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The dynamics of an initially excited two-level atom in a lossy cavity is studied by using the quantum
trajectory method. Unwanted losses are included, such as photon absorption and scattering by the cavity
mirrors and spontaneous emission of the atom. Based on the obtained analytical solutions, it is shown that the
shape of the extracted spatiotemporal radiation mode sensitively depends on the atom-field interaction. In the
case of a short-term atom-field interaction we show how different pulse shapes for the field extracted from the
cavity can be controlled by the interaction time.
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I. INTRODUCTION

A single atom interacting with a quantized radiation-field
mode in a high-Q optical cavity plays an important role in
quantum optics not only due to its conceptual relevance, but
also because it appears as a basic element in various
schemes, such as in the field of quantum information science
�for a review see, e.g., Refs. �1–4��. Cavity quantum electro-
dynamics �QED� has been used for the generation and pro-
cessing of nonclassical radiation, as, for example, in the
single-atom maser �5–9� or in the optical domain �10�. The
quantum control of single-photon emission from an atom in a
cavity for generating single-photon Fock states on demand
has been realized �11�, and single-photon Fock state genera-
tion of high efficiency has been a key requirement in various
applications such as quantum cryptography �12,13� or quan-
tum networking for distribution and processing of quantum
information �14,15�. Recently, single-photon sources operat-
ing on the basis of adiabatic passage with just one atom
trapped in a high-Q optical cavity have been realized
�16–19�. In this way, the generation of single photons of
known circular polarization has been possible �20�. More-
over, the adjustment of the spatiotemporal profile of single-
photon pulses has been achieved �21,22�.

In view of the widespread applications of cavity-assisted
single-photon sources, it is of great importance to carefully
study the quantum state of the field escaping from a cavity.
Let us consider the simplest case of a two-level atom that
near-resonantly interacts with a narrow-band cavity-field
mode. On a time scale that is sufficiently short compared to
the inverse bandwidth of the mode, the radiative and nonra-
diative cavity losses may be disregarded, and the atom-field
dynamics can be described by the familiar Jaynes-Cummings
model �23�. Clearly, for longer times, the atom-cavity system
can no longer be regarded as being a closed system, and the
losses must be taken into account. Since the wanted outgoing
field represents, from the point of view of the atom-cavity
system, radiative losses, the study of the input-output prob-
lem necessarily requires inclusion in the theory of the effects
of losses. Such a system, consisting of a two-level atom in-
teracting with a single mode of a lossy cavity, has been
widely considered in the past decades. Some of the initial

theoretical works treating the effects of losses on the Jaynes-
Cummings dynamics can be found in Refs. �24–32�. For a
review on this topic see, e.g., Refs. �33,34�. Anyway, a de-
tailed characterization of the cavity output field in such a
system still presents some open questions of significant in-
terest, as, for example, the control of the pulse shape of the
emitted photon.

There are primarily two approaches to this problem,
which are based on either quantum field theory or quantum
noise theory. In quantum field theory, the system is com-
monly described on the basis of Maxwell’s equations as used
in macroscopic QED �35,36�. It has been shown that an ap-
proximate description of the fields inside and outside a cavity
can be formulated in terms of quantum Langevin equations
and input-output relations �37,38�. Macroscopic QED can
also be used to study effects of unwanted losses, such as
scattering and absorption losses caused by the cavity mirrors
�39–41�. More recently, the photon emission by an excited
atom in a cavity has been analyzed by the method of macro-
scopic QED �42�. By using a source-quantity representation
of the electromagnetic field, the properties of the outgoing
field are investigated. In such an approach the field inside
and outside the cavity is combined in a unique radiation
mode, without regarding the fields inside and outside the
cavity as representing independent degrees of freedom.

Conversely, in quantum noise theory the fields inside and
outside a cavity are regarded as representing independent
degrees of freedom �43–45�. Accordingly, such a theory is
based on discrete and continuous mode expansions of the
fields inside and outside the cavity, respectively. Thus the
operators of the intracavity and external fields are regarded
as commuting quantities. The continuum of the external
modes is regarded as playing the role of a dissipative system.
Its effect on the dynamics of the intracavity modes can be
treated by quantum Langevin equations, or, alternatively, by
master equations �46–48�. For obtaining their solution one
can apply, for example, the quantum trajectory method
�49–51�.

In the present paper we consider a two-level atom inter-
acting with a lossy cavity, within the framework of quantum
noise theory, giving particular emphasis to the derivation of
the pulse shape of the emitted photon. The dynamical evolu-
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tion of the open quantum system under study is described by
a master equation for the reduced density operator of the
atom-cavity system. The effects of unwanted losses, such as
spontaneous emissions of the two-level atom out the side of
the cavity and photon absorption and scattering by the cavity
mirrors, are also taken into account. For an initially excited
two-level atom in an empty cavity, we solve the master equa-
tion analytically by using the quantum trajectory method. In
order to characterize the cavity output field, described by a
single-photon spatiotemporal mode, we connect the probabil-
ity to measure a photon in this mode with the photodetection
probability as given by the quantum trajectory theory. This
allows us to derive the shape of the mode of the extracted
cavity field, which shows a clear mapping of the intracavity-
field dynamics onto the mode of the output field. Moreover,
the probability of the outgoing mode to carry a single-photon
Fock state is calculated. After considering the case of a con-
tinuing atom-field interaction, we also analyze the short-term
atom-field interaction. It is shown that, by changing the in-
teraction time of the atom with the cavity, the mode structure
of the outgoing field results in different pulse shapes of the
single-photon wave packet. This opens possibilities to con-
trol the shape of the pulse.

