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We show that the probability distribution of tunneling time can be defined, although the decoherence
functional does not satisfy the weak decoherence condition. However, the weak decoherence condition holds
whenever the measuring device as defined by von Neumann exists as a part of the system. The resultant
tunneling time probability distribution does not contain any information on the height of the potential.
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The question of the time spent by a particle inside a bar-
rier or tunneling time has attracted considerable attention for
many years�1–3�. A mystery still remains at a fundamental
level. As a question, “is it possible to define the probability
distribution of tunneling time for possible values of �” is still
imperfectly understood. In 1999 Yamada �4� argued that the
quantum traversal time, defined by the clocked Schrödinger
equation, does not satisfy the weak decoherence condition
and the definition of the probability distribution of tunneling
time is impossible. In 2002, Sokolovski �5� investigated the
possibility of defining meaningful probabilities for a quantity
that cannot be represented by a Hermitian operator. These
relate to the interaction between the system and its environ-
ment, consisting of the positive-operator-valued measures
�POVM� �6–8�. However, Sokolovski did not show that the
POVM can be used to derive the probability of tunneling
time. Later, Yamada �9� derived four tunneling times from
the Gell-Mann-Hartle decoherence functionals.

The aim of this paper is to present a derivation of the
probability distribution of tunneling time by using the
POVM and consider its physical meaning. The derivation
reveals the conditional probability theorem. Finally, we show
that the weak decoherence condition holds whenever the
measuring device exists as a part of the system.

Consider the conventional quantum measurement, as de-
fined by von Neumann �10�. The eigenvalue equation for a
dynamical variable F with the eigenvalue fk is

F�k� = fk�k� . �1�

Then the probability of the outcome fk is given as

P�fk� = tr��k��k�U�sU
+� , �2�

where �s is the initial density matrix and U�t� is the time
evolution operator. This probability distribution is valid for
the instantaneous quantum measurement.

In analogy, we introduce the probability distribution for
the continuous measurement of the dynamical quantity F as

P�fk� = tr��„f − F�x�t��…U�sU
+	 , �3�

where ��·� is the Dirac � function and F�x�t�� is a functional
corresponding to the dynamical variable F. The Dirac �
function selects a class of paths for which F�x�t�� has the
value of f . This definition corresponds to the distribution
�A�a� defined by Sokolovski and Connor �11�.

Following this method, the probability distribution of tun-
neling time can be expressed in the form

P��� = tr��„� − tab
cl �x�t��…U�sU

+� �4�

when

tab
cl �x�t�� = 


0

t

�ab„x�t��…dt� �5�

is the classical traversal time functional and �ab�x�=1 for
a�x�b and 0 otherwise.

Now we show that the decoherence functional is simply
obtained from the conditional probability theorem. In par-
ticular, the conditional probability P�A �B� which is the prob-
ability of some event A given the occurrence of some other
event B, is defined as

P�A�B� = P�A � B�/P�B� . �6�

Suppose event A and B are independent. In this case
P�A�B�= P�A�P�B� so P�A �B�= P�A� means that the occur-
rence of A has no influence on the probability of the occur-
rence of B �corresponding to two orthogonal eigenfunctions�.

The traversal time wave function ��x , t ��� is defined as
the probability amplitude for finding the particle at x having
spent time in the region ���a ,b� prior to time t for a net
duration of �. It is obvious that the traversal time wave func-
tion ��x , t ��� is obtained by restricting the system’s evolution
to particular classes of Feynman paths integral approach
�12–15�

��x,t��� =
 dx0
 D�x��„� − tab
cl �x�·��…eiS�x�t��/	�0�x0� ,

�7�

where S�x�t�� is an action along the path x�t�. The summation
of all values of � must restore ��x , t ��� to 
�x , t�,


�x,t� = 

0

t

d���x,t��� , �8�

where 
�x , t�=U�t��0�x� is the final state wave function.
This is equivalent to partitioning the system’s state into a
sum of generally nonorthogonal components.

The joint probability of two nonorthogonal events is the
probability that a particle has spent time of � and �� in �
��a ,b� and is given as
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P�� � ��� = tr����� − tab
cl �x����� − tab

cl �x��U�sU
+	 �9�

In analogy with the conditional probability, Eq. �6�, we
introduce a conditional probability distribution P�� ����
which is the probability that the particle has spent time of �
in ���a ,b� for having spent time �� as

P������ =
P�� � ���

P����
=

tr����� − tab
cl �x����� − tab

cl �x��U�sU
+	

tr����� − tab
cl �x��U�sU

+	
.

