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We describe the concept of stochastic scattering polarimetry. This method allows determination of the
anisotropic polarizability of a scattering object using a statistical analysis of the polarimetrically measured
intensity distributions in the wave zone �far field�. We show that this anisotropic polarizability may be deter-
mined even in situations where the state of polarization of the incident field is not known. The efficiency of the
recovering procedure is demonstrated by several examples of light scattering in both far- and near-field
geometries.
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I. INTRODUCTION

Recently, there has been a great deal of interest in char-
acterizing the alignment or shape of nanoparticles or single
molecules �1,2�. Understanding the shape of nanoparticles
can lead to better fabrication and design procedures, and may
help in characterizing properties of inorganic nanostructures
or small biological objects. Among various methods, optical
probing offers some unique advantages; for instance, due to
the sensitive nature of biological media, it is often required
to perform this characterization noninvasively using optical
fields. However, in many situations, the characterization pro-
cedure is complicated by the random nature of the particle’s
orientation. Quantitative information may still be obtained
using the concepts of statistical optics when experimental
scattering data are processed as distributions rather than im-
ages.

Many sensing processes can be described in terms of a
scattering phenomena, where the outcome relates to both the
excitation field and the material properties under scrutiny. In
a typical scattering experiment, the object is probed with a
controlled incident field for which the Stokes vector is
known. Using combinations of different polarizations of the
incident field and polarimetric measurements, the unknown
polarizability may be calculated. Equivalently, the polariz-
ability can be found when keeping the initial polarization
constant and rotating through all orientations of source and
detector configurations.

A second possibility for obtaining information about an
unknown polarizability is a situation where the incident field
is unknown and the observation point is fixed. In this case,
an ensemble of intensities is accumulated for different orien-
tations of the effective polarizability. This approach is pref-
erable when objects rotate in time, for example, in colloidal
solutions, or in the case of near-field microscopy where the
local polarizability acquires different orientations during the
scan. Without direct control of the incident field, the material
properties cannot be determined from the scattered intensity
alone. However, if one examines the intensity fluctuations,
the information can be extracted. We have recently intro-
duced the method of the stochastic polarimetry which uses
the statistical properties of the ensemble of scattered intensi-
ties for retrieving the anisotropic polarizability of a scatterer
�3�. As we will show in the following, in the practice of

stochastic scattering polarimetry one is not required to know
or control the exact polarization of the incident field; the
only constraint is that the incident field be constant in direc-
tion, irradiance, and polarization properties for the different
orientations of the scatterer.

II. STOCHASTIC POLARIMETRY

A generic scattering experiment, dealing with a real po-
larizability �absorption-free� and a fully polarized excitation,
is commonly described in terms of the cross-spectral density
matrix �4� as follows:

Wobs = �ExEx
� ExEy

�

EyEx
� EyEy

�� = PtR1�R1
t R2WincR2

t R1�R1
t P , �1�

where Wobs and Winc are the cross-spectral density matrices
of the scattered and excitation fields. In Eq. �1�, the xy plane
is chosen to be perpendicular to the direction of propagation
�Fig. 1�, and P is a 3�2 tensor that represents the propaga-
tion to the observation point in the wave zone. In Eq. �1�, R1
and R2 account for the three-dimensional rotation of the di-
agonalized polarizability and of the excitation polarization
into the detection coordinate frame, while � denotes a diago-
nalized form of the polarizability as follows:

x

y

ψ

Θ

Φ x

y

z
P

incE
r

α

x

y

ψ

Θ

Φ x

y

z
P

incE
r

α

FIG. 1. A generic scattering process where a scatterer with un-
known polarizabity � is illuminated by a constant, arbitrarily polar-
ized field Einc. An intensity measurement is performed in the far
field through a polarizer P oriented in the plane xy. � is the angle
between the projection of the major polarization axis onto the xy
plane and the x axis, � is the angle between the major polarization
axis and the xy plane, and angle � specifies the rotation of the
polarization ellipse around the major axis.