The paper is organized as follows. In Sec. II the master
equation describing the dynamics of the atom-cavity system
is introduced, and the problem is solved analytically by using
the quantum trajectory method. In Sec. III, giving a descrip-
tion of the single-photon wave packet in terms of spatiotem-
poral mode functions, the shape of the mode of the extracted
cavity field is obtained. In Sec. IV we analyze short-term
atom-field interactions and obtain different shapes of the
mode of the extracted field. A summary and some concluding
remarks are given in Sec. V.

II. DAMPED ATOM-FIELD DYNAMICS

In this section we analyze the dynamics of the system
under scrutiny starting from a master equation and solving it
by using the quantum trajectory theory. We consider a single
two-level atomic transition of frequency �a coupled to a cav-
ity mode of frequency �c. The cavity mode is detuned by �
from the two-level atomic transition frequency, �a=�c+�,
and is damped by losses through the partially transmitting
cavity mirrors, cf. Fig. 1. In addition to the wanted outcou-
pling of the field, the photon can be spontaneously emitted
out the side of the cavity into modes other than the one
which is preferentially coupled to the resonator. Moreover,
the photon may be absorbed or scattered by the cavity mir-
rors.

Treating the dissipation due to the cavity losses in a stan-
dard way �46–48�, the dynamical evolution of the reduced
density operator �̂�t� of the atom and the cavity field is de-
scribed by the following master equation:

d�̂�t�
dt

=
1

i�
�Ĥ, �̂�t�� + �

i=1

2
�i

2
�2â�̂�t�â† − â†â�̂�t� − �̂�t�â†â�

+
�

2
�2Â12�̂�t�Â21 − Â22�̂�t� − �̂�t�Â22� . �1�

Here �1 and �2 are the photon escape rate of the cavity and

the cavity mirrors’ absorption and scattering rate, respec-
tively. We denote by � the spontaneous emission rate of the
two-level atom. The Hamiltonian that describes the atom-
cavity interaction is given, in the rotating-wave approxima-
tion, by

Ĥ = �g�âÂ21 + â†Â12� + ��Â22, �2�

where â and â† are annihilation and creation operators for the

cavity field, respectively, and Âij = �i��j� �i , j=1,2�, where �1�
and �2� are the two atomic energy eigenstates. Moreover, g is
the atom-cavity coupling constant. Here we are considering

an interaction picture with respect to Ĥ0−��Â22, where Ĥ0

=��câ
†â+ �1 /2���a�Â22− Â11�.

For notational convenience, in the following we will iden-
tify the state �a� with the state �2,0�, the atom in the upper
level, and no photon in the cavity. The state �a� will be con-
sidered to be the initial state of the system. Moreover, we
will indicate with �b� the state �1,1�, the atom in the lower
level, and one photon in the cavity. Due to photon extraction
through the cavity mirror, photon absorptions, or spontane-
ous emissions, the quantum state of the atom-cavity system
is projected into the state �c�, that indicates the state �1,0�,
i.e., the atom in the lower level and no photon in the cavity.
It follows that the Hilbert space that describes the atom-
cavity system under scrutiny is, in this model, simply
spanned by the three vectors �a�, �b�, and �c�.

To evaluate the time evolution of the system different
approaches can be used, see, for example, Refs. �52–54�.
Here we have found it quite convenient to use a quantum
trajectory approach �49–51� to obtain our analytical solu-
tions. In this approach the dynamical evolution of the unnor-

malized state vector ��̄�t��, that describes the system at time
t, is governed by a nonunitary Schrödinger equation with a
non-Hermitian Hamiltonian. The evolution generated by this
Schrödinger equation is randomly interrupted, from time to
time, by the action of collapse, or jump, operators.

More precisely, in our specific case, considering the sys-
tem prepared at time t0=0 in the state �a�, to determine the
state vector of the system at a later time t, assuming that no
jump has occurred between time t0 and t, we have to solve
the nonunitary Schrödinger equation

κ1

κ2

|2〉

ωc

|1〉

Γ ∆

FIG. 1. The cavity mode of frequency �c is detuned by � from
the two-level atomic transition frequency �a=�c+�. �1 and �2 are
the photon escape rate of the cavity and the cavity mirrors’ absorp-
tion and scattering rate, respectively. � is the dipole relaxation rate
from level �2� to �1�.

