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We provide an estimate of the absolute values of the emission rate of photon pairs produced by spontaneous
parametric down-conversion in a bulk crystal when all interacting fields are in single transverse Gaussian
modes. Both collinear and noncollinear configurations are covered, and we arrive at a fully analytical expres-
sion for the collinear case. Our results agree reasonably well with values found in typical experiments, which
allows this model to be used for understanding the dependency on the relevant experimental parameters.
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I. INTRODUCTION

For the last two decades, spontaneous parametric down-
conversion �SPDC� has been the workhorse process for the
generation of correlated photon pairs. These can easily be
cast into maximally entangled states, which are useful, e.g.,
for violating Bell inequalities �1�, or for the investigation of
other fundamental aspects of quantum mechanics. Progress
in SPDC-based photon pair sources has allowed the emitted
pairs from such sources to play a leading role in demonstra-
tion of quantum-information techniques, and made its way to
almost practical applications like quantum key distribution.

A number of studies have established the basic under-
standing of SPDC �2–4�, based on energy conservation, and
momentum conservation when participating light fields are
treated as plane waves �5�. Many of the more recent appli-
cations often necessitate significant manipulation and trans-
port of the photon pairs; this can be achieved in a convenient
way by guiding the light in single-mode optical fibers. The
basic idea of modeling SPDC in this regime is to map the
optical modes propagating in the fibers into freely propagat-
ing modes of the electromagnetic field in the nonlinear con-
version material, where they interact with a pump field.
These freely propagating spatial modes can be described in
good approximation by paraxial Gaussian beams, and any
optimization strategy will involve some sort of mode match-
ing of such interacting beams.

Previous studies of SPDC light coupled into single-mode
fibers have focused on optimizing the coupling efficiency,
defined as the ratio of photon pairs to single photons that are
observed, because this is a quantity that can be measured
easily in an experiment. This quantity is important for devel-
oping loophole-free tests of Bell’s inequality �6�, heralded
single-photon sources �7–9�, or simply sources of high pair
brightness �10�.

So far, theoretical work in this area has focused mostly on
such secondary parameters, and no closed expression for the
absolute rate of photon pairs was available for typical experi-
mental configurations. This made it difficult to estimate
whether a particular experimental source implementation

could be improved with respect to a particular figure of
merit, be it total rate or spectral brightness.

In this paper, we try to address this problem and derive an
expression for the absolute rate of SPDC emission from a
bulk crystal into Gaussian modes. The work connects to ear-
lier investigations of absolute SPDC rates with beams of
finite diameter by Kleinman and Klyshko �3,4�. It was found
there that the overall rate of pair production is independent
of the spot size of the pump beam �3�, and that the conver-
sion efficiency of pump photons into correlated pairs inte-
grated over all emission directions �4� is on the order of
10−8 /mm for a typical nonlinear material. The restriction on
specific spatial modes defined by single-mode optical fibers
in the more recent applications, however, made it difficult to
relate their results directly to experiments. Our description
applies to both type-I and type-II phase-matching conditions,
and covers collinear and noncollinear geometries important
for the generation of polarization-entangled photon pairs
�11,12�.

II. MODEL

The basic process of SPDC can be understood as the
spontaneous decay of a photon from a pump field into two
daughter photons propagating in two—possibly different—
target modes, with the process being mediated by a material
with a nonlinear optical susceptibility. The physical imple-
mentation of SPDC utilizes the lowest order of the nonlinear
susceptibility tensor ��2� in an appropriate material. While
energy conservation allows the decay process to take place in
many target modes, phase-matching requirements need to be
engineered to allow conversion to take place into any par-
ticular pair of directions.

The physical model of the three interacting optical modes
is depicted in Fig. 1. We treat the pump beam and the target
modes for the down-converted light as propagating paraxial
beams with a Gaussian transverse profile. The beams overlap
within a nonlinear optical crystal of finite length l, with sur-
faces normal to the propagation direction of the pump beam.
Pump and target modes propagate in one plane, but need not
be parallel. We further assume that the three interacting
modes overlap in a region without a significant variation of
the transverse profile along their respective propagation di-*christian.kurtsiefer@gmail.com; http://www.quantumlah.org
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rections. This is a reasonable assumption for typical Gauss-
ian beam parameters and conversion crystal lengths used in
experiments �10�.