PHYSICAL REVIEW A 77, 043820 �2008�

1050-2947/2008/77�4�/043820�8� ©2008 The American Physical Society043820-1

http://dx.doi.org/10.1103/PhysRevA.77.043820


� = �a 0 0

0 b 0

0 0 c
� . �2�

The expression of the cross-spectral density in Eq. �1� con-
tains both the correlation between orthogonal field compo-
nents and the intensities along two orthogonal directions x
and y. In a polarimetric scattering experiment, one measures
only intensities Ii=Wii

obs �i=x ,y�; for example, by the use of
two polarizers, the diagonal elements of cross-spectral den-
sity can be determined. For a given incident field described
by Winc, the scattered intensities are obtained for different
orientations of the scatterer. An ensemble of scattered inten-
sities can be further analyzed statistically to infer the infor-
mation about polarizability �. In the case of isotropic sub-
stances the morphological information included in the
polarizability can be also retrieved. In our case, the quanti-
tative analysis will be based on evaluating statistical mo-
ments of the form

Mi1i2,. . .,in
�n� = 	

�

Ii1
���Ii2

���, . . . ,Iin
���p���d� , �3�

where i1 , i2 , . . . , in=x ,y and p��� represents the probability
function associated with the orientation of the diagonalized
polarizability. The integration in Eq. �3� is performed over all
orientations determined by solid angle �.

Let us examine in more detail the situation where an an-
isotropic scatterer with an unknown polarizability � is illu-
minated by some constant arbitrarily polarized incident field
as depicted in Fig. 1. In general, a fully polarized excitation
field can be described in terms of three orientation angles
and an ellipticity parameter; in other words, there are four
independent parameters that determine the structure of the
excitation field. The situation of interest here is one where
during the experiment the scatterer rotates randomly in space
as described by p���. The scatterer interacts with the inci-
dent field and the scattered intensities are polarimetrically
measured along two orthogonal directions x and y as shown
in Fig. 1. For a given probability function describing the
orientation confinement of the polarizability, expressions for
the scattered intensity can be derived starting from Eq. �1�.
Furthermore, the moments of the intensity distributions can
be related to the material properties and the parameters of the
excitation field. All in all, the scattering situation is fully
described by the three elements of the diagonalized polariz-
ability tensor � �Eq. �2�� in addition to the four independent
incident field parameters.

In performing polarimetric intensity measurements along
two orthogonal directions x and y, a situation arises when the
incident field is polarized with the major axis oriented at the
bisection of the two directions of the measurement. In this
situation, all the moments of the two orthogonal intensity
distributions are equal, and, consequently, the number of in-
dependent equations which can be used for reconstruction is
reduced. Unique recovering of � may still be possible by
considering higher-order moments of the intensity distribu-
tions to obtain additional independent relationships. How-
ever, in this case one has to recognize that higher-order mo-

ments of the intensity distributions are more susceptible to
noise �5�. Alternatively, one can choose to consider only up
to the second-order moments of intensity distributions, but
introduce an additional intensity measurement. For example,
by performing a third measurement along the bisection of the
first two orthogonal measurements, a rotation of the detec-
tion coordinate system can be applied which decreases the
cross correlation of orthogonal intensity distributions. The
parameters characterizing the incident field and the material
properties are uncorrelated; as such, decreasing the cross cor-
relation of intensity ensembles allows for more independent
probability distribution functions. Note that the rotation of
the detection coordinate system is a linear transformation
performed over all the elements of the intensity distributions,
and, therefore, no statistical information is lost. This rotation

angle � of the coordinate system, W̃obs=R���WobsR���−1,
can be found by minimizing the real part of the cross corre-
lation between the two orthogonal measurements, which is
related to the intensity polarized at their bisection angle.