DI FIDIO et al. PHYSICAL REVIEW A 77, 043822 �2008�

043822-2



i�
d

dt
��̄no�t�� = H�ˆ ��̄no�t�� , �3�

where H�ˆ is the non-Hermitian Hamiltonian given by

H�ˆ = Ĥ − i�
�

2
â†â − i�

�

2
Â22, �4�

with Ĥ given by Eq. �2�, and where we have defined

� = �1 + �2. �5�

If no jump has occurred between time t0 and t, the system
evolves via Eq. �3� in the unnormalized state

��̄no�t�� = 	�t��a� + 
�t��b� . �6�

In this case the conditioned density operator for the atom-
cavity system is given by

�̂no�t� =
��̄no�t����̄no�t��

��̄no�t���̄no�t��
. �7�

Here we have used the word conditioned to stress the fact
that this is the density operator at time t one obtains condi-
tioned to the fact that no jump has occurred between time t0
and t.

The evolution governed by the nonunitary Schrödinger
equation �3� is randomly interrupted by three kinds of jumps,

Ĵ1, Ĵ2, and Ĵs given by

Ĵi = 	�iâ �i = 1,2� , �8�

Ĵs = 	�Â12. �9�

The jump operators Ĵ1 and Ĵ2 are related to a photon ex-
tracted from the cavity and a photon absorbed or scattered by

the mirrors, respectively. The jump operator Ĵs is related to a
photon spontaneously emitted by the atom. If a jump has
occurred at time tJ, tJ� �t0 , t�, the wave vector is found col-
lapsed in the state �c� due to the action of one of the jump
operators,

Ĵi��̄no�tJ�� = 	�iâ��̄no�tJ�� → �c� �i = 1,2� , �10�

Ĵs��̄no�tJ�� = 	�Â12��̄no�tJ�� → �c� . �11�

It is clear that in the problem under study we can have only
one jump. Once the system collapses in the state �c� the
nonunitary Schrödinger equation �3� simply keeps it there
forever. In this case the conditioned density operator at time
t is given by

�̂yes�t� = �c��c� , �12�

where we indicate with “yes” the fact that a jump has oc-
curred.

According to the quantum trajectory method, the density
operator �̂�t� is obtained by performing an ensemble average
over the different conditioned density operators at time t. In
the present case, starting at time t0 with the density operator

�̂0= �a��a�, the ensemble average is performed over the two
possible realizations �histories� “yes” and “no”:

�̂�t� = pno�t��̂no�t� + pyes�t��̂yes�t� . �13�

Here pno�t� and pyes�t� are the probability that between the
initial time t0 and time t no jump and one jump has occurred,
respectively. Of course, pno�t�+ pyes�t�=1. The density opera-
tor given by Eq. �13� tells us that the system at time t is in a
statistical mixture: either no photon has escaped from the
cavity or one �and only one� photon has escaped.

To evaluate pno�t� we use the method of the delay function
�50�. This method tells us that the probability pno�t� is given
by the square of the norm of the unnormalized state vector:

pno�t� = 
��̄no�t��
2 = ��̄no�t���̄no�t�� = �	�t��2 + �
�t��2.

�14�

From Eqs. �13� and �14� one obtains for the density operator
�̂�t� the expression

�̂�t� = �	�t��2�a��a� + �
�t��2�b��b� + 	�t�
��t��a��b�

+ 	��t�
�t��b��a� + ���t��2�c��c� , �15�

where we have defined

���t��2 � pyes�t� = 1 − ��	�t��2 + �
�t��2� . �16�

The physical meaning of �	�t��2, �
�t��2, and ���t��2 is clear.
They represent the probability that at time t the system can
be found either in �a�, �b�, or �c�. Moreover, from the master
equation �1�, together with Eq. �15�, one obtains

d���t��2

dt
= Tr�d�̂�t�

dt
�c��c�
 = ��
�t��2 + ��	�t��2. �17�

To better understand the meaning of Eq. �17�, it is useful to
do the following consideration. According to the quantum
trajectory theory, the probability for a jump, cf. Eqs. �8� and
�9�, to occur in the time interval �t , t+dt� is given by �i
=1,2�

pi�t� = �Ĵi
†Ĵi�tdt = �i Tr��̂�t�â†â�dt = �i�
�t��2dt �18�

and

ps�t� = �Ĵs
†Ĵs�tdt = � Tr��̂�t�Â22�dt = ��	�t��2dt . �19�

Of course, the increment in the time interval dt for pyes�t� is
equal to p1�t�+ p2�t�+ ps�t�, so that we can write, using Eqs.
�18�, �19�, and �16�,

d���t��2 = dpyes�t� = ��
�t��2dt + ��	�t��2dt , �20�

that is again Eq. �17�. The physical meaning of this relation
is quite clear. When the system is in �b�, i.e., with probability
�
�t��2, we can have an emission of a photon from the cavity
or an absorption or scattering by the cavity mirrors �con-
trolled by the parameter ��. When the system is in �a�, i.e.,
with probability �	�t��2, we can have a photon spontaneously
emitted by the atom �controlled by the parameter ��. The
related jumps operators project the system into �c�, hence
producing an increment of ���t��2. Moreover, by integrating
Eq. �20� one gets
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pyes�t� = ���t��2 = pext�t� + pabs�t� + pspo�t� , �21�

where we have defined

pext�t� = �1�
0

t

dt��
�t���2, �22�

pabs�t� = �2�
0

t

dt��
�t���2, �23�

and

pspo�t� = ��
0

t

dt��	�t���2. �24�

The function pext�t� represents the probability that a photon is
extracted from the cavity in the time interval �0, t�, and
pabs�t� the probability that a photon is absorbed or scattered
by the mirrors in the same time interval. Finally, pspo�t� rep-
resents the probability that a spontaneous emission has oc-
curred in time interval �0, t�.

Note that from Eqs. �22�–�24� it follows that pext�t�,
pabs�t�, and pspo�t� have to be monotonically increasing func-
tions: the longer one waits, the larger is the probability that a
photon has leaked out of the cavity, or is absorbed or scat-
tered by the mirrors, or a spontaneous emission has occurred.
Moreover, if we wait long enough a photon is certain to be
emitted in one of the three ways, so that limt→����t��2=1. In
this case pext�t� does not reach asymptotically the value 1,
due to the presence of spontaneous emissions and mirror
absorption or scattering. If we take the limit t→� of Eq.
�21�, we get

pext��� + pabs��� + pspo��� = 1. �25�

In order to determine 	�t� and 
�t� we have to solve the
nonunitary Schrödinger equation, cf. Eqs. �3� and �4�. This
brings us to consider the following linear system of differen-
tial equations:

�	̇�t� = − i�� − i
�

2
�	�t� − ig
�t�


̇�t� = − ig	�t� −
�

2

�t� � . �26�

For the initial conditions 	�0�=1 and 
�0�=0, and defining


 �	�2

4
− 4g2 − i��� − i

�

2
� − �� − i

�

2
�2

, �27�

we can write the solutions as

	�t� = ��/2 − i�� − i�/2�



sinh�
t

2
�

+ cosh�
t

2
�
e−���+��/4+i�/2�t,


�t� = −
2ig



sinh�
t

2
�e−���+��/4+i�/2�t. �28�

Using the solutions given in Eq. �28�, one can plot the prob-
abilities to find at time t the system in �a� or in �b�, i.e.,
�	�t��2 and �
�t��2, respectively, as well as pext�t�, pabs�t�, and
pspo�t�, as given by Eqs. �22�–�24�. In Fig. 2 we show these
functions for the parameters 2g /�=10, � /�=0.1, �1 /�
=0.9, and for the realistic choice of � /�=0.5, cf. Ref. �55�.
Note that for t→�, �	�t��2→0, �
�t��2→0, and pext�t�
+ pabs�t�+ pspo�t�= ���t��2→1, as it is expected from Eqs. �28�
and �16�.

Let us consider �=0 and g�� ,�. From Eq. �28� one
immediately obtains

�	�t��2 = cos2�gt�e−��+��t/2,

�
�t��2 = sin2�gt�e−��+��t/2. �29�

In this case the system undergoes damped Rabi oscillations
between �a� and �b� with frequency 2g. From Eq. �29� one
easily obtains, using Eqs. �22�–�24�,

pext�t� = �1�
0

t

dt��
�t���2 =
�1

� + �
�1 − e−��+��t/2� , �30�

pabs�t� = �2�
0

t

dt��
�t���2 =
�2

� + �
�1 − e−��+��t/2� , �31�

and

pspo�t� = ��
0

t

dt��	�t���2 =
�

� + �
�1 − e−��+��t/2� . �32�

From Eq. �21� we then get

pyes�t� = ���t��2 = 1 − e−��+��t/2, �33�

that shows a simple exponential behavior. For t→� we have
pext�t�→�1 / ��+��, pabs�t�→�2 / ��+��, pspo�t�→� / ��+��,
and ���t��2→1.

III. SINGLE-PHOTON WAVE PACKET

The analysis performed here, using a quantum trajectory
approach, is implicitly based on an unraveling of the master

0 2 4 6 8 10
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κt

pext(t)

p
ro

b
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it
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pspo(t)

pabs(t)

FIG. 2. The probabilities �	�t��2 �dashed line�, �
�t��2 �dotted
line�, pext�t� �full line�, and pabs�t�, pspo�t� �dot-dashed lines� are
shown for 2g /�=10, � /�=0.1, �1 /�=0.9, and � /�=0.5.
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Eq. �1� for the case of direct photoelectric detection of the
field emitted from the cavity �51�. In experiments one uses a
large number of photodetections to recover the properties of
the electromagnetic field, also in the case of single-photon
sources, see, e.g., Refs. �21,22�. Properties like wave-packet
duration or wave-packet bandwidth are analyzed with an en-
semble of photons and cannot be determined from a mea-
surement on just a single photon. In this respect it is impor-
tant to carefully describe the arrival of photons at the
photodetector.