We follow the tradition of referring to the target modes as
signal �index s� and idler �index i� and choose coordinate
systems where the zs,i,p directions are parallel to the main
propagation direction for each mode s , i , p �p refers to the
pump mode�. The spatial mode function of the electrical field
for each of the modes can be written as

g�r� = eikzU�x,y� = eikze−�x2+y2�/W2
, �1�

where k denotes the z component of the corresponding wave
vector, W the Gaussian beam waist parameter, and x , y , z
refer to the corresponding coordinate system for each mode.
To simplify the overlap calculations, we use normalization
constants � for the envelope functions U�x ,y� such that

�2� dx dy�U�x,y��2 = 1 �2�

in their corresponding coordinate systems, which implies

�p,s,i =� 2

�Wp,s,i
2 . �3�

We note that the spatial mode function g�r� satisfies Max-
well’s equations only approximately. For the calculations
presented below, however, this poses no problem. Further-
more, the dispersion relation connected with this mode func-
tion has the confinement correction

�2 = c2�k2 +
2

W2	 . �4�

Again, for practical beam diameters W of about 100 wave-
lengths considered in this paper, this correction term is small
enough to be safely neglected.

A. Pump mode

The pump mode is aligned with the main coordinate sys-
tem x , y , z, and treated as a classical monochromatic field
of amplitude Ep

0. We further assume �as is customary� that we
have no significant depletion of the pump in the down-

conversion crystal. The electrical field of the pump can thus
be written as

Ep�r,t� =
1

2
�Ep

�+��r,t� + Ep
�−��r,t�� =

1

2
�Ep

0epgp�r�e−i�pt + c.c.� ,

�5�

with a polarization vector ep, and a corresponding angular
frequency �p. Using the normalization expression �2�, we
can connect the electrical field amplitude Ep

0 with the optical
power P in the pump beam:

�Ep
0�2 = �p

2 2P

�0npc
, �6�

with the refractive index np for the pump field, the electrical
field constant �0, and the speed of light c in vacuum.

B. Target modes

First, we need to take care of the possibly noncollinear
propagation of the target modes with respect to the pump. By
introducing target mode angles �s,i, and using an orientation
as indicated in Fig. 1, we express the spatial coordinates of
the target modes in terms of the main coordinates x , y , z:


xs,i

ys,i

zs,i
� = 
1 0 0

0 cos �s,i �sin �s,i

0 	sin �s,i cos �s,i
�
x

y

z
� . �7�

To arrive at a rate of photon pairs generated via SPDC, we
use the quantized field operators. We do that by introducing a
quantization length L in the propagation direction for clarity
in the counting of modes, and postulate periodic boundary
conditions; later we will drop this requirement. Following
the notation in Eq. �5�, the electrical field operators take the
form

Ês,i =
1

2
�Ês,i

�+��r,t� + Ês,i
�−��r,t��

=
i

2�
ks,i

�2
�s,i

ns,i
2 �0

�s,i

�L
es,igs,i�r�e−i�s,it âks,i

+ H.c. �8�

Here, es,i indicate the polarization vectors, and ns,i and �s,i
the corresponding refractive indices and angular frequencies
of the target modes. The modes are indexed by the scalar
moduli ks,i, and the corresponding full wave vectors in the
pump coordinates are given by

ks,i = ks,i�	sin �s,i ey + cos �s,i ez� . �9�

The longitudinal wave vector components serve as a com-
plete discrete mode index ks,i=2�ms,i /L with integer num-
bers ms,i. The coefficients before the raising and lowering
operators in Eq. �8� are chosen such that the free field Hamil-

tonian Ĥ0 for the target modes takes the usual form

Ĥ0 = �
ks,i


�s,i�âks,i

† âks,i
+

1

2
	 . �10�

i
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FIG. 1. �Color online� Schematic of the down-conversion model
considered in this paper. Pump, signal, and idler beams are treated
as paraxial beams with a Gaussian transverse mode. The x axis is
perpendicular to the plane of the diagram. Coordinate systems of
the signal and idler �xs,i ,ys,i ,zs,i� are tilted by angles �s , �i with
respect to the coordinate system of the pump.
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C. Interaction Hamiltonian

The SPDC process is enabled by a nonlinear optical ma-

terial whose presence is described by the Hamiltonian ĤI,
written in the interaction picture with time dependence of the
raising and lowering operators �13�:

HI = −
2�0��2�

8
�

−�

�

dx dy�
−l/2

l/2

dz Ep
�+�Ês

�−�Êi
�−� + H.c.

