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The theory of surface-second-harmonic generation in a dielectric microsphere using whispering-gallery
modes �WGMs� is developed. The second-order nonlinearity is restricted to the surface of the sphere. The
coupling coefficients for a coupled-mode theory are derived and conditions for double resonance and phase
matching are discussed for TE and TM polarizations. We demonstrate that phase matching of WGMs amounts
to conservation of the angular momentum of the electromagnetic mode while at the same time we obtain an
analytical expression for the coherence length.
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I. INTRODUCTION

The ability to manufacture spherical, toroidal, and
microring cavities with ever increasing quality factors has
motivated a large body of theoretical and experimental re-
search in recent years. Currently, quality factors associated
with optical whispering-gallery modes �WGMs� range from
107 to 1010 �1–3�. As a result, photons can experience the
presence of atoms, particles at the rim of the cavity, or a
nonlinear material response for a very long time, which
opens new perspectives in quantum electrodynamics, sens-
ing, and nonlinear optics �4–8�. Other current applications of
WGMs are lasing �9�, filtering �10�, slow and fast light
�11,12�, and optomechanical effects �13–16�. For materials
with bulk nonlinearities, Kerr bistability �17,18�, frequency
doubling �19,20�, parametric oscillation �21�, Raman effect
�22�, and nonlinear polarization conversion �23� have been
demonstrated, and the optimal size of microspheres for linear
and nonlinear interactions was investigated in Ref. �24�. A
particularly important issue regarding microresonators is
how to efficiently couple light into them—this was discussed
in detail in Refs. �25–32�. A recent review on optical resona-
tors with whispering-gallery modes can be found in Refs.
�33,34�.

Nonlinear optical studies with microspheres have also in-
volved the scattering of plane waves, leading to third-
harmonic �35� as well as second-harmonic generation for
metallic �36� and dielectric spheres �37–44�, even if the ma-
terial is centrosymmetric. The latter is made possible by the
breaking of symmetry at the surface of the sphere. While
theoretical studies often focused on the small-sphere limit
�37,39,45,46�, the nonlinear scattering by spheres the size of
several wavelengths was also treated in Refs. �47,48�. Simi-
larly, the case of two-dimensional particles was analyzed in
Refs. �49,50�. In nonlinear scattering experiments, phase-
matching considerations are only important if many spheres
are taken under consideration, as demonstrated theoretically
and experimentally in Refs. �39,40,42,51,52�.

The present paper addresses second-order nonlinear pro-
cesses mediated by WGMs. As pointed out already, their
high-quality factor can considerably enhance second-
harmonic generation. Although this observation was made
quite a few years ago, it was experimentally demonstrated
only recently using microdisks of KTP �20�. Theoretically,
the phenomenon was studied in the case where the nonlin-
earity extends throughout the bulk of the material filling the
microdisk or microring resonator �19,53,54�. In this paper,
however, we consider the effect of a nonlinearity on the sur-
face of a centrosymmetric sphere, such as silica glass. In-
deed, it is possible to coat such a sphere with a nonlinear
material and one has the ability to choose the most efficient
nonlinear molecule for a given range of frequencies. A
longer-term goal could be to detect individual nonlinear mol-
ecules attached to the surface of the sphere. Electromagneti-
cally, a single molecule manifests itself by a very localized
nonlinear polarization. This possibility is encompassed by
the theory presented here.

One of the major hurdles to overcome for an efficient
interaction is to achieve phase matching between the two
interacting waves while, ideally, having them both resonant
with the microresonator �19,55�. In this regard, the frequency
resonances of a dielectric sphere are well known, and useful
asymptotic formulas are available for the spectrum of WGMs
�56–58�. On the other hand, phase matching in microspheres
has only been partially discussed. As we will establish here,
phase-matching WGMs amounts to angular momentum con-
servation, in contrast to linear momentum conservation for
plane waves. To our knowledge, this fundamental principle
has not been enunciated before, probably because ring and
disk geometries did not allow one to discern it fully. Of
course, previous findings on phase matching are consistent
with it �19,53,54,59�.