Let us consider the effect of the rotation

R��� = 
cos � − sin �

sin � cos �
� �4�

on the first moment of cross-spectral density matrix as fol-
lows:

�Wobs = � �Ix �Ex
�Ey

�Ey
�Ex �Iy

� = � Mx
�1� �Ex

�Ey
�Ey

�Ex My
�1� � . �5�

Here the angle brackets denote ensemble average. Minimiz-
ing the real part of the off-diagonal element the first order-

moment �W̃obs=R����WobsR���−1 leads to the following
condition:

Re�Ex
�Ey�cos2 � − sin2 �� + ��Ix − �Iy�cos � sin � = 0.

�6�

In fact, � defines the angle between the x axis and the pro-
jection of the major axis of the polarization ellipse of the
incident field onto the xy plane �Fig. 1�. The rotation we have
identified eliminates the dependence on this angle and, there-
fore, in the new system of coordinates, the incident field is
now described by only three independent parameters.

The third additional measurement at 45° with respect to
the first two orthogonal directions can be expressed in terms
of the off-diagonal elements of the cross-correlation matrix
as follows:

M45
�1� =

1

2
Mx

�1� +
1

2
My

�1� +
1

2
�Ex

�Ey +
1

2
�ExEy

� , �7�

where M45
�1� is the first moment of the intensity distribution

measured at 45°. Using Eqs. �6� and �7�, the angle � is
finally evaluated to be
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� = tan−1
Mx
�1� − My

�1� � �2�Mx
�1��2 + 2�My

�1��2 + 4M45
�1��M45

�1� − Mx
�1� − My

�1��
2M45

�1� − Mx
�1� − My

�1� � . �8�

In Eq. �8�, the sign is chosen such that in the new coordinate
system the condition Mxx

�1�	Myy
�1� is fulfilled.

In the rotated system of coordinates, two new intensity

distributions Ĩx=W̃xx
obs and Ĩy =W̃yy

obs can be defined as

Ĩx = Ix cos2 � + Iy sin2 � − 2�I45 − 1
2 Ix − 1

2 Iy�cos � sin � ,

Ĩy = Ix sin2 � + Iy cos2 � + 2�I45 − 1
2 Ix − 1

2 Iy�cos � sin � ,

�9�

where I45 is the intensity measured along the 45° direction.

The first and second moments of distributions W̃xx
obs and

W̃yy
obs can now be evaluated together with the corresponding

cross-correlation term Mxy
�2�. Using Eqs. �1�–�3� and assuming

that p��� corresponds to a uniform random distribution of
the orientation of the diagonalized polarizability, one finds
the first moments of the two rotated ensembles to be

Mx
�1� =

1

5
��Q1 + 3�
 + 3 + K��1 + Q1
�̄2 + �̄2K ,

My
�1� =

1

5
��L + 3�
 + 3��1 + �̄2
L ,

Mij
�2� = Pij

�1��
��1
2 + Pij

�2��
��1�̄2 + Pij
�3��
��2�̄ + Pij

�4��
��̄4.

�10�

In the general expressions for the second-order moments in
Eq. �10�, Pij

�n��
� are second-order polynomials with respect
to the ellipticity parameter 
. The exact expressions for these
polynomials are given in the Appendix. In addition, the fol-
lowing shorthand notations were used:

�1 = �db2 + dbdc + dc2�/3, �2 = dbdc�db + dc�/2,

db = b − �̄, dc = c − �̄, �̄ = �a + b + c�/3,

L = cos2 �, K = cos2 �, Q1 = sin2 � sin2 �, 
 = �w/��2,

�11�

where � and w are the main axes of the excitation polariza-
tion ellipse ��	w�; the meaning of the angles � and � is
explained in Fig. 1.