= d�
−�

�

dx dy�
−l/2

l/2

dz�
ks,ki


��i�s

nsni

�s�iEp
0

L

�e−i�tgp�r�gs
��r�gi

��r�âks

† �t�âki

† �t� + H.c. �11�

We have assumed a crystal of infinite transverse �x ,y� extent,
which is justified when the beam diameters are much smaller
than the crystal dimensions. We introduce a frequency mis-
match �=�p−�s−�i. The effective nonlinearity d captures
the contraction of the nonlinear susceptibility tensor with the
corresponding polarization vectors �2d=ep��2� :esei� �13�.
With this notation, the type of phase-matching condition
�type I or II� is reflected in an appropriate effective nonlin-
earity d.

Most of the scaling aspects of the parametric down-
conversion process connected with the geometry of the inter-
action are determined by the overlap integral ��k� of the
three mode functions gp,s,i�r� in the crystal:

��k� =� dz� dy dx gp�r�gs
��r�gi

��r�

=� dz� dy dx eik·rUp�r�Us�r�Ui�r� . �12�

In this expression, k=kp−ks−ki describes the wave vector
mismatch. Since pump and target modes are defined in the
y-z plane, there are no wave vector components in the x
direction and hence kx=0. Carrying out the integration in
the transverse directions �x ,y� we arrive at

��k� =
�

�AC
e−ky

2/4C� dz e−Hz2+izK, �13�

with the abbreviations

A =
1

Wp
2 +

1

Ws
2 +

1

Wi
2 , �14�

C =
1

Wp
2 +

cos2 �s

Ws
2 +

cos2 �i

Wi
2 , �15�

D =
sin 2�s

Ws
2 −

sin 2�i

Wi
2 , �16�

F =
sin2 �s

Ws
2 +

sin2 �i

Wi
2 , �17�

H = F −
D2

4C
, �18�

K = ky
D

2C
+ kz. �19�

The exponential term before the residual integral in Eq. �13�
represents the approximate transverse wave vector mismatch.
This term can be ignored only if one of the beams is infi-
nitely large �Wp,s,i→��, or if there is perfect transverse
phase matching.

The residual integral along z in Eq. �13� can be rewritten
in a form that allows for a physical interpretation. We intro-
duce �z, where

�z ª �
−l/2

l/2

dz e−Hz2+izK �20�

=l�
0

1

du e−�2u2
cos��u� . �21�

The phase mismatch is now defined as �ªKl /2. The ar-
gument �ª

�Hl /2 in the exponential can be viewed as a
“walk-off” parameter due to noncollinear mode propagation.
This parameter is useful for identifying a thin- and a thick-
crystal regime �6�. In our model, these regimes refer to the
physical boundary conditions imposed on the interaction vol-
ume by the geometry of the pump and target modes.

In the thick-crystal regime with a large walk-off param-
eter ���1�, the overlap integral �z depends mostly on the
characteristic beam parameters Wp,s,i and not much on the
physical boundaries of the nonlinear material. For �→� the
length of the crystal ceases to play a role altogether:

�z  l
��

2�
erf��� =��

H
erf��� . �22�

The thin-crystal regime refers to a small walk-off parameter,
��1, so that the characteristic beam parameters have al-
most no influence on �z. In particular, this applies for col-
linear arrangement of all modes ��i=�s=0�, where �=0. In
this case, K=kz, and

�z = l sinc��� . �23�

This reveals the well-known influence of the longitudinal
phase mismatch on the down-conversion spectral properties
�3�. Figure 2 shows the overlap contribution �z / l as a func-
tion of the phase mismatch � for various walk-off param-
eters �. We note that, as � becomes large, the spectrum
becomes Gaussian-like. If � is identified as the degree of
�non�collinearity, it suggests that the SPDC spectral profile
far from collinear emission can be very broad. In other
words, for the same beam parameters Ws,i,p, the bandwidth of
collinear emission will be narrower than for noncollinear
emission.