The paper is organized as follows. In Sec. II, we introduce
a coupled-mode description of the electromagnetic field
when the dynamics can be reduced to a few WGMs near the
fundamental and second-harmonic frequency. In this frame-
work, the key ingredient to derive is the nonlinear coupling
constant between WGMs. To this end, in Sec. III, we extend
the classical treatment of spherical wave solutions of Max-*gregory.kozyreff@ulb.ac.be
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well’s equations to include the effect of a surface nonlinear
polarization. This leads to an analytical expression for the
coupling constants between fundamental and second-
harmonic modes. Phase-matching conditions then arise from
the requirement that the coupling be nonzero. In particular,
we underline in Sec. IV the necessity to conserve angular,
rather than linear, momentum. Furthermore, in the case of a
nonuniformly distributed surface nonlinearity, we derive a
simple analytical expression for the coherence length along
the equator of the cavity. The explicit dependence of this
coherence length on the sphere size is highlighted, and both
phase-matching and quasi-phase-matching strategies are dis-
cussed. Finally, we conclude.

II. COUPLED-MODE DESCRIPTION

Let us consider a light wave at frequency � being injected
in a dielectric sphere with radius a via a tapered fiber. This
mode of injection excites a WGM in the sphere. Through a
surface second-order nonlinearity, one hopes to generate
light at frequency 2�. This requires the existence of another
WGM near this frequency and to fulfill some phase-
matching condition. Knowing the spherical modes E��r� and
E2��r� that are most likely to participate to the dynamics, we
can seek to express the field as

E = �1�t�E��r�e−i�t + �2�t�E2��r�e−2i�t + c.c., �1�

and the problem is solved once the slow varying amplitudes
�i�t� are determined. A convenient way to normalize �i is
such that ��i�2 is the radiated power. In this paper, we will
derive equations of the form

d�1

dt
+ �1�1 = i���1

��2e−i�12t, �2�

d�2

dt
+ �2�2 = i��1

2ei�12t, �3�

where �12=�2−2�1 is the detuning between the fundamen-
tal and second-harmonic WGM resonances, �i are the width
of these resonances, and � is the nonlinear coupling between
the two modes. The calculation of the coupling coefficient �
is the central result of the present work. Indeed, it gives the
strength of the frequency conversion and we will see that it
vanishes unless a precise phase-matching condition is satis-
fied.

III. SPHERICAL SOLUTIONS OF MAXWELL’S
EQUATIONS AND COUPLED-MODE EQUATIONS

In this section, we extend the classical description of
spherical wave solutions of Maxwell’s equations to include
the effect of a surface nonlinear polarization. With a dielec-
tric sphere of radius a in a vacuum environment, Maxwell’s
equations can be written as

�2E −
1

c2

�2E

�t2 = �0
�2

�t2 �P + ��r − a�PNL� , �4�

�2H −
1

c2

�2H

�t2 = − � �
�

�t
�P + ��r − a�PNL� , �5�

� · E = 0, � · H = 0, �6�

where P is the linear polarization and PNL is a surface non-
linearity. These vectorial equations can be turned into scalar
ones thanks to the identity

r · ��2E� = �2�r · E� − 2 � · E = �2�r · E� .

This yields

��2 −
1

c2

�2

�t2��r · E� = �0r ·
�2

�t2 �P + ��r − a�PNL� , �7�

��2 −
1

c2

�2

�t2��r · H� = − r · �� �
�

�t
�P + ��r − a�PNL�	 .

�8�

In the absence of PNL, both equations above have separable
solutions of the form Ylm�	 ,
�zl�r�e−i�lpt, where Ylm is a
spherical harmonic and zl is a spherical Bessel function �60�.
The indices l, m, and p are, respectively, the orbital, azimu-
tal, and radial numbers. Furthermore, if r ·H=0, the solution
is transverse magnetic and if r ·E=0, the solution is trans-
verse electric.

Since PNL is a small perturbation, we may seek a solution
as a limited expansion of the form

r · E = − 

lmp

�2Z0l�l + 1��lmp
�TM��t�zl�r�Ylm�	,
�e−i�lpt, �9�

r · H = 

l�m�p�

�2l��l� + 1�
Z0

�l�m�p�
�TE� �t�zl��r�Yl�m��	,
�e−i�l�p�t,

�10�

where Z0=��0 /�0 is the vacuum impedance and the normal-
ization is chosen such that ��lmp�2 is the total power radiated
by a given mode at infinity �60�. Furthermore, we assume
that amplitudes depend slowly on time, in the sense that

�d�lmp

dt
�� �lp��lmp� . �11�

The form �2� and �3� of the equations for the �lmp is easily
anticipated. Our aim is to derive the coupling constants be-
tween the modes; these coupling constants characterize the
strength of frequency conversion and also reflect phase-
matching conditions. Throughout the remainder this paper,
we will use primed indices to designate TE modes and
unprimed indices for TM modes.

