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We investigate the quantum signature scheme proposed by and Zeng and Keitel �Phys. Rev. A 65, 042312
�2002��. It uses Greenberger-Horne-Zeilinger states and the availability of a trusted arbitrator. However, in our
opinion the protocol is not clearly operationally defined and several steps are ambiguous. Moreover, we argue
that the security statements claimed by the authors are incorrect.
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Digital signature schemes provide message authentication
which enables third parties to settle disputes about the au-
thenticity of messages. In Ref. �1�, Zeng and Keitel proposed
a quantum signature scheme that requires the availability of a
trusted arbitrator as part of the signature initialization and
verification algorithms. In our opinion, the protocol is not
well operationally defined, its presentation is misleading, and
several steps are ambiguous. Moreover, we believe that the
security statements claimed by the authors are incorrect. We
first list the main points of our criticism and then provide
more details.

The scheme proposed in Ref. �1� has as its goal to sign a
quantum state �P�. From the paper, however, it is not clear
whether the sender �Alice�, the receiver �Bob�, or the arbi-
trator needs to know the identity of the quantum state �P� to
be signed, or whether they have access to a restricted number
of copies of an unknown state �P�. One of the main motiva-
tions for the work presented in Ref. �1� is that “classical
signature schemes are difficult to assign to messages in qubit
format.” Then, one might be tempted to assume that none of
the parties involved in the communication has a classical
description of the state �P�. However, it is well known that
signing unknown quantum messages is not possible �2�. One
can then consider that all the parties know the state �P�. This
assumption changes the quantum signature scheme proposed
in Ref. �1� to one intended to sign classical data using quan-
tum resources. However, in this scenario it is unclear what
are the real advantages of this protocol, if any, with respect
to unconditionally secure classical signature schemes �see,
e.g., Ref. �3� and references therein�. Finally, one can assume
the natural scenario where Bob �or even the arbitrator� does
not know the state �P�. However, as we will show below, the
signature scheme proposed in Ref. �1� is insecure in this last
case �4�.

In several crucial points of the protocol a step of state
comparison is required. In particular, if Bob does not know
the state �P� to be signed, he will have to compare two un-
known states. The authors of Ref. �1� did not clarify in their
paper how to perform these quantum state comparison steps,
and they treat them as deterministic and error-free processes.
However, it is evident from the no-cloning theorem �5� that it
is impossible to do universal quantum state comparison in a
deterministic way and without disturbing the original states.
For a quantitative analysis of this scenario, see Ref. �6�,

where the optimal comparison test and its success probability
were obtained recently.

Let us now discuss our criticism in more detail. We start
with a brief description of the protocol. The scheme includes
three phases �1�: an initial phase, a signing phase, and a
verification phase. In the first one, Alice, Bob, and the arbi-
trator distribute two secret keys Ka �Alice-arbitrator� and Kb
�Bob-arbitrator�. These two secret keys might consist of
quantum states or of classical data. Next, they create and
distribute Greenberger-Horne-Zeilinger �GHZ� states. The
distribution of GHZ states has to be repeated for every single
communication: the “algorithm relies crucially on the en-
tanglement of the three involved communicators.” In this
Comment we will consider that this initial phase can be com-
pleted in a safe manner, although the authors of Ref. �1� do
not present any specific protocol to verify the correct execu-
tion of entanglement distribution.

The signing phase can be used to sign pure n-qubit mes-
sages of the form �P�= � i=1

n ��i�0�+�i�1��. The signature of
�P�, denoted as �S�, is defined as a quantum encryption of
some classical data Ma and a quantum state �R�. In order to
encrypt this information, Ref. �1� proposes to use the “ap-
proach known as ‘quantum state operation.’” It remains un-
clear what the authors mean by “quantum state operation,”
but a quantum one-time-pad scheme might be used for this
purpose �7�. More important, in this step it is not clearly
defined how the crucial quantum state �R� is generated by
Alice. First, it seems that Alice uses Ka to select a set of
“measurement operators” MKa

. If Ka denotes a quantum
state �Ka�, then MKa

must contain �Ka� as an eigenvector.
Note, however, that in this scenario it remains unclear how
Alice can obtain MKa

from �Ka� if she does not have a clas-
sical description of the quantum state �Ka�. If Ka is a classical
key, then MKa

can represent any measurement operator
within a given set indexed by Ka. Next, the sentence “Alice
is required to measure the information string of qubits �P�
using MKa

and obtains �R�” seems to indicate that �R� arises
from a measurement on �P�, i.e., MKa

is an observable. Note,
however, that in this case the protocol can only work proba-
bilistically. Recently, the authors of Ref. �1� emphasized that
MKa

denotes a unitary transformation �8�. Therefore, from
now on we will consider that �R�=MKa

�P� with MKa
uni-

tary.
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The verification algorithm requires the arbitrator to obtain
a parameter � arising from a forgery test. In order to do that,
he needs to generate two quantum states �R� and �R�� that
need to be compared �step 2 in the verification phase�. If �R�
and �R�� are different, then �=0 and �P� has to be rejected.
Otherwise �=1 and Bob needs to perform a second verifica-
tion test. Here, again, it is not clearly stated how the arbitra-
tor obtains these two states �R� and �R�� from Mb, �S�, and
�P� sent by Bob. More important, as pointed out above, the
authors of Ref. �1� do not explain how the quantum state
comparison test between �R� and �R�� is performed.

