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A positive-energy-space-projected relativistic Hylleraas configuration-interaction method has been formu-
lated. The projection procedure is based on the complex coordinate rotation method and may be applied
independently of the specific form of the trial function.
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I. INTRODUCTION

Relativistic models of atoms are usually derived from the
n-electron Dirac-Coulomb �DC� equation

HDC�1,2, . . . ,n���1,2, . . . ,n� = E��1,2, . . . ,n� , �1�

where

HDC�1,2, . . . ,n� = HD
0 �1,2, . . . ,n� + �

i�j

n

1/rij , �2�

HD
0 �1,2, . . . ,n� = �

j=1

n

h�j� , �3�

h�j�, is the one-electron hydrogenic Dirac Hamiltonian and
HD

0 �1,2 , . . . ,n� is referred to as the n-electron Dirac Hamil-
tonian. The space of eigenstates of h may be expressed as

H1 = Q1 � P1, �4�

where Q1 is the one-electron positive-energy space �PES�
which comprises states of the positive continuum and of the
discrete part of the spectrum, and its orthogonal complement,
P1�Q1

�, contains states belonging to the negative con-
tinuum. The eigenvalue problems of HD

0 and HDC are defined
in

Hn = H1
∧n = �Q1 � P1�∧n, �5�

i.e., in the antisymmetric part of the direct product of the
one-electron spaces. It may be split to the n-electron PES,
Qn, and its orthogonal complement Pn,

Hn = Qn � Pn, �6�

where Qn=Q1
∧n and Pn=Qn

�. In particular, in a two-electron
case

P2 = Q1 ∧ P1 � P1 ∧ P1. �7�

The part of the continuum composed of Q1 and P1 �in the
two electron case Q1∧P1� we refer to as the Brown-
Ravenhall �BR� continuum.

The spectrum of HDC
0 is a superposition of the one-

electron Dirac spectra and is composed of multiple continua

spreading from −� to +� and discrete energy levels. In par-
ticular, the discrete eigenstates may be expressed as the an-
tisymmetrized products of the one-electron Dirac spinors and
are orthogonal to the states describing continuum. The
electron-electron interaction operator in HDC couples the dis-
crete and the continuum states. Then, as noticed by Brown
and Ravenhall more than one-half of a century ago �1�, the
DC Hamiltonian does not have square-integrable eigenstates.
More precisely, in the DC model the bound states of an
n-electron system are represented by Feshbach-type reso-
nances. In terms of the Feshbach theory �2,3� such reso-
nances belong to the closed-channel space which is the same
as Qn whereas the states of the continuum, into which the
resonances decay, belong to the open-channel space, Pn. The
appearance of the physically bound states as resonances is an
artifact of the DC model. In order to distinguish these eigen-
states from the ones describing the physical resonances, we
refer to them as pseudoresonances.

There are several ways to deal with the artifacts of the DC
equation. In the most common approach the effects of cou-
pling between the discrete states and the BR continuum can
be removed up to an adequate accuracy by imposing the
relations between the components of the trial functions and
the boundary conditions specific for the bound states �4–6�.
However, this approach meets serious difficulties in methods
which go beyond the one-electron model, in particular when
the nuclear charge Z is large and the required accuracy is
very high. In these cases the energies of the bound states, due
to the interference of the BR continuum, are numerically
unstable �7,8�. One of the ways to amend the model is to
project the DC Hamiltonian onto the PES �9–11�. The pro-
jected Hamiltonian is called Brown-Ravenhall operator. Its
spectrum is bounded from below and the discrete eigenval-
ues are not embedded in a continuum �12–14�. Consequently,
all pseudoresonances of the nonprojected DC model become
stationary. The resulting model is known as the no-pair ap-
proximation. The pseudoresonances may also be separated
from the BR continuum using the complex coordinate rota-
tion method �CCR� �15�. In this method the eigenvalue prob-
lem of the DC Hamiltonian is solved in the complete �non-
projected� space and the pseudoresonances are treated using
techniques specific for autoinizing states. As expected �16�,
the resulting energies differ from the ones of the no-pair
model by a correction to the Coulomb electron-electron in-
teraction proportional to �Z��3 and equal to the contribution
from the virtual pairs �17�.

The problems related to the presence of the unphysical
BR continuum are particularly sharp when the trial function
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contains geminals. On the other hand, in order to correctly
describe the electron correlation cusp, the wave function
should explicitly depend on the interelectron distances
�18–22�. The relativistic Hylleraas-configuration-interaction
�R-Hy-CI� method derived from the minimax principle �23�
by Kolakowska and Talman �21,22�, gave very encouraging
results. However, strong instabilities of the results related to
the admixture of the BR continuum states were observed for
large Z in the case of large model spaces �8�. The effects of
the continuum may either be treated by CCR method or re-
moved by a PES projection. A combination of R-Hy-CI and
CCR resulting in the R-CCR-Hy-CI method �15� gave nu-
merically stable and accurate results �17�. A PES-projected
R-Hy-CI method is presented in this Brief Report.