A. Transverse electric modes

Let us first consider a given transverse electric mode with
quantum numbers L�, M�, and P� and denote its amplitude
simply by � to avoid overloading the notation. Substituting
Eq. �10� into Eq. �8�, using Eq. �11� and the orthogonality of
the spherical harmonics, we find
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1

r

d2

dr2 �rzL�� + 
n2kL�P�
2 +

2in2kL�P�

c�

d�

dt
−

L��L� + 1�
r2 �zL�

= − ��r − a�
J�TE�

�
, �12�

where kL�P�=�L�P� /c, n=n��L�P�� is the index of refraction
resulting from the linear polarization P, and

J�TE� =� Z0

2L��L� + 1�� � YL�M�
� r · �� �

�PNL

�t
�

�ei�L�P�t sin 	d	d
 . �13�

We may simplify the left-hand side of the above equation by
defining

KL�P� � kL�P� +
i

c�

d�

dt
. �14�

Indeed, noting from Eq. �11� that kL�P�
2 +

2ikL�P�
c�

d�
dt �KL�P�

2 , Eq.
�12� becomes

1

r

d2

dr2 �rzL�� + 
n2KL�P�
2 −

L��L� + 1�
r2 �zL� = − ��r − a�

J�TE�

�
.

�15�

For r�a, the solution of this equation is a combination of
spherical Bessel functions, defined as

bl�x� =�2�

x
Bl+1/2�x� , �16�

where Bl�x� is Jl�x�, Yl�x�, Hl
�1��x�=Jl�x�+ iYl�x� or any other

solution of Bessel’s equation. Inside the sphere, to avoid di-
vergence as r→0, the solution is of the form

zL� = AjL��nKL�P�r� , �17�

while outside the sphere �n=1�, the solution should be

zL� = hL�
�1��KL�P�r� �18�

so as to ensure the correct asymptotic behavior zL�
eikr /r as
r→�. The constant A and d�

dt are determined through the
continuity conditions at the boundary of the sphere r=a. On
the one hand, the normal component of H is continuous, and
hence

�zL��−
+ = 0. �19�

On the other hand, multiplying both sides of Eq. �15� by r,
integrating from r=a−h to r+h and letting h→0, we get


 d

dr
�rzL���

−

+

= a
dzL�

dr
�

−

+

+ �zL��−
+ = − a

J�TE�

�
. �20�

Combining these two conditions, we find

FE�KL�P�a� =
J�TE�

KL�P��
, �21�

where �see Appendix A�

FE�KL�P�a� � nhL�
�1��KL�P�a�

jL�−1�nKL�P�a�

jL��nKL�P�a�
− hL�−1

�1� �KL�P�a� .

�22�

In the following, it will be convenient to introduce the de-
rivative of the function FE:

GE�x� �
dFE�x�

dx
. �23�

Note that Eq. �21� is just the characteristic equation for TE
modes when J�TE�=0. Hence, by definition of kL�P�, we have

FE�kL�P�a − i
�L�P�

c
a� = 0, �24�

where �L�P� is the decay rate of the mode. Since the quality
factor is typically very large, we have �L�P��kL�P�c and a
Taylor expansion of Eq. �24� to first order yields

FE�kL�P�a� � i
�L�P�a

c
GE�kL�P�a� . �25�

Hence

FE�KL�P�a� � FE�kL�P�a� + GE�kL�P�a�
ia

c�

d�

dt

= GE�kL�P�a�
ia

c
� 1

�

d�

dt
+ �L�P�� , �26�

and Eq. �21� becomes

d�

dt
+ �L�P�� �

cJ�TE�

ikL�P�aGE�kL�P�a�
. �27�

B. Transverse magnetic modes

Proceeding in the same way and with the same shorthand
notation as in the previous section, we now consider the
amplitude � of a transverse magnetic mode with quantum
numbers L, M, and P. We now get

1

r

d2

dr2 �rzL� + 
n2KLP
2 −

L�L + 1�
r2 �zL = ��r − a�

J�TM�

�
,

�28�

where

J�TM� =� 1

2Z0L�L + 1�� � �0YLM
� r ·

�2PNL

�t2 ei�LPt sin 	d	d


�29�

and where, as with the TE modes, we use

KLP � kLP +
i

c�

d�

dt
. �30�

The solution is
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zL = �AjL�nKLPr� , r � a ,

hL
�1��KLPr� , r � a .