D. Spectral emission rate

To obtain absolute emission rates, we make use of Fermi’s
golden rule as an expression for the transition rate R�ks� be-
tween the initial vacuum state �i�= �0ks

,0ki
� and a final state

�f�= âks

† âki

† �0ks
,0ki

� with the mode pair ks ,ki populated with
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one photon each. Fermi’s rule applies for asymptotic scatter-
ing rates, so the relation between ks and ki is fixed by energy
conservation:

� = �p − ks
c

ns
− ki

c

ni
= 0. �24�

We first evaluate the transition rate R�ks� to a fixed signal
target mode ks. The density of states � per unit of energy
E=
� is extracted out of a quasicontinuum of states for
the mode ki:

��E� =
m

ki

�ki

��
��
=

L

2�

ni


c
, �25�

where m /ki=L /2� denotes the number of modes per unit
of wave vector component ki.

With the transition matrix element expressed in terms of
the overlap integral ��k�,

�f �ĤI�i� = d

��s�i

nsni

�s�i

L
Ep

0��k� , �26�

the transition rate is then given by

R�ks� =
2�



��f �ĤI�i��2��E� �27�

= �d�s�iEp
0��k��2

�s�i

ns
2nicL

. �28�

The spectral emission rate per unit of angular frequency �s is
obtained by multiplying R�ks� with the number of modes ks
in a unit interval of �s, which is Lns /2�c. We finally arrive
at

dR��s�
d�s

= �d�s�iEp
0��k�
c

	2 �s�i

2�nsni
. �29�

At this point, the earlier introduced quantization length L has
vanished, as expected.

E. Total emission rate

We now can determine the total pair generation rate by
integrating the spectral rate density over all frequencies �s.
Assuming that the overlap ��k� is only nonvanishing over
a small range of frequencies �s, the total pair generation rate
can be written as

RT = �d�s�iEp
0

c
	2 �s�i

2�nsni
� d�s���k��2. �30�

The dependency of ��k� on �s can be quite involved, as in
the noncollinear case ��i,s�0� both ky��s� and kz��s�
must be considered. However, the alignment criteria for most
experimental setups assume perfect longitudinal phase
matching to arrive at the collection angles for degenerate
down-conversion �10,11�. In these collection directions, the
target mode angles �s,i are equal. Furthermore, the typical
experiments use identical collection mode diameters for sig-
nal and idler, Ws=Wi �10�. Under these two conditions, the
phase mismatch � depends only on kz.

We now consider the exponential term for the overlap �
in Eq. �13� that contains ky. For experiments where light
centered on the degenerate wavelengths with a small band-
width is collected �2 nm on either side of the center �10��,
we will assume perfect transverse phase matching. A com-
plete treatment with nonzero transverse phase mismatch re-
quires a numerical procedure �14�.

With perfect transverse phase matching, we can carry out
the integration in Eq. �30� by reparametrizing the frequencies
of the signal and idler about the degenerate SPDC frequency:

�s=
�p

2 −�� and �i=
�p

2 +��. We approximate �s�i
�p

2

4 by ig-
noring terms O��w

2 �. From energy conservation equation �24�
and the phase matching condition

kz = ns�s cos �s + ni�i cos �i − np�p, �31�

we obtain a dispersion relation between d�s and d�kz�:

d�kz� =
�ni cos �i − ns cos �s�

c
d�s. �32�

The emission rate can now be integrated over the longitudi-
nal wave vector mismatch kz,

RT =
d2��i�sEp

0�2�p
2

4cnsni�2���ni cos �i − ns cos �s�
� ���k��2d�kz� .