For this purpose it is convenient, following the approach
of Refs. �56–58�, to choose spatiotemporal modes for char-
acterizing the single-photon wave packet. A stream of single
photons emitted one after the other can be described by a
state vector �1�i

�, where

�1�i
� = ĉ�i

† �0� . �34�

Here ĉ�i

† is the creation operator for photons of spatiotempo-
ral mode �i�t� defined as

ĉ�i

† = �
0

�

dt�i�t�b̂†�t� , �35�

where �i�t�=0 for t�0, and b̂†�t� is given by

b̂†�t� =
1

	2�
� d� b†���ei�t, �36�

that is, the Fourier transform of the operator b̂†���, the cre-
ation operator of quanta of a monochromatic wave of fre-
quency � in free space. From the relation

�b̂���, b̂†����� = ��� − ��� , �37�

and from Eq. �36�, it follows that

�b̂�t�, b̂†�t��� = ��t − t�� . �38�

Given that the photon is in the mode �i, i.e., it is described by
the normalized function �i�t�, according to

�
0

�

dt��i�t��2 = 1, �39�

it is possible to construct a complete orthonormal set �� j�t��
of functions where

� dt�i�t�� j
��t� = �ij , �40�

and

�
i

�i
��t��i�t�� = ��t − t�� . �41�

From Eqs. �38� and �40� it is immediate to show that

�ĉ�i
, ĉ�j

† � = �ij , �42�

so that the operators defined by Eq. �35� using the complete
set of orthonormal functions �� j�t�� represent a set of inde-
pendent bosons, and ĉ�i

can be used to construct number
states in the usual way,

�n�i
� =

1
	n!

�ĉ�i

† �n�0� . �43�

The spatiotemporal mode function �i�t� is composed of an
amplitude envelope �i�t� and a phase �i�t�,

�i�t� = �i�t�ei�i�t�. �44�

According to Eq. �39�, the normalization reads as

�
0

�

dt �i
2�t� = 1. �45�

If we now define the flux operator in units of photons per
unit time,

f̂�t� = b̂†�t�b̂�t� , �46�

using the inverse relation of Eq. �35�, b̂�t�=�i�i�t�ĉ�i
, we can

write Eq. �46� as

f̂�t� = �
i

�
j

�i
��t�� j�t�ĉ�i

† ĉ�j
. �47�

When no extra losses, such as spontaneous emissions out the
side of the cavity or mirrors’ absorption or scattering, are
considered, the density operator of the cavity output field for
a photon in the mode �i is, in the Heisenberg picture, �̂out
= �1�i

��1�i
�, cf. Ref. �58�. When extra losses are included, the

density operator of the cavity output field is given by the
statistical mixture

�̂out = pext����1�i
��1�i

� + �1 − pext�����0��0� . �48�

Note that 1− pext���= pabs���+ pspo���, consistently with the
fact that the zero-field contribution is related to the sponta-
neous emissions out the side of the cavity or to mirrors’
absorption or scattering. The probability density distribution
of measuring the photon at a given time t is then

P�i
�t� = Tr��̂out f̂�t�� = pext����i

2�t� . �49�

Of course, integrating Eq. �49�, and using Eq. �45� we have

Ptot = �
0

�

dt P�i
�t� = pext����

0

�

dt �i
2�t� = pext��� , �50�

as it is expected.
Let us consider a photon in the mode �i, whose amplitude

envelope �i�t� does not change significantly in the detection
time resolution T. The response probability of the detector
within a time interval �t−T /2, t+T /2� is then, using Eq. �49�,
given by

PD�t� = �
t−T/2

t+T/2

dt�P�i�t�� � pext����i
2�t�T . �51�

In the case of a detector of quantum efficiency �, Eq. �51�
becomes

PD�t� = �pext����i
2�t�T . �52�

In an usual experiment a large number of photodetection
events are accumulated to obtain PD�t�, and from these mea-
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surements one gets �i�t�. This consideration is important be-
cause it tells us how one can obtain the amplitude envelope
of the mode function within a quantum trajectory formalism.
The probability to measure between time t−T /2 and t+T /2 a
“click” at the detector is equal to the probability to have a

jump Ĵ1 in the same time interval, so that using Eq. �18�, we
get, in the case of a detector of efficiency �,

PD�t� = ��1 Tr��̂�t�â†â�T = ��1�
�t��2T . �53�

Comparing this with Eq. �52� we obtain

�i�t� =	 �1

pext���
�
�t�� . �54�

Let us check if Eq. �45� is still fulfilled. Using Eq. �22� we
obtain

�
0

�

dt �i
2�t� =

1

pext���
lim
t→�

�1�
0

t

dt��
�t���2 = 1. �55�

To obtain Eq. �54� we have assumed that the photodetector
was positioned just outside the cavity, at z=0, so that this
equation gives the amplitude envelope of the spatiotemporal
mode function at z=0. Of course we could imagine to posi-
tion the detector in an arbitrary position z �with z�0�. In this
case, because outside the cavity the field is propagating at the
speed of light c, the amplitude envelope �i�z , t� is related to
the one at position z=0 via the retarded time t−z /c. More
precisely,

�i�z,t�

= ��i�0,t −
z

c
� =	 �1

pext���
�
�t −

z

c
�� t �

z

c
� 0

0 t �
z

c
� .