	 �31�

From the continuity of the normal displacement field, and
integrating Eq. �28� across r=a, we get

�n2zL�−
+ = 0, 
 d

dr
�rzL��

−

+

= a
J�TM�

�
. �32�

This now yields

FM�KLPa� =
J�TM�

KLP�
, �33�

where, this time,

FM�KLPa� � hL−1
�1� �KLPa� − hL

�1��KLPa�
jL−1�KLPa�
njL�KLPa�

− LhL
�1��KLPa��1 −

1

n2� . �34�

We again denote the derivative of FM by

GM�x� �
dFM�x�

dx
�35�

and, following the same reasoning as with the TE mode, we
deduce

d�

dt
+ �LP� �

cJ�TM�

ikLPaGM�kLPa�
. �36�

We thus see how, for both TE and TM modes, evolution
equations for their amplitude can be derived. In order to
make these equations more explicit and isolate the nonlinear
coupling between the modes due to a second-order nonlin-
earity, we need to develop the expression for J�TE� and J�TM�.
This is what we do in the next section.

C. Nonlinear polarization produced by whispering-gallery
modes

We now wish to derive explicit form for J�TE� and J�TM�

appearing in Eqs. �27� and �36�. To this end, let us consider a
particular fundamental field composed of a transverse mag-
netic mode with quantum numbers l, m, and p, and a trans-
verse electric mode with quantum numbers l�, m�, and p�. In
order to avoid unnecessary indexes, we will write the ampli-
tudes of the fundamental field as

�l,m,p � �1 and �l�,m�,p� � �1�. �37�

We need only to focus on one arbitrary second-harmonic TM
field with quantum numbers L, M, P and one second-
harmonic TE field with quantum numbers L�, M�, and P�.
We will thus write

�L,M,P � �2 and �L�,M�,P� � �2�. �38�

The treatment of more complicated fields, involving more
WGM’s, can immediately be derived from the present case.

Mathematically, the defining feature of WGM’s is that

l,l�,m,m� � 1, l − m,l� − m� = O�1� .

In this case indeed, light is concentrated along the equator of
the sphere. Exploiting this limit, we show in Appendix B that
the fundamental field is given by

E �
− �2Z0

a
��1
lzler + i

d�rzl�
dr

e
�Ylme−i�lpt

+ �1�kl�p�azl�Yl�m�e
−i�l�p�te		 �39�

on the surface of the sphere r=a. Furthermore, assuming that
both fundamental frequencies are close to some given pump
frequency �, we also have

�l − l�� � l .

We can summarize the conditions that apply to the funda-
mental field by saying that

m,m�,l,l�,n1kl�p�a � n1ka + O„�n1ka�1/3
… , �40�

where k�� /c and n1�n���, as follows from Eq. �B1�. Ob-
viously, the same can be said of the second-harmonic modes,
but with the substitution k→2k, n1→n2�n�2��.

On the surface of a centrosymmetric material, the only
nonzero components of the nonlinear susceptibility are
����, ����, and ����, where � and � refer to directions that
are perpendicular and parallel to the surface, respectively, as
in Refs. �45� and �49�. The surface nonlinear polarization is,
therefore,

PNL = �0��2�:EE

=
2Z0�0

a2 �������1
2l2zl

2Ylm
2 e−2i�lpt

+ ����
− �1
2�d�rzl�

dr
�2

Ylm
2 e−2i�lpt

+ �1�
2 kl�p�

2 a2zl�
2 Yl�m�

2 e−2i�l�p�t�	er

+ �����2i�1
2lzl

d�rzl�
dr

Ylm
2 e−2i�lpte


+ �1�1�kl�p�alzlzl�YlmYl�m�e
−i��lp+�l�p��te	�� .

Using Eq. �40� this can be simplified as

PNL � 2�0Z0k2�n1
2�
����zl

2 − ����l−2�d�rzl�
dr

�2�er

+ 2i����l−1zl
d�rzl�

dr
e
	Ylm

2 �1
2e−2i�lpt

+ ����zl�
2 Yl�m�

2 �1�
2 e−2i�l�p�ter

+ n1����zlzl�YlmYl�m��1�1�e
−i��lp+�l�p��te	� , �41�

which allows us to evaluate J�TM�. On the other hand, we
have
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r · �� �
�PNL

�t
� =

1

sin 	

 �

�	
�sin 	e
 ·

�PNL

�t
�

−
�

�

e	 ·

�PNL

�t
� .