The expressions in Eq. �10� constitute the main result of
this analysis, as they establish the relationship between the
statistical moments �up to the second order� of the measured
intensities and the parameters defining the anisotropic polar-
izability to be determined. It is worth mentioning that the
values a, b, and c used in Eq. �11� refer to relative values of
the polarizability tensor, rather than the actual values of the
diagonalized tensor elements; also, a constant has been fac-

tored out and included in the propagation operator P. These
relative values of the diagonal elements allow generating a
number of validity criteria for our reconstruction procedure.
Using the dimensionless variables �1 / �̄2, �2 / �̄3, K, L, and 

in Eq. �10�, one finds that they are subject to the following
physical restrictions:

�1/�̄2 � �0,1�, �2/�̄3 � �− 1,1/8� ,


�1 − K + KL� � K � 1, L � �0,1�, 
 � �0,1� .

�12�

The restrictions on K imply that the projection of the major
axis of excitation polarization ellipse onto the xy plane
should be greater than the projection of its minor axis. Start-
ing from the conditions expressed in Eq. �12� one can estab-
lish the following limiting values for the ratios between sta-
tistical moments:

My
�1�/Mx

�1� � �0,1�, Mxx
�2�/�Mx

�1��2 � �1,3.1� ,

Myy
�2�/�Mx

�1��2 � �0,2.1�, Mxy
�2�/�Mx

�1��2 � �0,1� . �13�

These relations may be useful in practice when, in the pres-
ence of experimental errors, the measured statistical mo-
ments may shift outside the validity region.

III. EXAMPLES OF RECONSTRUCTION

We have now established a direct relationship between
five statistical moments of the polarimetric intensity mea-
surements �Mx

�1�, My
�1�, Mxx

�2�, Myy
�2�, and Mxy

�2�� and the six un-
known variables that determine the outcome of the random
scattering process; three material parameters defining � and
three parameters �� ,� ,
� describing the incident field in the
rotated system of coordinates. This situation represents still
an underdetermined system of equations. However, any ad-
ditional knowledge about the material properties or about the
excitation field will allow a full description of the scattering
situation, even if only the first- and second-order moments
are being used.

Before illustrating several examples, it is worth mention-
ing that one can follow the procedure outlined above to ob-
tain similar relations between the statistical moments of the
measured intensities and material parameters for situations
where the random orientation of the polarizability is de-
scribed by other distribution functions. Also, the same treat-
ment can be considered in circumstances where the experi-
ment is performed using a polarimetric detection system
based on the measurement of two circular polarizations and
some elliptical state.

To test the theory outlined above, a series of numerical
experiments were performed to model the interaction with a
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scatterer described by an anisotropic polarizability. The ex-
periment was numerically simulated for random orientations
of the scattering particle with respect to a fixed detection
frame. For each orientation, the intensity was recorded in the
three directions of polarization as described above.

A. Far-field stochastic polarimetry

One common assumption that can be made about excita-
tion field properties is that the plane of the polarization el-
lipse of the excitation field is parallel to the detection plane
�forward scattering�. In this case, when �=0 and �=0 �see
Fig. 1� the expressions for the statistical moments in Eq. �10�
become

Mx
�1� =

1

5
�3
 + 4��1 + �̄2,

My
�1� =

1

5
�4
 + 3��1 + �̄2
 ,

Mxx
�2� =

3

35
�9
2 + 8
 + 16��1

2 +
6

5
�4 + 
��̄2�1

−
8

35
�8 + 3
��2�̄ + �̄4,

Myy
�2� =

3

35
�16
2 + 8
 + 9��1

2 +
6

5
�4
 + 1�
�̄2�1

−
8

35
�8
 + 3�
�2�̄ + 
2�̄4,

Mxy
�2� =

3

35
�4
2 + 17
 + 4��1

2 +
3

5
�
2 + 1��̄2�1

−
4

35
�3
2 − 8
 + 3��2�̄ + 
�̄4. �14�

In practice, in order to determine the four unknowns
�̄,�1,�2,
 one needs only four of these equations. Because in
an experiment the evaluation of the intensity moments is
always subject to a certain procedural accuracy, we will
choose a combination of the four equations that provides the
minimal error in solving for the unknowns. Our estimations
show that the evaluation of Mx