�10�

This definition, Eq. �10�, is the same as the joint probability
relation defined by Steinberg �16�.

By following the conditional probability theorem,

P�A� = �
i

P�A�Bi�P�Bi� , �11�

we can give the probability distribution of tunneling time
P��� in the form

P��� = 

0

t

d��P������P���� . �12�

Substituting Eq. �4� and Eq. �10� into Eq. �12�, we obtain the
probability distribution of tunneling time,

P��� = 

0

t

d��D��;��� , �13�

where D�� ;���=tr�����− tab
cl �x�����− tab

cl �x��U�sU
+	.

Using Eq. �6�, we can write Eq. �13� as

D��;��� =
 dx��x,t�����*�x,t��� . �14�

This is the decoherence functional presented by Yamada �4�.
Therefore, the decoherence functional D�� ;��� means the

correlation of two events �� and ��� in conjunction. This is
purely quantum mechanical effect for nonorthogonal decom-
positions, Eq. �8�. Usually, some physical quantity cannot be
represented by a Hermitian operator as the traversal time.
The joint probability of two nonorthogonal events does not
vanish. It is analogy of the interference of two alternatives
whether the particle passes through the upper slit or the
lower slit in the two-slit experiment �wavelike property�.

As mentioned above, we can briefly examine that the
probability distribution of tunneling time P��� can be defined
by the form of Eq. �4�, although the decoherence functional
does not satisfy the weak decoherence condition.

Finally we show that the measuring device, which exists
as a part of the system, gives the weak decoherence condi-
tion �4�,

Re D��;��� = ��� − ���P��� . �15�

Suppose that we want to know the probability distribution
of a particle spending time in a given region of space, then it
is necessary to use an apparatus that has some interaction

with the observed particle. Therefore, we need to extend a
single system to a combined system. This combined system
is divided into two parts: �i� the observed system, �ii� the
apparatus system. We assume that the coupling interaction
has the form

Hint�t� = g�t�PA , �16�

where g�t�=g, for t�0 and 0 otherwise, P is the generator of
translation �momentum operator� for the apparatus, and A is
some operator that we wish to measure, acting on an ob-
served system. This coupling interaction was proposed by
von Neumann �10� and developed by Aharonov, Albert, and
Vaidman �17�.

For measuring the traversal time, it is necessary to turn on
the interaction for a time interval t. We use the operator
A=�ab�x�. The coupling interaction then takes the form

Hint�t� = g�t�P�ab�x� . �17�

The Hamiltonian of the actual observer has coupling in the
form of a weak measurement with the apparatus system. We
start with the total Hamiltonian for the whole system

Htotal = Hsys + HA + Hint�t� , �18�

where Hsys represents the Hamiltonian of the observed par-
ticle, HA is the Hamiltonian of the apparatus. By following
von Neumann, we assume that HA and P commute,
�HA ,P�=0, so that HA may be written as

HA =
P2

2m
, �19�

where m is mass of the apparatus particle. The total Hamil-
tonian is time dependent and commutes with itself regardless
of the time different. So the time -evolution operator can be
written as

U�t� = e−i/	0
t �Hsys+HA+gP�ab�x��dt�. �20�

Following Gell-Mann and Hartle decoherence functional
�18�, a set of history C� for discrete measurement is

C� = P�
n�tn� ¯ P�

1�t1� , �21�

where P�
k �tk� are projection operator at time tk. The decoher-

ence functional can be written as

D�C�,C��� = tr�C��C��
† � , �22�

where � is the initial density matrix.
In analogy, we introduce the history for continuous mea-

surement of the traversal time in the form

C��� = �„� − tab
cl �x�t��…U�t� =
 dx
 dx�P�x,x���x��x��

�23�

where

P�x,x�� = �x��„� − tab
cl �x�t��…U�t��x�� . �24�

This particle path is restricted to those that obey condition
�(�− tab

cl �x�t��).
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Then we define the decoherence functional D�� ,��� for
continuous measurement as