This can be simplified by noting, first, that PNL oscillates in
times at very nearly twice the fundamental frequency �; sec-
ond, spherical harmonics for which Eq. �40� holds vary much
more rapidly in the azimuthal direction than along the polar
coordinate; third, under the same assumption, they only have
appreciable magnitude close to 	=� /2. Hence sin 	�1 and

r · �� �
�PNL

�t
� � 2i�

�

�

�e	 · PNL� �42�

Moreover, invoking Eq. �40� again, �
�
YlmYl�m�= i�m

+m��YlmYl�m��2in1kaYlmYl�m�. Eventually, we thus get

r · �� �
�PNL

�t
� � − 8n1

2k4a����zlzl�YlmYl�m��1�1�

�e−i��lp+�l�p��t. �43�

Similarly, we find

�r ·
�2PNL

�t2 � − 8Z0k4a�n1
2
����zl

2

− ����l−2�d�rzl�
dr

�2�Ylm
2 �1

2e−2i�lpt

+ ����zl�
2 Yl�m�

2 �1�
2 e−2i�l�p�t	 . �44�

Let us now consider the effect of this nonlinear polarization
on a transverse electric mode �quantum numbers L�, M�, P��
whose frequency is close to the second harmonic kL�P��2k.
We obtain

J�TE� �
− 2kaGE�2kL�P�a�

c
�EM�1�1�e

i��L�P�−�lp−�l�p��t,

where

�EM =
�2/Z0n1

2k2zlzl�

�0n2aGE�2kL�P�a�� � ����YL�M�
� YlmYl�m� sin 	d	d
 ,

�45�

and we recall that n2�n�2��. On the other hand, for a trans-
verse magnetic mode �L ,M , P� we find

J�TM� �
− 2kaGM�2kLPa�

c
��MM�1

2ei��LP−2�lp�t

+ �EE�1�
2 ei��LP−2�l�p��t� ,

where

�MM =
�2/Z0n1

2k2zl
2

�0n2aGM�2kLPa�� � 
���� − �lzl�−2�d�rzl�
dr

�2

�����
�YLM

� Ylm
2 sin 	d	d
 �46�

and

�EE =
�2/Z0k2zl�

2

�0n2aGM�2kLPa�� � ����YLM
� Yl�m�

2 sin 	d	d
 .

�47�

Expressions �45�–�47� constitute the main result of this ar-
ticle. Bearing in mind that ���� , . . . are surface susceptibili-
ties �unit: m2 V−1�, the dimension of the coupling coeffi-
cients is W−1/2 s−1, consistently with the definition of the
amplitudes �i.

D. Coupled-mode equations

Introducing the detunings �EM=�L�P�−�lp−�l�p�, �MM
=�LP−2�lp, and �EE=�LP−2�l�p�, we have thus derived

� d

dt
+ �L�P���2� = i�EM�1�1�e

i�EMt, �48�

� d

dt
+ �LP��2 = i�MM�1

2ei�MMt + i�EE�1�
2 ei�EEt �49�

for the TE and TM second-harmonic amplitudes, respec-
tively. Finally, if there were no losses, we would have

d

dt
���1�2 + ��1��

2 + ��2�2 + ��2��
2� = 0, �50�

and we can directly deduce from this that the evolution equa-
tions for the fundamental amplitudes �1 and �1� are

� d

dt
+ �l�p���1� =

i

2
�EM

� �2��1
�e−i�EMt + i�EE

� �2�1�
� e−i�EEt,

�51�

� d

dt
+ �lp��1 =

i

2
�EM

� �2��1�
� e−i�EMt + i�MM

� �2�1
�e−i�MMt.

�52�

The damping rates appearing in these coupled equations
should include all losses suffered by the WGMs. So far, in
the present theory, we have implicitly only been considering
radiation losses. However, as the size of sphere increases,
additional loss mechanisms become comparable or even ex-
ceed these radiation losses. These arise mainly from Ray-
leigh scattering by imperfections on the surface of the sphere
and absorption losses �24,61�. One should therefore include
these effect by letting

�lp → �lp + �lp,Rayleigh + �lp,absorption

in Eq. �52� and similarly in Eqs. �48�, �49�, and �51�. In
Appendix C, we show how the theory can easily be modified
to include absorption losses.
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IV. PHASE MATCHING AND COHERENCE LENGTH

If the nonlinear susceptibility is uniform over the dielec-
tric sphere, then from Eq. �45� we have

�EM 
 ����� � YL�M�
� YlmYl�m� sin 	d	d
 �53�

and similarly for �MM and �EE from Eqs. �46� and �47�, re-
spectively. The integral above vanishes unless

M� = m + m�, �l − l�� � L� � l + l�, �54�

which are the selection rules for composing angular mo-
menta in quantum mechanics. These are the phase-matching
conditions for second-order nonlinear processes involving
WGM’s. Hence, in the present setting, phase matching
amounts to conserve the angular momentum of the electro-
magnetic wave, in contrast to linear momentum for plane
wave mixing.