Once the first forgery test introduced above concludes, the
arbitrator needs to obtain a parameter Mt. The procedure to
generate Mt is a bit misleading. Reference �1� claims that
“the arbitrator measures or evaluates the states of the par-
ticles in his string of GHZ states.” Again, here the meaning
of “evaluates” is not clear. Once Mt is obtained, whatever
the process involved, the arbitrator prepares a quantum state
ytb containing part of the information obtained in the previ-
ous steps of the protocol and he sends it to Bob.

Depending on the contents of ytb, Bob needs to decide
whether the message originates from Alice or not. This
constitutes the last step of the verification phase. Now
Bob has to compare the quantum state �P� with a state �P��.
“If �P��= �P�, the signature is completely correct and Bob
accepts �P�, otherwise, he rejects it.” Again, at this crucial
point we find the problem of how to obtain the quantum
states �P� and �P�� from ytb, and how to realize the quantum
state comparison test.

Next, we show that the protocol presented in Ref. �1�
cannot lead to a secure signature scheme if Bob and the
arbitrator do not know the state �P�. To simplify our notation,
we shall mainly consider one-qubit messages, i.e.,
�P�=��0�+��1�.

To obtain the parameter Ma, Alice performs a Bell mea-
surement on a copy of the state �P� and her particle of the
GHZ state. Let us assume, for instance, that Ma corresponds
to the state ��12

− �a �see Eq. �8� in Ref. �1��, which will
always occur with probability 1/4, and that �R� has been
obtained as �R�=MKa

�P�, with MKa
denoting a unitary

transformation. The correlations of the GHZ state impose, in
this case, that the state shared by Bob and the arbitrator is
���=��00�−��11�.

The verification phase begins once Bob receives �P�
and �S� from Alice. Here Bob measures his particle of ��� in
the x direction. The result is recorded in the parameter
Mb. The state ���=��00�−��11� can be written as ���
= �1 /�2���+x��Z�P�+ �−x��P��, where ��x�= �1 /�2���0�� �1��,
and �Z is the Pauli matrix ��Z�0�= �0� and �Z�1�=−�1��. Both
possible results ���x�	 have equal a priori probability 1/2.
Let us consider, for instance, that Mb= �+x�. The state of the
arbitrator’s particle is then reduced to �Z�P�.

Next, Bob sends yb=Kb�Mb , �S� , �P�� to the arbitrator.
With this information the arbitrator performs his forgery test.
Now, in order to obtain �R� and �R��, we consider two pos-
sible alternatives. On the one hand, to evaluate if the mes-
sage received by Bob is authentic, it seems that �R� and �R��
should depend on �P� and �S�. That is, �R� originates from �P�
as �R�=MKa

�P�, and �R�� from �S� �or vice versa�. On the
other hand, the authors of Ref. �1� assert that the decryption

of �S� “gives rise to �R�� via the correlations of the GHZ
state.” One might then also think that �R�� �or �R�� arises
from the GHZ particle of the arbitrator, and �R� �or �R���
from �S� or �P�. Note that by using the correlations Ma �con-
tained in �S�� and Mb, the arbitrator can find that his particle
is in the state �Z�P�. Then he could recover �P� by applying
�Z ��Z

2 = I�. More important, once the arbitrator obtains �R�
and �R��, whatever the process involved, he needs to com-
pare these two unknown quantum states to decide whether
they are equal or not. Unfortunately, it is known that it is
impossible to conclusively identify two pure unknown states
as being identical �6�. Nevertheless, one can perform a
measurement that examines whether the systems are not the
same �6�. Let q denote the average success probability of
identifying two pure unknown states as different. With this
comparison procedure no valid messages will produce �=0,
but we find that a forged message will be accepted with
probability 1−q. For one-qubit messages we have that
q=1 /4 �6�. Here we consider that �R� and �R�� are selected at
random within the set of all pure states. For n-qubit messages
the value of q depends on MKa