�33�

Effectively, this is the pair emission rate for all allowed
wavelengths in the direction defined by our paraxial beams.
If we recall that the pump has a Gaussian envelope, and
choose all beam characteristics to be equal �Wp=Ws=Wi�,
the rate RT finally can be written as

-0.2

0

0.2

0.4

0.6

0.8

1

-4π -2π 0 2π 4π

Φz/l

∆ϕ

Ξ=0

Ξ=1/2

Ξ=1

Ξ=3

FIG. 2. �Color online� Longitudinal overlap function �z / l as a
function of the total phase mismatch �=Kl /2 over the crystal for
various walk-off parameters �. For �=0, the typical sinc-shaped
spectral distribution is revealed, whereas for large walk-off param-
eters ��1 the phase-matching condition is determined by the over-
lap region formed by pump and target modes, and develops into a
Gaussian distribution.
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RT =
4d2Pl�p

2

3�npnsni�0c2��Wp
2��1 + cos �i

2 + cos �s
2�

�
1

�ni cos �i − ns cos �s�
S , �34�

with the spectral integral S : =��
�z�kz�

l �2d�kzl /2�. The abso-
lute emission rate is proportional to S, which has a depen-
dence on the value of the walk-off parameter � as shown in
Fig. 3. The spectral integral assumes its largest value S=� in
the thin-crystal limit. In this limit, closed form expressions
for the spectral and total rates are

dR̃��s�
d�s

=
2d2�p

2Pl2 sinc2�kzl/2�
9�npnsni�0c3��Wp

2�
, �35�

R̃T =
4d2Pl�p

2

9nsninp�0�Wp
2�ni − ns�c2 . �36�

F. Dependence of emission rate on beam waists

Although it is convenient to set all beam waists to be
equal, this is not necessary. In fact, it can be shown that this
choice does not maximize the total emission rate for a given
optical pump power. Carrying out the more general deriva-
tion to arrive at an expression similar to Eq. �36�, the depen-
dency on the various beam waists Wp , Ws, and Wi �again in
the thin-crystal limit� can be written as

RT �
1

Wp
2Ws

2Wi
2�1/Wp

2 + 1/Ws
2 + 1/Wi

2�2 . �37�

To develop an alignment strategy, we may assume that the
collection modes are identical �Ws=Wi=W�, but we reex-
press the pump waist as Wp=�W, so we obtain

R̃T � RT �
1

W2�1/� + 2��2 . �38�

This relationship is illustrated in Fig. 4, and exhibits a maxi-

mum of R̃T for �= 1
�2

. For �=1, the emission rate is about
12% lower than the maximum value. This suggests that ex-
perimental setups that are designed with equal beam waists
for pump and collection modes may be further optimized,

and the simple argument of maximizing a mode overlap �10�
with matching beam waists does not hold.

III. PHYSICAL INTERPRETATION AND
COMPARISON TO EXPERIMENTS

While RT is proportional to the crystal length l, the spec-
tral rate dR��s� /d�s is proportional to the square of a sinc
function. This is in agreement with results from previous
work �3�. However, our expression reveals dependencies on
other factors, namely, emission geometry and pump spot
size. The expression for RT reveals that the emission rate is
higher in a collinear geometry compared to a noncollinear
case. This can be intuitively understood because the noncol-
linear case has a smaller interaction volume.

We find that the absolute rate RT is proportional to the
square of pump frequency since we reparametrize the signal
and idler about the degenerate frequency, so down-
conversion efficiency can be improved with shorter-wave-
length pumps. Both spectral and total emission rates are in-
versely proportional to the mode area of the beams, in con-
trast to previous studies, which showed that the total SPDC
cannot be enhanced by focusing �3,15�. There, however,
SPDC emission was not considered for specific transverse
modes. The dependence of emission rates on the mode area
has been reported in a previous analysis of SPDC in wave-
guide structures �16�. This is not surprising because the emis-
sion into paraxial beams is essentially the same problem as
SPDC in waveguides, where the target modes are quantized
in one dimension only. We note that our Eq. �35� is similar to
the equation obtained in Ref. �16�.

We should not draw the conclusion, however, that SPDC
emission into single transverse modes can be arbitrarily en-
hanced by tight focusing. Our model is only valid in cases
where the transverse profile of the beams does not vary sig-
nificantly over the crystal length. For an optimization study
of focus size on SPDC emission we refer the reader to Ref.
�9�.