In addition to Eq. �54�, another condition for Eq. �53� not
to vanish is that

L� + l + l� � 2Z . �55�

This corresponds to the conservation of parity of the wave
functions with respect to 	=� /2.

Applying for example the selection rule above to a TM
fundamental mode with m= l and its TM second harmonic
with M =L, matching requires L=2l. Such a choice corre-
sponds to WGM’s that are maximally concentrated on the
equator and which are most naturally excited by a tapered
fiber. Note that the phase-matching condition stated in Ref.
�20� for toroidal resonators is consistent with Eq. �54� but
only m= l is achieved there, preventing conservation of an-
gular momentum to be fully discerned. With the phase-
matching condition L=2l, double resonance requires that
k2l,P=2kl,p, where p and P are the radial numbers of the
fundamental and second harmonic modes, respectively. In
Fig. 1, we examine this possibility graphically for p=1 and
various values of P. With the refraction index of silica, a
fundamental wavelength around 800 �m and a sphere radius
around 55 �m, we find that it is necessary to assume a radial
number P=3 for the second harmonic. This is similar to Ref.

�62�. Figure 1 also shows that phase matching and double
resonance only occur simultaneously for specific sphere sizes
only.

In a previous work �59�, two counterpropagating funda-
mental WGMs �i.e., with m1=m, m2=−m� were found to be
automatically phase matched with a second-harmonic M =0
mode. This obviously agrees with the condition of angular
momentum conservation �54�.

From the discussion above, it is clear that achieving si-
multaneously phase matching and double resonance is pos-
sible but probably rather difficult in practice. An alternative
to phase matching is quasi-phase-matching. This can be
achieved by covering the sphere only partly with a nonlinear
material, or covering it with a periodic pattern of nonlinear
material. In order to cover the sphere correctly, it is neces-
sary to determine the coherence length. Focusing on the case
m= l, M =L , . . ., let us restrict the integration in Eqs.
�45�–�47� to an angular sector of the sphere with arclength �
along the equator. We get

�EM 
 sin
L� − l − l�

2a
�, �MM 
 sin

L − 2l

2a
�,

�EE 
 sin
L − 2l�

2a
� .

For �MM, for example, the coherence length is therefore

�c =
�a

L − 2l
. �56�

As we move away from the equator, the coherence length is
reduced by a factor sin 	.

It is possible to obtain an analytical approximate expres-
sion for �c. Given a fundamental frequency � �wave number
k�, the orbital numbers l and L for the WGM’s closest to the
fundamental and second harmonics can be inferred from Eq.
�B1�. Asymptotically, we have

l � n1ka − �p�2n1ka�1/3 + �1, �57�

L � 2n2ka − �p�4n2ka�1/3 + �2, �58�

where �1, �2 ensure that l and L be integer. Hence,

�c
−1 =

L − 2l

�a

�
2�n2 − n1�k

�

1 +

n1
1/3 − �n2/4�1/3

n2 − n1

21/3�p

�ka�2/3� . �59�

This formula is illustrated in Fig. 2, which demonstrates a
strong dependence of the coherence length on the sphere
size—and therefore not only with material dispersion. Note
the difference with free space propagation. In the limit of a
very large radius �c

−1 tends to the bulk value 2�n2−n1�k /�.
Phase matching or quasi-phase-matching implies double

resonance for the two interacting waves. However, the two
WGMs taking part in SHG are generally detuned by a finite
amount �12 from 2:1 resonance. The appropriate values of l
and L can be determined from the large-l asymptotic expan-
sion of kl,p derived in Ref. �57� and which includes terms up

40 45 50 55 60
a�Μm�

5

10

15

P�1

P�2

P�3

kl,p a �
1
����
2
kL,P a

FIG. 1. Doubly resonant, phase-matched microsphere �kl,p

− 1
2kL,P�a as a function of sphere radius a for l=650, p=1, L=2l,

and P=1,2 ,3. The choice L=2l ensures phase matching for
WGM’s with m= l and M =L. In order to achieve kl,p= 1