The projection procedure is described in the next section.
Then, the results obtained for the ground states of He iso-
electronic series atoms are presented and compared with the
ones in the literature. The final remarks conclude the paper.
The Hartree atomic units are used. The fine structure con-
stant has been taken as �=1 /137.035 9895.

II. PROJECTION PROCEDURE

Usually the PES projection is achieved by a proper con-
struction of the space of the trial functions �24–26�. In this
construction, the n-electron basis of the variational model
space is formed by antisymmetrized products of Dirac
spinors corresponding to the positive-energy solutions of a
Dirac equation. Then, the eigenvectors of HD

0 which belong
to Qn may be expressed in terms of the one-electron Dirac
spinors belonging to Q1. Thus, in the one-electron model, the
PES space of HD

0 may be constructed in a rather straightfor-
ward way. Otherwise, in particular, in R-Hy-CI, when each
basis function may contain contributions from both Qn and
Pn, the procedure described above cannot be applied.

Independently of the form of the trial function, a separa-
tion of the eigenvectors of HD

0 belonging to Qn from the ones
in Pn may be facilitated by the CCR method. The CCR
eigenspectrum of HD

0 splits into the complex plane. The dis-
crete eigenvalues do not change under the CCR whereas the
eigenvalues associated with the states containing a con-
tinuum component, move to the complex plane and, most
important, the energies associated with different kinds of
continua move to the complex plane in different ways �15�.
This behavior of the spectrum is shown in Fig. 1 where the
CCR spectrum of a two-electron Dirac Hamiltonian, HD

0 ,
with Z=90 is displayed. The scattered circles and full points
reflect the results of an actual, finite basis set, calculation.
Three disjoint areas may be identified as sets of eigenvalues
related to all-negative one-electron energies �the leftmost
strip�, negative+positive one-electron energies, i.e., the BR
continuum �the central, diagonal, strip� and all-positive one-
electron energies corresponding to the PES. The solid line
separates the eigenvalues associated with the spaces Q2 and
P2. In the limit of a complete basis set all eigenvalues with
nonpositive imaginary parts and located to the right of this
line correspond to the eigenstates which belong to Q2. The
number of expected positive-energy solutions is determined
by the dimension NQ of Qn. Due to the incompleteness of the

model space the assignment of some of the eigenvectors to a
specific space may be ambiguous. Therefore, in practical cal-
culations we select M �NQ eigenvectors of HD

0 , to represent
the Qn space. They form an N�M matrix Q, where N is the
dimension of the original model space.

Now we turn to the full DC Hamiltonian �2�. First it must
be complex-coordinate-rotated by the same rotation angle as
HD

0 in the procedure of the construction of Q. Then its matrix
representation HDC in the original variational basis is built.
The matrix representation of the PES-projected DC Hamil-
tonian, i.e., its M-dimensional representation in Qn, is given
by

HQ = QTHDCQ . �8�

The last step is the diagonalization of HQ. Its lowest eigen-
values correspond to the bound-state energies of our system.

III. RESULTS AND DISCUSSION

The ground-state DC energies of heliumlike atoms with
infinite-mass point nuclei have been obtained using two dif-
ferent methods: The nonprojected R-CCR-Hy-CI, as de-
scribed in Ref. �15�, and the PES-projected R-Hy-CI, as de-
scribed in the preceding section. The same basis sets as in
Ref. �17�, composed of N=502 and N=1826 explicitly cor-
related Hylleraas-type functions and referred to, respectively,
as A and B, have been used. The dimensions of the PES
corresponding to bases A and B and, thus, dimensions M of
HQ are equal to 120 and 422, respectively �in both cases
M =NQ�. The resulting ground-state energies are collected in
Table I.

The relativistic Coulomb correlation energies

Ecorr = EDC − EDF, �9�

where EDC and EDF are, respectively, Dirac-Coulomb and
Dirac-Fock energies, are compared with the ones in the lit-
erature �24–26� in Fig. 2. If finite nuclei were used then the
results have been recalibrated to the point nucleus model as
described in Ref. �17�. Two sets of results of Watanabe et al.
�24� were obtained using either positive-energy projected or
nonprojected CI. Plante et al. �25� and Cheng et al. �26�

FIG. 1. The spectrum of complex-coordinate-rotated two-
electron HD

0 with Z=90 point nucleus, obtained in a space of 1826
Hylleraas-type functions with the rotation angle �=0.3. The full
points correspond to the energies of the states assigned to PES and
the open circles correspond to the ones assigned to its orthogonal
complement. The solid line marks the theoretical border between
the PES eigenvalues and those related to the BR continuum.
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performed their calculations using the no-pair DC Hamil-
tonian with many body perturbation theory �MBPT� and CI
methods, respectively.