�1�, My
�1�, Mxx

�2�, and Mxy
�2� is more

stable with respect to possible experimental errors.
A series of simulations was performed for different ellip-

tical excitation states. Table I summarizes the percent error
of reconstruction for different shape parameters, different pa-
rameters of ellipticity, and different numbers of polarization
measurements. The percent error in Table I refers to an av-
erage of the deviation in the calculation of the b /a and c /a
values from the exact values of the polarizability. The polar-
izability of the particle is related to the shape parameters ,
�, and � through the Clausius-Mossotti expression for iso-
tropic ellipsoids �6� as follows:

� j = 4���
n2 − 1

3 + 3Lj�n2 − 1�
, �15�

where � j =a ,b ,c, factors Lj are determined by ellipsoid
shape �6�, and n is the refractive index of the particle that
was chosen to be equal to 1.5 for numerical computations.

Obviously, the reconstruction error decreases with in-
creasing the number of realizations of particle orientation.
Also, one can notice that the error increases for larger values
of ellipticity parameter 
, and this can be understood by con-
sidering the limiting case of circularly polarized excitation.
In this situation, all the moments for the linear polarization
measurements in the x and y directions become equal, and
the system of equations becomes undetermined. In the case
of circularly polarized excitation, the morphological proper-
ties of the material may be found based on circular polariza-
tion measurements, however, this situation will not be dis-
cussed here. Another detail which we would like to point out
is that according to our numerical results the reconstruction
error seems to be smaller for purely anisotropic polarizabil-
ities when a�b�c.

Another practical situation that is often of interest is when
the incident field is in some arbitrary linear state of polariza-
tion. In this case, the general expression in Eq. �10� reduces
to the following system of equations:

Mx
�1� = �̄2K +

3 + K

5
�1,

My
�1� =

3

5
�1,

Mxx
�2� = �̄4K2 +

8�̄�K − 9�K
35

�2 +
42�̄2K�K + 3�

35
�1

+
3�3 + K�2

35
�1

2,

Mxy
�2� = −

12K�̄

35
�2 +

3�̄2K

5
�1 +

3�3 + K�
35

�1
2, �16�

which may be solved for the magnitudes of the diagonal
elements a,b,c of the polarizability tensor from Eq. �2�, and
the polar angle �. In this case, the choice of the optimal four
equations is unequivocal because the linearly polarized inci-
dent field moments My

�1� and Myy
�2� are no longer independent:

Myy
�2�= �15 /7��My

�1��2.
To test the method of stochastic scattering polarimetry in

this situation, a series of numerical experiments was per-
formed for various angles of the incident excitation, different
anisotropies, and the different number of realizations of par-
ticle orientation. The results are displayed in Table II.

Examining the results in Table II, one can easily see that
there is a strong dependence of the reconstruction error on
the polar angle �. In the case when � equals �� /2, the
electric field vector is directed along the path to the observa-
tion point, and the measured intensities no longer depend on
orientation of the polarizer. In this situation, the equations for
the x and y components of cross-spectral density matrix are
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no longer independent. However, it is remarkable that in the
case when the polar angle � is less than � /3, the original
values of anisotropic polarizability can be recovered within
about 2% .

In order to illustrate the accuracy of the proposed method
for reconstructing unknown polarizabilities, let us consider
the simple example of scattering from a GaP nanorod �refrac-
tive index of 3.37�, which is 100 nm long and has an aspect
ratio of 1/10. In this case, after 5000 intensity calculations
for different orientations of nanorod, we are able to retrieve
the ratio of polarizability tensor components b /a
=0.20�0.05, which is in very good agreement with the ex-
act value b /a=0.199.