For explicit comparison of Eq. �34� with experimental
values, we consider our experimental setup �similar to that
used in Ref. �17��. In this experiment a pump beam �beam
waist Wp=82 �m� at a wavelength of 351.1 nm is incident

π
2

0

π

0 0.5 1 1.5 2 2.5 3

S

Ξ

FIG. 3. Variation of the spectral integral S with walk-off param-
eter �. Since the absolute emission rate is proportional to S, the
largest absolute rate is obtained in the thin-crystal limit with �=0.
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FIG. 4. Dependence of the total pair rate R̃T on the ratio �
between target and pump waist. The maximum emission rate can be
expected at �=1 /�2.
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on a 2-mm-thick �–barium borate �BBO� crystal. Two
single-mode fibers are used to collect degenerate down-
converted photons, which is estimated to have an external
emission angle of 3.1°. The collection modes also have beam
waists of Ws,i=82 �m.

Specifically, for BBO the effective nonlinearity is given
by d=d22 cos2 �c cos 3�c. The angle between pump wave
vector and crystal optical axis is �c=49.7°, while the azi-
muthal angle is �c=60°, resulting in an effective nonlinearity
of 9�10−13 m /V �d22=2.11�10−12 m−1 V−1 according to
Ref. �18��. The observed pair rate is approximately
800 pairs mW−1 s−1 with a pair-to-singles ratio of 0.23.

The walk-off parameter for this setup is �=0.933, indi-
cating that the overlap integral is intermediate between the
thin- and thick-crystal limits. The largest observable rate ac-
cording to our model is 2�0.23�RT�=1100 mW−1 s−1. The
additional factor of 2 is used because in experiments, the
geometry is used to collect down-conversion emission in two
decay paths.

The source of the discrepancy between experiment and
our model is hard to identify. The assumptions used in the
model make it an overestimate, primarily in the reparam-
etrizing of signal and idler frequencies about the degenerate
wavelength. Experimentally, there are several sources of un-
certainty, the main one being the difficulty in establishing
pump power very accurately. For example, the average ob-
served value was arrived by measuring the power using two
different power meters �a Newport Model 818-UV reported
11.7 mW while a Coherent Fieldmaster reported 9 mW�. The
uncertainty in pump power estimation, however, is not suffi-
cient to make the observed result compatible with the calcu-
lated value.

According to the model, the conversion efficiency into
Gaussian transverse modes for our experimental setting will
be 3�10−12 mm−1 of crystal length. Other experimentally
reported rates in the literature reveal similar down-
conversion efficiencies �8,10,19�. The total conversion effi-
ciency of SPDC was found to be on the order of 3
�10−8 mm−1 sr−1 by Klyshko �4� �for degenerate SPDC
with a 500 nm pump wavelength�. Experimentally, our col-
lection angle is 3.3�10−5 sr. If we convert our units to be

comparable with Klyshko’s result, we obtain an efficiency of
7�10−8 mm−1 sr−1.

IV. CONCLUSION

In conclusion, we have presented expressions that provide
absolute values for the rate and bandwidth of correlated pairs
emitted in bulk crystal SPDC which are in a single Gaussian
mode. These modes may be defined by the collection profile
of single-mode fibers, selecting emission in a specific pair of
directions. The single-mode treatment reduces the complex-
ity in the final expression for the rate equations.

We find that the expression for absolute rates given by the
model are slightly larger than experimental observations. The
model may thus be treated as an idealized case for the total
pair emission rate. The small difference between experimen-
tally observed rates and predictions according to the closed
expression for RT, however, suggests that experimental set-
ups using single-mode collection fibers �e.g., �8,10�� operate
close to the optimal limit.

Substantial increase of the emission rates are to be ex-
pected from larger nonlinearities, since emission rates are
proportional to d2. Small mode diameters are also expected
to enhance emission rates, as has been convincingly reported
for SPDC experiments using waveguide structures �20–22�,
and a similar theoretical analysis �16� for those cases. Over-
all spectral brightness will be improved by combining larger
nonlinearities with collinear mode confinement in longer
structures. Even then, however, the spectral width is still ul-
timately determined by the longitudinal wave vector mis-
match. This indicates that very dramatic improvements �by
several orders of magnitude� to the generated pair rate in a
narrow bandwidth necessary for addressing atomic systems
is not very likely to be expected from bulk crystal emission.
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