D��,��� = trs,a���� − tab
cl �x��U�s�aU+���� − tab

cl �x��	 �25�

where �s and �a are the initial density matrix for the observed
system and the apparatus system, respectively. We assume
that the mass m of the apparatus system is very large so that
the apparatus wave function is localized in space �localized
near R0�,

�a� = �R0� . �26�

Then the initial density matrix for the apparatus system is

�a = �R0��R0� . �27�

This interpretation can be expressed explicitly by rearranging
Eq. �25� in the form

D��,��� = trs����,����s� , �28�

where

���,��� = tra���� − tab
cl �x������ − tab

cl �x��U�aU+	 . �29�

Equation �29� is the partial trace on the apparatus system. It
is the continuous measurement acting on the observed sys-
tem rather than the instantaneous quantum measurement as a
positive operator measures �POMS� �6–8�. Straightforward
substitution of Eq. �20� into Eq. �29� leads to

���,��� =
 dp�p����� − tab
cl �x����� − tab

cl �x��U�t��aU+�t��p�

=
 dp���� − tab
cl �x����� − tab

cl �x��U�t��p��a�p�U+�t�

=
 dp�a�p������ − tab
cl �x����� − tab

cl �x��

�e−i/	0
t �Hsys+gp�ab�x��dt�ei/	0

t �Hsys+gp�ab�x��dt�� �30�

when

�a�p� = �p��a�p� = �p�R0��R0�p� = 1 �31�

is the initial density matrix for the apparatus system in p
representation. Using the integral representation of the �
function we can rewrite ��� ,��� as a Fourier transform

���,��� =
1

2�	

 d�

1

2�	

 d�ei/	��ei/	������,�;�,���

�32�

where ��� ,� ;� ,��� is

���,�;�,���

=
 dp�e−i/	0
t �Hsys+�gp+���ab�x�	dt�ei/	0

t �Hsys+�gp−���ab�x�	dt�� .

�33�

Switching to new variables �+�gp+� and �−��−gp, we
can rewrite ��� ,��� as

���,��� =
 dpei/	p��−���� 1

2�	

 d�−

1

2�	

 d�+ei/	�+�ei/	�−�����+,�−;�,����

= ��� − ���
1

2�	

 d�−

1

2�	

 d�+ei/	�+�ei/	�−�����+,�−;�,��� �34�

when

���+,�−;�,��� = �e−i/	0
t �Hsys+�+�ab�x��dt�ei/	0

t �Hsys−�−�ab�x��dt�� .

�35�

Using Eq. �28� and Eq. �35�, we have the decoherence func-
tional D�� ,��� in the form of

D��,��� = ��� − ��� 
 dx��x,t�����*�x,t��� . �36�

Now the interference between different � and �� disap-
pears and then we obtain the weak decoherence condition.

Equation �36� shows that the weak decoherence condition
holds by including the measuring device as a part of the
system. This method represents a standard measurement
when the system is decoupled from the apparatus system. It
leads to a constraint on the observed system. According to
the interpretation of quantum theory, the measurement gives
the result � with the probability distribution of tunneling time
P���, after the measurement is performed.

By following Eq. �36� the probability distribution of tun-
neling time depends on the traversal wave function ��x , t ���
which satisfies the clocked Schrödinger equation �19�. Usu-
ally the ��x , t ��� depends on V�x�, the potential of the quan-
tum system. Then the probability distribution of tunneling
time depends on the potential V�x�, too. For the rectangular
potential V�x�=V0�ab�x� we have
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��x,t��� = ei/	V0�� free�x,t��� , �37�

where � free�x , t ��� is the traversal wave function for free
propagation. Then the probability distributions of tunneling
time for the rectangular potential and that of the traversal
time for free propagation are completely the same. So the
resultant tunneling time probability distribution does not
contain any information on the height of the potential.

In summary, the probability distribution of tunneling time
P��� can be defined by using the conditional probability
theorem. Thus, the decoherence functional D�� ,��� does not

satisfy the weak decoherence condition. It implies that the
weak decoherence condition cannot be used for validating
the question “is the probability distribution P��� definable?”
However, the weak decoherence condition holds whenever
the measuring device exists as a part of system. Then the
probability distribution of tunneling time is definable owing
to the effect of the measuring device, monitoring the position
of the observed system under consideration. When the mea-
surement gives the value � of the tunneling time at time t, the
classical traversal time functional tab

cl =� and coherence is de-
stroyed.
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