B. Fluctuation polarimetry—the case of known excitation field

The two examples discussed here exemplify experimental
situations where the incident field is unknown. Of course, the
general expressions in Eq. �10� can be simplified and may
also be used in situations where the experimental geometry
allows for an alignment of the incident field to some known
incident polarization. In this case, an ideal experimental ge-
ometry would consist of a linear excitation and a measure-
ment performed along a codirection and a crossed direction
of polarization. With a known linear incident state, Eq. �10�
reduces to

Mx
�1� =

4

5
�1 + �̄2,

My
�1� =

3

5
�1,

Mxx
�2� =

6

35

8�1

2 +
3

7
�̄2�1 − 8�̄�2� + �̄4. �17�

Notably, in this particular situation, it is possible to retrieve
the morphological information about the scatterer without
the need for correlated intensity distributions. Practically,
this means that two independent intensity distributions can
be recorded at different times or locations for a randomly
oriented scatterer. This approach may be of interest in situa-
tions where the scattered intensity is very small, and the
requirement to measure correlated polarimetric intensity dis-
tributions is a daunting task.

The above situation can be simplified even further when it
is known a priori that the scatterer is rotationally symmetric.
In this case, it is possible to obtain the shape aspect ratio by
performing only a single measurement that is copolarized to
the linear excitation in a manner similar to an earlier sugges-
tion �7�. In this situation, the first and second moments of the
detected distribution allow for such a quantification and the
obtained expressions can be reduced from Eq. �10�.

C. Near-field scattering polarimetry

Other applications of interest occur in the practice of near-
field optical microscopy. In this case, a sample is locally
excited by either the field emitted through a tapered optical
fiber with an aperture much smaller than the wavelength or
by the field created around a sharp metallic tip placed in
close proximity to the sample �8�. The polarization state of
the excitation field is generally unknown but the procedure
of analyzing fluctuations of the scattered intensity can also
be used in this situation.

When the material system is optically inhomogeneous, its
properties are described by the local polarizability. For a
large class of materials where the inhomogeneities are on a
scale much smaller than the radiation’s wavelength, one can
consider that this polarizability is constant in magnitude and
orientation within some volume of interaction Vd determined
by the characteristics of the near-field probe �i.e., aperture
size, tip sample separation, etc.�. One can further assume that
this effective polarizability only changes its orientation from

TABLE I. Percentage error of reconstructed polarizability for
different shapes of particles, different field orientations, and differ-
ent numbers of realizations for the case of an elliptically polarized
excitation field, �=0, �=0.

Shape parameters Realizations


  ,� ,� 500 1000 2500 5000

3,3,1 2.0 2.0 1.8 1.1

0 3,2,1 1.0 0.7 0.5 0.3

3,1,1 2.3 1.3 1.7 0.8

3,3,1 2.0 1.4 1.4 2.0

0.15 3,2,1 1.0 0.7 0.6 0.3

3,1,1 1.4 1.9 1.0 0.6

3,3,1 3.5 2.3 2.4 2.4

0.3 3,2,1 2.5 1.5 1.0 1.0

3,1,1 3.2 2.7 2.4 1.7

3,3,1 5.6 5.4 3.3 2.4

0.65 3,2,1 4.3 3.7 2.3 1.3

3,1,1 5.5 4.5 2.8 3.2

TABLE II. Percentage error of reconstructed polarizability for
different shapes of particles, different field orientations, and differ-
ent numbers of realizations for the case of a linearly polarized ex-
citation field �
=0�.

Shape parameters Realizations

�  ,� ,� 500 1000 2500 5000

3,3,1 3.6 2.9 2.3 1.0

0 3,2,1 3.1 2.0 1.7 0.8

3,1,1 4.0 2.9 2.0 1.2

3,3,1 4.6 3.4 2.1 1.1

� /6 3,2,1 4.2 2.4 1.5 1.1

3,1,1 4.9 3.7 2.3 1.7

3,3,1 5.9 4.1 3.9 1.8

� /4 3,2,1 5.6 3.8 3.0 1.4

3,1,1 9.2 5.2 3.1 2.3

3,3,1 11.0 7.8 7.4 4.2

� /3 3,2,1 10.3 6.5 4.3 3.4

3,1,1 14.6 10.8 9.4 7.7
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point to point and, during a scan, all possible orientations of
the effective polarizability are realized �Fig. 2�.