2kL,P, a
higher radial wave number must be assumed for the second har-
monic. At double resonance �a�57 �m� the fundamental wave-
length is approximately 782 nm. See Appendix D for the Sellmeyer
formula n��� used.
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to O�l−8/3� inclusive �formula �B1� contains the first three
terms of it�. To numerically compute �c as a function of the
sphere radius a in Fig. 2, we proceeded as follows: We set
the fundamental wavelength to 800 nm and chose a and l
such that we got perfect resonance for that frequency. The
values of L were then determined for these radii such that
�12 was less than 10 MHz and the coherence length was
deduced from Eq. �56�. The jumps in �c as a function of a
seen in Fig. 2 result from the discreteness of l and L. Such
discrete character combined with the dependence of �c on the
radius underscore the fundamental difference between the
present situation and the nonlinear mixing of freely propa-
gating plane waves.

Quasi-phase-matching would require to cover the sphere,
for instance, with two types of domain slices, one with the
nonlinear molecular dipole pointing outwards and the adja-
cent one with the nonlinear molecular dipole pointing in-
wards. Such periodic distribution of domains would lead to
the largest conversion efficiency possible in such type of
microresonators. Note that, from Eq. �56�, in such a periodic
configuration, the sphere perimeter is automatically equal to
an even number of �c. Furthermore, quasi-phase-matching
allows one to use the lowest order radial modes for both
fundamental and second-harmonic frequency.

V. CONCLUSION AND OUTLOOK

In conclusion, we have developed a coupled mode equa-
tion theory to study second-order nonlinear generation of
whispering-gallery modes when the nonlinear material is lo-
calized on the sphere surface. We have obtained explicit ana-
lytical expressions for the nonlinear coupling coefficients for
the TE and TM polarizations. These expressions are used to
establish the phase-matching condition as a conservation of
the angular momentum of the electromagnetic wave. We
showed that perfectly phase-matched, doubly resonant mi-
croresonators only assume some very specific radii. Further-
more, for typical experimental values—fundamental wave-
length ��800 nm, a�50 �m—phase matching is only

possible between modes with different radial number.
Alternatively, we obtained the coherence length and

showed that quasi-phase-matching is possible, the length of
the equator being an even number of coherence lengths for
WGM’s. This coherent length depends significantly on the
sphere size. Moreover, this dependence is discontinuous on
account of the discreteness of the mode spectrum.

The theory of this paper treats the case of continuous
waves. However, the coupled mode approach used could eas-
ily be extended to consider the case of a pulsed injection
through the tapered fiber with a frequency bandwidth ex-
ceeding the free spectral range between consecutive WGMs.
In this case, Eq. �1� in Sec. II must be extended to include
enough fundamental modes and their second harmonics to
cover the pulse bandwith.
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APPENDIX A: DERIVATION OF EQ. (21)

The continuity conditions �19� and �20� give

AjL��nKL�P�a� − hL�
�1��KL�P�a� = 0, �A1�

AnjL�
� �nKL�P�a� − hL�

�1���KL�P�a� =
J�TE�

KL�P��
. �A2�

Eliminating A from the latter, we get

nhL�
�1��KL�P�a�

jL�
� �nKL�P�a�

jL��nKL�P�a�
− hL�

�1���KL�P�a� =
J�TE�

KL�P��
.

�A3�

Finally, using the identity

bl��x� = bl−1�x� −
l + 1

x
bl�x� , �A4�

valid for all spherical bessel functions, we obtain Eq. �21�.

APPENDIX B: ASYMPTOTICS EXPANSIONS FOR LARGE
ORBITAL AND AZIMUTAL NUMBERS

In the large-l limit, the positions of the WGM resonances
are given asymptotically by �58�

nkl,pa = � + 2−1/3�p�1/3 −
B

�n2 − 1�1/2 + O��−1/3� , �B1�

where �= l+1 /2, �p is the pth root of the Airy function
Ai�−z�, and

B = �n for TE modes,

1/n for TM modes.
	

