whose projection on each other is 1 /
2. We can
identify an orthogonal vector triplet on the �1,1� sphere as
three states with � /2 in between them. A simple example for
such a triplet is the �1,1� state and two “bunched” states such
as �2,0�+ �0,2� and �2,0�− �0,2� �22�. Curiously, the state
that is exactly in the middle of any such triplet �at the tetra-
hedral point, about 54.7° from all the triplet states� is mutu-
ally unbiased with them �see Fig. 1�. As opposite points on
the �1,1� sphere are identical, it is enough to consider only
the upper half of the sphere �a dome�.

The rotation rules convert the task of finding MUB to a
packaging problem. Is it possible to pack two triplet bases
together on the �1,1� dome and preserve a mutually unbiased
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FIG. 1. �Color online� A top projection from the north pole of an
orthogonal triplet basis on the �1,1� dome. The empty circles are
states identical to their 180° opposites. Four states on this manifold
are mutually unbiased to the triplet. These four states are not or-
thogonal between themselves.
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relationship? By examining Fig. 1 it is easy to see that it is
impossible. On the other hand, we recognize a second gen-
eral type of an orthogonal basis. If we position the dome
concentrically inside the �2,0� sphere such that both of their
north poles point in the same direction, every ray that passes
through the sphere center will cut the subspace at three
points, two on the sphere and one on the dome. This ray
triplet contains three orthogonal states. The simplest example
is the vertical ray that defines the measurement basis.

We define two possible protocols whose security will be
checked here. The first protocol has two perfectly MUB and
the second has three �or more� which are not. Apart from the
measurement basis that is included in both protocols, the
additional basis of the first protocol is

� 1

3

�1,1,− 1�,
1

3

�1,�,− �2�,
1

3

�1,�2,− �� , �5�

where �=e2i�/3. Notice how this basis is equivalent to the
second Fourier basis in Ref. �5�, up to a minus sign at the last
position. We name this protocol after its umbrella shape �see
Fig. 2�a��. The two additional bases of the second protocol
are of the ray type:

�1

2
�1,
2,1�,

1

2

�1,0,− 1�,
1

2
�1,− 
2,1� ,

�1

2
�1,
2i,− 1�,

1

2

�1,0,1�,
1

2
�− 1,
2i,1� . �6�

Although the three bases are only close to mutually unbi-
ased, this protocol is appealing because of its symmetry and
similarity to the three bases protocol for qubits �3� �see Fig.
2�b��. Additionally, we considered a protocol with seven ray
bases in order to check whether adding rays improves the
protocol. The seven rays are the three of the previous proto-
col, plus the four rays through the tetrahedral points �the
directions are identical to the seven solid circles in Fig. 1�

The simplest eavesdropping attack scheme is the “inter-
cept and resend” approach. Showing that a protocol is secure
against this limited attack does not imply security against
general attacks. It is only used here for comparison between
different protocols. We calculated Bob and Eve mutual infor-

mation with Alice with the method of Ref. �5� and plotted the
difference between them as a function of the error rate for a
few protocols �see Fig. 3�. There is a clear hierarchy between
qubit and qutrit protocols. The umbrella protocol is better
than any other using qubits, while the three rays protocol is
even better than the umbrella protocol even though it does
not include perfectly MUB. As expected, the best perfor-
mance belongs to the four MUB protocol, that marks the
upper limit for any qutrit protocol. Surprisingly, the seven
rays protocol performs very close to ideal. All critical values
are much higher than the real limits as this attack scheme is
far from ideal.

In order to prove the ultimate security that is required
from a QKD protocol, we use the general method for one-
way protocols introduced in Refs. �23,24�. The advantage of
this method over other previous security proofs is its easy
extendability to higher dimension while proving security
against the most general coherent attacks. The scheme results
in a convex nonlinear optimization problem for every error
rate value. Here, we only prove unconditional security for
the four MUB and the umbrella protocols as they correspond
to simpler sets of constraints than the ray protocols. Never-
theless, it is only reasonable to assume that as the perfor-
mance of the ray type protocols according to intercept and
resend analysis is between the four MUB and umbrella pro-
tocols, their performance against general coherent attacks
will be in this range as well.

After deriving the constraints, we optimized numerically
the target function �the protocol rate� with the CVXOPT con-
vex optimization package �25�. Both procedures, with and
without noise addition, were calculated. The results are plot-
ted in Fig. 4. For the three MUB qubit protocol we repro-
duced the known critical values of 14.1% �12.7%� �with and
without noise optimization�. We find proven lower bounds of
17.7% �16.0%�, 20.3% �18.25%� and 21.1% �19.1%� for the
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FIG. 2. �Color online� �a� The umbrella protocol: two mutually
unbiased bases within the single-photon operation subspace. �b� The
three rays protocol: three ray-type bases that are not perfectly mu-
tually unbiased.

FIG. 3. Key rate analysis under intercept and resend attack of a
few QKD protocols. Qubit protocols are in thin lines, dotted lines
for BB84, and solid lines for the 3 MUB extension. Thick lines are
for qutrit protocols. Dotted, dashed, dotted-dashed, and solid lines
are for the umbrella, three rays, seven rays, and four MUB,
respectively.
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critical error rates of the two �the umbrella�, three, and four
MUB qutrit protocols, respectively. The three qutrit MUB
graph is not presented here as it can’t be realized within the

borders of our subset. These values are considerably higher
than the best value for qubit protocols to date. Just two MUB
gives most of the gain between qubits and qutrits, as previ-
ously suggested by weaker security analysis �12,13�.

We have left open an important issue regarding any qutrit
protocol with biphotons. Namely, what is the relation be-
tween the single photon �qubit� error rate of a certain channel
and the qutrit error probability when transmitting biphotons?
This issue will be addressed in a later work.

In conclusion, we defined the single photon operation
subspace of the polarized biphoton representation of qutrits.
This subspace includes states which are easy to generate and
detect, and thus are easy to implement in a QKD protocol.
We suggested a few possible protocols within this subspace.
The security of these protocols was rigorously analyzed and
compared to standard one-way qubit protocols. A large im-
provement was shown compared to qubits, even for the um-
brella protocol, which has only two MUB. The unconditional
security of the umbrella and the four MUB protocols was
proved by extending a previous proof for qubits.
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