. Reference �1� seems to
consider MKa

= � i=1
n MKa

i
i , with MKa

i
i unitary for all i and

�P��S�= � i=1
n �pi��si�, Now a potential adversary could follow,

for instance, a strategy that do not modify all the n qubits
contained in �P�, but only a small fraction m of them. This is
sufficient to achieve a dramatic decrease of the quantum fi-
delity �9� of the resulting quantum state with respect to the
original message �P�. In the worse-case scenario �m=1� the
arbitrator will accept a forged message with probability 3/4.
One can improve the ability of detecting forged messages by
using a general unitary transformation MKa

. Unfortunately,
even for this scenario the value of q is relative low:
q= �1 /2��1−2−n� �6�. As a consequence, we find that a pos-
sible attacker �which includes as well a potential dishonest
Bob� could modify Alice’s messages such that the accep-
tance parameter � satisfies �=1 with non-negligible prob-
ability. Moreover, note that so far we always assumed that
�R� and �R�� are pure states. A better security analysis against
an adversary that sends mixed states would also be necessary
here.

From now on, we shall presume that Bob is honest and we
evaluate his forgery test. For simplicity, we will consider that
the comparison process described above can be accom-
plished without disturbing the original states.

After calculating �, the arbitrator needs to obtain the pa-
rameter Mt. “Note that Mt may be �+x� or �−x�.” It seems,
therefore, that to obtain Mt� ���x�	 the authors of Ref. �1�
require that the arbitrator measures his particle of the GHZ
state in the x direction. Furthermore, in Ref. �1� it is specifi-
cally mentioned that “the arbitrator may choose an appropri-
ate sequence of measurement operators to measure his GHZ
particle.” Once this measurement is performed, the arbitrator
sends Bob the state ytb=Kb�Ma ,Mb ,Mt ,� , �S��.

Bob does not know Alice’s secret key Ka. This means that
from ytb he cannot obtain the message �P� any longer. Note
that �P� cannot be calculated from Ma, Mb, and Mt alone:
the parameters Ma and Mb are completely independent of
�P�, whereas Mt= ��x� only means that �P� is not orthogonal
to ��x� �assuming that the arbitrator’s particle was �Z�P��.
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To avoid this problem in the protocol, let us assume for the
moment that ytb also includes the message �P�, or that Bob
can have access to a copy of the state �P� somehow.

Now the last step of the verification phase takes place.
Here Bob has to compare �P� with a state �P��. “If
�P��= �P�, the signature is completely correct and Bob ac-
cepts �P�, otherwise, he rejects it.” In order to obtain �P��
Bob must use the parameters Ma, Mb, and Mt. Note that
“�P�� is obtained from a calculation and not a physical mea-
surement, because Bob’s particle has already been measured
in the first step of the verification phase.” But, as pointed out
above, from Ma, Mb, and Mt, Bob might obtain a �P��
different from �P� even for valid messages. Note that the
result of a measurement �Mt� on a quantum state ��Z�P��
does not completely identify the original state. In fact, one
may even assume that the arbitrator does not measure his
particle of the GHZ state. Instead, he sends it to Bob in place
of the parameter Mt. Unfortunately, we end up again with
the problem of comparing two unknown quantum states.
This comparison test can produce the acceptance of forged
messages with non-negligible probability.

So far we have shown that the quantum signature scheme
proposed in Ref. �1� is unable to guarantee security against a
dishonest Bob or a possible attacker in the natural scenario
where �P� is known only to the signer Alice. Moreover, we
have shown that, even in the absence of dishonest parties,
this scheme, as originally proposed, does not allow Bob to
recover the message �P� sent by Alice. Zeng and Keitel re-
cently acknowledged that in their work they need to “reason-
ably assume that Alice, Bob, and the arbitrator know the
message �P�” beforehand �8�. Unfortunately, this crucial
point for their scheme is not mentioned at all in their original
paper, and it constitutes a severe limitation for the possible

applicability of this protocol in a practical communication
scenario. With this strong assumption, now one could modify
the protocol in Ref. �1� and substitute the parameter Mt by
the original GHZ particle of the arbitrator such that Bob can
obtain �P�� �from his knowledge of Ma and Mb� and com-
pare it with the known �P�. Moreover, in the signing phase
Alice would no longer need to send Bob the quantum state
�P�, but only its signature �S�. However, it seems to us that
this scheme would be rather inefficient and expensive in
terms of the quantum resources needed to perform this par-
ticular task. In the literature there are already unconditionally
secure classical signature schemes to sign classical informa-
tion, with or without arbitrator, that moreover consider the
natural scenario where the message to be signed does not
need to be publicly known beforehand �3�. In fact, if we
assume the availability of a trusted arbitrator, Alice and Bob
could as well use classical message authentication codes �10�
to sign their messages �11�. Therefore, we believe that in this
case it would be necessary that the authors of Ref. �1� clarify
the relevance of their scheme in a practical communication
scenario together with its real advantages, if any, with re-
spect to unconditionally secure classical signature protocols.
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