�56�

Note that �
�t��2 represents the probability to find at time t a
photon inside the cavity. In this respect, Eq. �56� shows that
the intracavity field dynamics determines the structure of the
spatiotemporal mode of the output field. Moreover, in order
to clarify the connection between �i�z , t� and the probability
to emit a photon, it is useful to consider the following equa-
tion, obtained from Eqs. �56� and �22�:

�
z/c

t

dt� �i
2�z,t�� =

pext�t − z/c�
pext���

�t � z/c� , �57�

where pext�t� represents the probability that a photon has
leaked out of the cavity in the time interval �0, t�. Using Eq.
�56� and the solution given by Eq. �28�, in Fig. 3 we plot the
amplitude envelope �i�z , t�	pext��� /�1 for the spatiotemporal
mode of the cavity output field for the case where the param-
eters g and � are chosen as 2g /�=10, � /�=0.1, � /�=0.5,
and �t=7. It is clearly seen that the intracavity dynamics
strongly modulates the mode structure of the photon wave
packet propagating outside the cavity.

IV. TIME CONTROL OF THE PHOTON WAVE PACKET

Let us now consider the case where the interaction of the
atom with the cavity-assisted field has a limited duration, so
that it effectively terminates at time �. To analyze this situa-
tion we have obviously to split the dynamical evolution of
the system in two distinct time intervals, one interval from
the initial time t0=0 to the time �, and the second interval for
times t greater than �. For times t such that 0� t��, the
evolution is still described by the one previously analyzed in
Sec. II, with solutions given by Eq. �28�. For times t with t
��, when the interaction of the atom with the cavity is set to
zero, the Hilbert space of the system �cavity field� reduces to
that spanned by the two Fock-state vectors �1� and �0� of the
cavity field. At time � the cavity field, obtained by tracing
over the atomic states in Eq. �15�, is described by the follow-
ing density operator:

�̂��� = �1 − �
����2��0��0� + �
����2�1��1� , �58�

where 
��� is given by Eq. �28�.
To analyze the dynamical evolution, for t��, of this ini-

tial state, we follow the procedure given by the quantum
trajectory theory when the initial state is not a pure state, but
a statistical mixture �49–51�. For the part related to �1
− �
����2��0��0�, one has to start with the state vector ������
= �0�. Because in this case the cavity is already empty, the
evolution simply leaves the cavity in its vacuum state also at
later times, so that we simply have

�̂1�t� = �0��0� . �59�

For the part related to �
����2�1��1�, one has instead to start
with the state vector ������= �1�. Before a collapse occurs,

the evolution of the unnormalized state ��̄no�t��= 
̄�t��1� is
described by the nonunitary Schrödinger equation

i�
d

dt
��̄no�t�� = − i�

�

2
â†â��̄no�t�� . �60�

Its solution is 
̄�t�=e−��t−��/2. If a jump Ĵi, cf. Eq. �8�, has
occurred at time tJ, tJ� �� , t�, the wave vector collapses in
the state �0�,
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FIG. 3. Plot of the amplitude envelope �i�z , t�	pext��� /�1 for the
spatiotemporal mode of the cavity output field, with parameters
2g /�=10, � /�=0.1, �1 /�=0.9, � /�=0.5, and �t=7.
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Ĵi��̄no�tJ�� = 	�iâ�
̄�tJ��1�� → �0� . �61�

This tells us that at time t�� the density operator for the part
related to the initial state ������= �1� is, using the method of
the delay function �50�, given by

�̂2�t� = pno�t��1��1� + �1 − pno�t���0��0� , �62�

where

pno�t� = 
��̄no�t��
2 = �
̄�t��2 = e−��t−��. �63�

Substituting this in Eq. �62� one gets

�̂2�t� = e−��t−���1��1� + �1 − e−��t−����0��0� . �64�

The evolution for the initial density operator given in Eq.
�58� is, according to the quantum trajectory theory, given by

�̂�t� = �1 − �
����2��̂1�t� + �
����2�̂2�t� , �65�

so that we obtain, using Eqs. �59� and �64�, the result

�̂�t� = �
����2e−��t−���1��1� + �1 − �
����2e−��t−����0��0� .
�66�

This is the density operator for the intracavity field for t
��. Combining this result with the one for the time interval
�0,��, cf. Eq. �15�, we can write the probability to find a
photon inside the cavity at an arbitrary time t as

pin�t� = ��� − t��
�t��2 + ��t − ���
����2e−��t−��, �67�

where �
�t��2 and �
����2 are given by Eq. �28�, and ��t� is
the unit-step function.