As opposed to the previous examples discussed, the field
emerging from or surrounding the tip of a near-field scanning
optical microscope �NSOM� is highly nonuniform. For a
transmission aperture NSOM, for instance, a common ap-
proach is to approximate this with the field produced by
diffraction from a small aperture in a perfectly conducting
screen �9,10�. The interaction between this inhomogeneous
electromagnetic field and a specific material system is com-
plex and, in most cases, cannot be described analytically. The
alternative is to use numerical techniques, such as the
coupled dipole approximation �CDA�, to calculate the scat-
tering resulting from this interaction.

The coupled dipole approximation describes a continuum
volume of a material as a finite array of polarizable point
dipoles which react to both the local field and the complete
interactions between all the other dipoles on the lattice
�11,12�. The local dielectric properties of the medium are
expressed by the polarizability of each individual dipole. For
instance, local properties of homogenous materials, either
optically isotropic or anisotropic, are being described by ar-
rays of identical dipoles which all have the same magnitude
and orientation.

To illustrate the procedure of stochastic polarimetry out-
lined before, we have used CDA to simulate the near-field
scanning of a material consisting of an array of tightly
packed anisotropic dipoles which are locally oriented in the
same direction. The far-field scattered intensities were re-
corded in the backward direction, as in the conventional
NSOM reflection mode shown in Fig. 2. The recorded far-
field intensity ensembles were polarimetrically analyzed and
the components of the polarizability tensor of the individual
particles were calculated according to the method of stochas-
tic polarimetry.

The results of anisotropic polarizability reconstruction in
near-field geometry are shown in Fig. 3. Every data point

represents the result of averaging over 3000 realizations. As
can be seen, the value of the calculated polarizability de-
pends on the dimensions of the domain of uniform polariz-
ability. Of course, the intrinsic values of the polarizability
�c /a=0.695� are recovered only when this domain volume is
equal or larger than the volume of interaction. In practice,
this volume of interaction depends on a number of factors
including sample properties, tip characteristics, detection
system, and the average intensity of excitation �13�. In the
present simulation, the volume of interaction occupies al-
most the entire modeling volume of approximately �0.8��3,
where � is the wavelength of incident field. Interestingly, our
simulations indicate that this volume of interaction does not
depend on the size of the tip’s aperture �we tested apertures
with sizes 25–50 nm�. This may happen because the volume
of interaction has dimensions such that the field emerging
from the tip appears to originate from a point dipole. Accord-
ingly, the size of the tip’s aperture effectively influences only
the amplitude of this dipole field and does not change the
overall field distribution. In the situation, where there is a
significant averaging over the material structure within the
volume of interaction, the resulting polarizability will corre-
spond to some effective value depending on both the intrin-
sic material properties and structural morphology.

As a final observation we should note that the CDA simu-
lations show that the reconstruction of the intrinsic polariz-
ability of the anisotropic material modeled by individual di-
poles is successful even when taking into account both the
nonuniform excitation and the coupling between neighboring
particles. This happens, because the probe illuminates only a
highly localized volume. From the observation point in the
wave zone, where polarimetric measurements are performed,
this illuminated volume is seen as dipole excited by a field in
a specific polarization state.

IV. CONCLUSIONS

In this paper, we discussed in detail the general concept of
stochastic scattering polarimetry �3�. We have demonstrated
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FIG. 2. The geometry of near-field scattering polarimetry. The
probe of near-field microscope P scans the heterogeneous sample
having regions Vd with uniformly oriented polarizability.
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FIG. 3. Reconstructed polarizability �the c component of diago-
nalized polarizability tensor normalized to the a component� as a
function of normalized domain volume Vd /Vm, where Vd is the
volume of uniform orientation of anisotropic polarizability and Vm

is the volume of interaction �solid line�. The dashed line shows the
exact value of polarizability. The parameters of CDA simulations
are tip-sample separation 10 nm, and modeling cube of 0.8 wave-
length in size with 4�103 dipoles.
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that the diagonal elements of the anisotropic polarizability
tensor can be obtained by analyzing the statistical moments
of polarimetrically measured intensity distributions. Most
importantly, this can be done even in situations where the
state of polarization of the incident field is unknown.