The results displayed in Fig. 2 are in agreement with the
analyses by Sucher �16� and by Johnson et al. �11� as well as

with the results of our previous work �17� and of Watanabe et
al. �24�: The energies derived from the methods using a PES-
projected Hamiltonian and the energies corresponding to the
nonprojected Hamiltonian converge to two different limits.
As it was already noticed �17�, the difference 	EBR, corre-
sponding to the energy shift due to the coupling to the BR
continuum, is very well approximated by the virtual pair
contribution to the electron-electron Coulomb repulsion
equal, in the lowest order of MBPT and for the hydrogenic
functions, to 	EBR

0 = �Z��3 /6
 �27,28�. The ratio

TABLE I. Eigenvalues of the DC Hamiltonian corresponding to the ground states of He-like atoms obtained using PES-projected
R-Hy-CI in basis B �in 10−3 a.u.�. The digits which differ from the ones in the eigenvalues of the nonprojected Hamiltonian �17� are
boldface.

Z E Z E Z E Z E Z E Z E

1 −527.756766 21 −430539.049 41 −1694049 .22 61 −3885086 .86 81 −7204453 .23 101 −12091148 .1

2 −2903.85687 22 −473436.350 42 −1780445 .02 62 −4021927 .62 82 −7406202 .67 102 −12391809 .9

3 −7280.69948 23 −518411.874 43 −1869155 .99 63 −4161580 .99 83 −7611825 .53 103 −12699148 .3

4 −13658.2587 24 −565473.234 44 −1960199 .56 64 −4304082 .60 84 −7821402 .93 104 −13013415 .2

5 −22037.8699 25 −614628.432 45 −2053593 .73 65 −4449469 .24 85 −8035018 .94 105 −13334881 .5

6 −32421.0181 26 −665885.871 46 −2149357 .10 66 −4597779 .20 86 −8252762 .30 106 −13663840 .2

7 −44809.4480 27 −719254.359 47 −2247509 .00 67 −4749052 .22 87 −8474726 .04 107 −14000606 .2

8 −59205.2017 28 −774743.118 48 −2348069 .48 68 −4903329 .60 88 −8701007 .88 108 −14345519 .4

9 −75610.6346 29 −832361.792 49 −2451059 .30 69 −5060654 .40 89 −8931710 .52 109 −14698951 .2

10 −94028.4241 30 −892120.458 50 −2556499 .95 70 −5221070 .83 90 −9166942 .14 110 −15061307 .3

11 −114461.572 31 −954029.632 51 −2664413 .71 71 −5384625 .65 91 −9406817 .02 111 −15433027 .7

12 −136913.413 32 −1018100.28 52 −2774823 .65 72 −5551367 .04 92 −9651454 .72 112 −15814593 .9

13 −161387.613 33 −1084343 .83 53 −2887753 .70 73 −5721345 .24 93 −9900982 .36 113 −16206538 .1

14 −187888.176 34 −1152772 .18 54 −3003228 .59 74 −5894612 .27 94 −10155533 .8 114 −16609448 .8

15 −216419.445 35 −1223397 .72 55 −3121273 .97 75 −6071222 .71 95 −10415251 .4 115 −17023973 .6

16 −246986.108 36 −1296233 .31 56 −3241916 .47 76 −6251233 .23 96 −10680284 .9 116 −17450833 .1

17 −279593.203 37 −1371292 .36 57 −3365183 .66 77 −6434703 .25 97 −10950794 .5 117 −17890843 .0

18 −314246.117 38 −1448588 .75 58 −3491104 .13 78 −6621694 .36 98 −11226950 .2 118 −18344906 .5

19 −350950.597 39 −1528136 .93 59 −3619707 .52 79 −6812271 .16 99 −11508930 .2

20 −389712.752 40 −1609951 .90 60 −3751024 .49 80 −7006500 .79 100 −11796928 .3

FIG. 2. Relativistic Coulomb correlation energy in the ground
states of helium-like atoms.

FIG. 3. The ratio D of the difference between nonprojected and
PES projected ground-state energies to the hydrogenic MBPT value
�10� versus Z.
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D = 	EBR/	EBR
0 �10�

is shown in Fig. 3. As one can see, the relation 	EBR
�	EBR

0 has been confirmed by consistent calculations of the
DC energies in both PES-projected R-Hy-CI and non-
projected R-CCR-Hy-CI approaches. Consequently, being
aware of this difference, one can apply either one approach
or the other, and then, respectively, either include or not the
appropriate contribution as one of the QED corrections.

IV. FINAL REMARKS

The no-pair approach has been implemented within a
geminal-based formalism. The PES-projected model space
has been constructed by an extraction of the appropriate sub-

space from the space spanned by the eigenvectors of the
complex-coordinate rotated n-electron Dirac Hamiltonian.
The no-pair eigenvalues of the DC Hamiltonian have been
approximated by the eigenvalues of its matrix representation
in the PES-projected model space. The approach may be
applied independently of both the structure of the n-electron
basis functions and the form of the interaction operator. In
particular, it is also applicable in the case of the Dirac-
Coulomb-Breit Hamiltonian.
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