Let us now consider the probability p̄ext�t� that a photon is
extracted from the cavity in the time interval �0, t�. For t
�� this probability is equal to pext�t�, cf. Eq. �22�, with 
�t�
given by Eq. �28�. For t�� we have a sum of two contribu-
tions, a first one up to time �, given by pext���, and a second
one for the time interval �� , t�. This second contribution is
given, using Eqs. �18� and �66�, by

pext
� �t� = �

�

t

dt��Ĵ1
†Ĵ1�t� = �1�

�

t

dt��
����2e−��t�−��

=
�1

�
�
����2�1 − e−��t−��� . �68�

We can now combine these results and write, for an arbitrary
time t, the probability p̄ext�t� as

p̄ext�t� = ��� − t�pext�t� + ��t − ���pext��� + pext
� �t�� .

�69�

From this equation one gets that, for t→�, the extraction
probability is equal to p̄ext���= pext���+ ��1 /���
����2. This
relation can be rewritten, using Eqs. �16� and �21�, as

p̄ext��� = 1 − �	����2 − pspo��� − pabs��� , �70�

where pabs���= pabs���+ ��2 /���
����2, and pabs���, pspo��� are
given by Eq. �23� and Eq. �24�, respectively. Equation �70�
shows that the extraction probability is not, in general, as-
ymptotically reaching the value one. This reflects the fact

that at time � the atom can be, with probability �	����2, in its
excited state. If the interaction is set to zero when the atom is
in its excited state, then, obviously, no photon extraction can
anymore occur from the empty cavity. Moreover, also the
contribution due to spontaneous emissions up to time �,
pspo���, and the total absorption probability, pabs���, remove
photons from the extracted output channel. Note that from
Eq. �70� one obtains, for �→�, Eq. �25�, as it is expected,
being �	����2→0.

Let us now analyze the dynamical evolution of the system
for the following two cases. In the first case we consider that
the atom leaves the cavity at time � equal to the first half
Rabi cycle, i.e., at �=� / �
�, cf. Eq. �28�. In the second case
we consider that the atom leaves the cavity at time � equal to
the first Rabi cycle, i.e., at �=2� / �
�. For �=� / �
�, using
Eqs. �67� and �69�, we plot in Fig. 4 the behavior of the
probabilities pin�t� and p̄ext�t�, respectively. Note that for the
parameters used in this case we have �	����2�0. For �
=2� / �
�, the behavior of the probabilities pin�t� and p̄ext�t� is
plotted in Fig. 5, using Eqs. �67� and �69�. Because in this
case �
����2�0, one sees from Eq. �67� that the probability
to find a photon inside the cavity at time t�� is constant and,
approximately, equal to zero. From Eq. �69� the probability
p̄ext�t� has, for t��, the constant value pext���. Moreover, in
this case �	����2 is not negligible because the interaction was
switched off when the atom had a significant probability to
be found in its excited state.

We consider now the problem to determine the single-
photon pulse shape in the case of a short-term atom-field
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FIG. 4. The probabilities pin�t� �dotted line� and p̄ext�t� �full line�
are shown for �=� / �
�, 2g /�=10, � /�=0.1, �1 /�=0.9, and � /�
=0.5.
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FIG. 5. The probabilities pin�t� �dotted line� and p̄ext�t� �full line�
are shown for �=2� / �
�, 2g /�=10, � /�=0.1, �1 /�=0.9, and
� /�=0.5.

PHOTON EMISSION BY AN ATOM IN A LOSSY CAVITY PHYSICAL REVIEW A 77, 043822 �2008�

043822-7



interaction. Because for t�� the probability to measure be-
tween time t−T /2 and t+T /2 a “click” at a photodetector of
efficiency �, positioned at z=0, is given by PD�t�
=��1�
����2e−��t−��T, we can write the amplitude envelope of
the spatiotemporal mode function as

	 p̄ext���
�1

�i�t� = ��� − t��
�t�� + ��t − ���
����e−��t−��/2,

�71�

where 
�t� and 
��� are given by Eq. �28�, and p̄ext��� by
Eq. �70�. The factor 	p̄ext��� /�1 is needed in order for the
spatiotemporal mode function to be properly normalized ac-
cordingly to Eq. �45�. If we now define the retarded time tr
� t−z /c, we can generalize Eq. �71� as

	 p̄ext���
�1

�i�z,t� = ��� − tr��
�tr�� �

+ ��tr − ���
����e−��tr−��/2, �72�

for t�z /c�0, and, obviously, �i�z , t�=0 for t�z /c.
Using Eq. �72� one can obtain, for example, the amplitude

envelope of the spatiotemporal mode for the two cases above
considered, i.e., for �=� / �
� and for �=2� / �
�, respec-
tively. In Fig. 6 we consider the case where the interaction
time � is chosen as �=� / �
�, and �t=7. After �
�t��2, the
probability to find a photon inside the cavity reaches its
maximum values at time �, the interaction with the atom is
set to zero, and one observes an exponential decay regulated
by the photon escape and absorption rate �. This behavior is
mapped in the amplitude envelope shape of the extracted
spatiotemporal mode, as can be clearly seen in Fig. 6. If we
consider now the case where the interaction time � is chosen
as �=2� / �
�, using Eq. �72� we obtain, for �t=7, the func-
tion plotted in Fig. 7. Here, �
�t��2, after reaching its maxi-
mum value, returns practically to zero, for �=2� / �
�. At this
point the interaction with the atom is switched off, so that the
cavity is, practically, left with no photon inside, so that no
photon can be extracted at later times. This dynamics is
clearly mapped in the amplitude envelope shape of the spa-
tiotemporal mode, producing a short pulse, of length
2�c / �
�, as can be seen in Fig. 7.