We presented and discussed numerical results pertaining
to the specific cases where the orientation of the unknown
polarizability was described by a uniform random distribu-
tion. Using the uniform distribution is not a conceptual limi-
tation, as the general procedure of stochastic scattering po-
larimetry can also be applied to other distributions depending
on the specifics of the experimental application. In our deri-
vations we assumed linear polarimetric measurements in the
wave zone. Analogous treatment can be elaborated in the
case when a polarimetric detection system is based on circu-
lar polarization measurements. Also, it should be noted that
when using this method, one obtains information not only
about polarizability properties but also about properties of
exciting field. As such, any known information about the
material can also be used for probing the local properties of
unknown electromagnetic fields �14�.

We demonstrated that the method of stochastic scattering
polarimetry can reconstruct the values of anisotropic polar-
izability both in the case of single nanoparticles excited by
uniform field and in the case of interacting equivalent par-
ticles and the nonuniform excitation field that may occur in
near-field measurements.

Finally, we have assumed in the examples presented that
the particle or particles within the interaction volume are
oriented in a single direction throughout each scattering
event. However, the procedure of stochastic scattering polar-
imetry may be similarly used to determine properties of in-
homogeneous materials, where the quantified polarizability
corresponds to some effective property. This is apparent in
the results presented in Fig. 3, where multiple domains of
uniform anisotropy were coupled to determine the values of
the far-field measurements. In the case of optically inhomo-
geneous media, the values of the effective polarizability will
depend on the size of the highly localized excitation volume,
a situation which is common in the practice of near-field
microscopy, and will be the subject of future investigations.
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APPENDIX: EXPLICIT EXPRESSIONS FOR
POLYNOMIALS Pij

(n)

In this appendix we present the exact form of the polyno-
mials Pij

�n��
� that enter the expressions for the second-order

moments Mij
�2� in Eq. �10�. In obtaining these results, an en-

semble average was applied to the product of two intensities
IiIj and then terms containing different orders of �1, and �2
where collected.

Pxx
�1��
� =

3

35
��Q1 + 3�2
2 + 2�Q1K + �Q2 + 3��
 + �K + 3�� ,

Pxx
�2��
� =

6

5
�Q1�Q1 + 3�
2 + �2Q1K + Q2�
 + K�K + 3�� ,

Pxx
�3��
� =

8

35
�Q1�Q1 − 9�
2 + �2Q1K − 3Q2�
 + K�K − 9�� ,

Pxx
�4��
� = Q1

2
2 + 2KQ1
 + K2,

Pyy
�1��
� =

3

35
��L + 3�2
2 + 2�L + 3�
 + 9� ,

Pyy
�2��
� =

6

5
�L�L + 3�
2 + L
� ,

Pyy
�3��
� =

8

35
�L�L − 9�
2 − 3L
� ,

Pyy
�4��
� = L2
2,

Pxy
�1��
� =

3

35
��LQ1 + Q3 + 3�
2 + 2�7 + 10LK�
 + 3 + K� ,

Pxy
�2��
� =

3

5
��2LQ1 + Q3�
2 + �1 − LK�
 + K� ,

Pxy
�3��
� =

4

35
��2LQ1 − 3Q3�
2 + 2�3 + KL�
 − 3K� ,

Pxy
�4��
� = LQ1
2 + KL
 , �A1�

where the following notations were used:

L = cos2���, K = cos2��� ,

Q1 = 1 − K − L + KL, Q2 = 1 − L + KL, Q3 = 1 − K + KL .

�A2�

The meaning of angles � and � is that depicted in Fig. 1.
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