In Ref. �57�, the coefficients of the expansion above were
computed up to O��−8/3� and in Ref. �56�, the width and

l

FIG. 2. Coherence length �c as a function of sphere radius.
Continuous line: analytical formula �59�; circles: numerically com-
puted values from an eight-order asymptotic expansion relating
mode frequency and mode orbital and radial numbers �57�. The
fundamental wavelength is �=800 nm. Only modes with m= l, M
=L, and p= P=1 are considered.
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strength of these resonances is also given up to O��−2/3�.
Furthermore, we have �63�

J��ka� + iY��ka� �
e−���−tanh ��

�2�� tanh �
− i

e���−tanh ��

�1
2�� tanh �

,

where cosh �= �
ka or

� � arccosh�n� −
21/3n�p

�n2 − 1
�−2/3 +

nB

n2 − 1
�−1 + O��−4/3� .

Hence, Y��ka��J��ka� and

hl
�1��ka� � − 2i cosh �

e���−tanh ��

��sinh �
�

− 2ine���−tanh ��

�n2 − 1�1/4�
.

Note that, on account of Eq. �B1�, we may write cosh �=n
+O��−1/3� and sinh �=�n2−1+O��−1/3�, but the argument of
the exponential above, being multiplied by �, should be ex-
pressed with O��−1� accuracy for a precise evaluation.

Another useful formula was derived in Refs. �31,64� con-
cerning spherical harmonics Ylm whith l ,m�1 and q� l
−m=O�1�. In this limit, the magnitude of Ylm is expected to
be significant only in the neighborhood of 	=� /2 and to
decay rapidly away from it. This motivates the introduction
of a new polar variable s= l1/2�� /2−	� and leads to

Ylm = Pl
m�	�eim
 � �− �l+q 21/4l1/4

�2��3/4
Hq�s�e−s2/2

�2qq!�1/2 eim
, �B2�

where Hq is Hermite’s polynomial. The �−�l+q factor �absent

in Ref. �31�� can be deduced by comparing Pl
m�0� and

dPl
m

ds �0�
with the explicit representation of Hq�s� �respectively, p. 334
and p. 775 in Ref. �63��.

We now turn to the large-l approximation for vector
spherical harmonics. These are defined as �60�

Xlm =
1

�l�l + 1�
LYlm �

1

l
LYlm,

where L is the vector angular momentum operator, defined
by

L � i�e	

1

sin 	

�

�

− e


�

�	
� � − le	 + il1/2e


�

�s
.

Transverse magnetic mode are thus given by

H�TM� = �2/Z0k��TM�zlXlme−i�lpt

� − �2/Z0k��TM�zlYlme−i�lpte	 �B3�

and

E�TM� =
iZ0

k
� � H�TM�

� −
�2Z0

r
��TM�
lzler + ie


��rzl�
�r

�Ylme−i�lpt.

�B4�

At the surface of the sphere,

�

�r
�rzl� = kahl−1

�1� �ka� − lhl
�1��ka� .

Hence, since ka� l /n, the radial and azimutal electric field
components are of comparable size. Further away from the
center of sphere, when kr� l, E�TM� becomes more and more
parallel to e
, making the Pointing vector parallel to er. On
the other hand, the transverse electric mode �E�TE� ,H�TE��
is obtained by the transformation �E�TM� ,H�TM��
→ �−Z0H�TE� ,Z0

−1E�TE�� in Eqs. �B3� and �B4�.

APPENDIX C: TREATMENT OF ABSORPTION LOSSES

In the presence of absorption losses, the index of refrac-
tion becomes complex and we can generally assume that, at
a given frequency n���=nr+ ini, with ni�nr. In Eq. �12�, for
instance, we now have

n2kL�P�
2 +

2in2kL�P�

c�
= n2�kL�P�

2 +
2ikL�P�

c�

d�

dt
�

� nr
2�1 +

2ini

nr
��kL�P�

2 +
2ikL�P�

c�

d�

dt
�

� nr
2�kL�P�

2 +
2ikL�P�

c�

d�

dt
+

2ikL�P�
2 ni

nr

�
= nr

2
kL�P�
2 +

2ikL�P�

c
� 1

�

d�

dt

+
ni

nr
ckL�P��� . �C1�

Hence, after defining

�L�P�,absorption �
ni

nr
ckL�P�,

the analysis follows exactly the same steps as in Sec. III A,
but with 1

�
d�
dt replaced everywhere by 1

�
d�
dt +�L�P�,absorption.

APPENDIX D: SELLMEYER FORMULA

In our calculations, we used

n2��� = 1 + 

i=1

3
Bi�

2

�2 − Li
2 ,

with
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B1 = 0.6961663,

B2 = 0.4079426,

B3 = 0.8974794,

L1 = 0.0684043 �m,

L2 = 0.1162414 �m,

L3 = 9.896161 �m.
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