Finally, we consider the amplitude envelope for the spa-
tiotemporal mode of the cavity output field for an interaction
time � arbitrary chosen so that ��=2.2. In Fig. 8, using Eq.
�72�, we plot the function �i�z , t�	p̄ext��� /�1 in the region
17��z /c�20. In this plot the amplitude envelope shows a
behavior that is intermediate between the one depicted in
Fig. 6 and the one in Fig. 3. After approximately three and a
half Rabi cycles, the interaction is switched off, and the cav-
ity field simply decays with an exponential behavior regu-
lated by �. To clearly see the effects of spontaneous emis-
sions we also plot in Fig. 8 the behavior of the function
�i�z , t�	p̄ext��� /�1 for the case �=0. We see that the pres-
ence of spontaneous emissions is not negligible.

In order to realize the time control analyzed here, let us
consider a neutral atom �18,19� or a trapped ion �22� in an
optical cavity. With the use of an external laser pulse it is
possible to excite the atom to an auxiliary electronic state, to
decouple the atom from the cavity mode. In this way the
interaction time between the atom and the cavity can be
regulated. Moreover, for a continuous time-dependent con-
trol of the interaction, a pulsed Raman coupling could be
useful, or the atom could be tuned out of resonance by ex-
ternal electric or magnetic fields. A single-photon wave
packet with a defined pulse shape may be used for a bidirec-
tional atom-photon interface in a quantum network �14�. This
relies on the coherent interaction between the atom and the
cavity field, provided that the effective coupling exceeds the
atomic decay rates �59�.
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FIG. 6. Plot of the amplitude envelope �i�z , t�	p̄ext��� /�1 for the
spatiotemporal mode of the cavity output field, for �=� / �
�, �t
=7, 2g /�=10, � /�=0.1, �1 /�=0.9, and � /�=0.5.
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FIG. 7. Plot of the amplitude envelope �i�z , t�	p̄ext��� /�1 for the
spatiotemporal mode of the cavity output field, for �=2� / �
�, �t
=7, 2g /�=10 and � /�=0.1, �1 /�=0.9, and � /�=0.5.
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FIG. 8. Plot of the amplitude envelope �i�z , t�	p̄ext��� /�1 for the
spatiotemporal mode of the cavity output field in the region 17
��z /c�20, for ��=2.2, �t=20, 2g /�=10, � /�=0.1, �1 /�=0.9,
and for �=0 �full line�, or � /�=0.5 �dashed line�.
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V. SUMMARY AND CONCLUSIONS

The dynamics of an atom-cavity system, which consists
of an initially excited two-level atom in a lossy cavity, has
been analyzed. The open quantum system under study has
been described by means of a master equation. By using the
quantum trajectory method, we have derived analytical solu-
tions for the dynamics of the system. The effects of un-
wanted losses, such as absorption and scattering by the cav-
ity mirrors and spontaneous emission of the atom into field
modes out the side of the cavity, have also been considered.
After giving a description of the single-photon wave packet
in terms of spatiotemporal mode functions, we have con-
nected the probability to measure a photon in a definite mode
structure of the output field with the photodetection probabil-
ity. In this way the shape of the mode of the extracted cavity
field has been obtained. The mode shape sensitively depends
on the atom-field interaction, showing a clear mapping of the
intracavity field dynamics onto the output field. The prob-
ability of the mode to carry a one-photon Fock state has been
calculated. We have also shown that different pulse shapes of
the extracted field can be generated by controlling the dura-
tion of the atom-field interaction time.

Finally we would like to comment on a fundamental dif-
ference of the quantum noise approach under study in com-

parison with the treatment of the same problem by macro-
scopic QED. In the latter method one does not distinguish
between the intracavity and the external fields. There exists
only a unique field mode, which covers both the areas inside
and outside the cavity. In the quantum noise theory on the
other hand, the input-output coupling is introduced via the
interaction of two types of modes, describing the intracavity
and the external fields. These modes belong to different Hil-
bert spaces and are therefore commuting. In the description
of a unified mode, as in macroscopic QED, there is no hint of
the existence of commuting field observables that might de-
scribe intracavity and external fields. To overcome this basic
difference between the two treatments, it seems reasonable to
assume that entanglement between the commuting field
modes in the quantum noise theory may replace the noncom-
mutativity in the macroscopic QED in some respect. A care-
ful study of this problem requires further investigations.
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