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We study the coherence properties of optical vortices stored in atomic ensembles. In the presence of thermal
diffusion, the topological nature of stored optical vortices is found not to guarantee slow decoherence. Instead
the stored vortex state’s decoherence is surprisingly larger than the stored Gaussian mode. Furthermore,
calculation of the coherence factor shows that the center of the stored vortex becomes completely incoherent
once diffusion begins and, when a reading laser is applied, the optical intensity at the center of the vortex
becomes nonzero. Its implication for quantum information is discussed. A comparison of classical diffusion
and quantum diffusion is also presented.
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Photons can carry orbital angular momentum �OAM�,
which can be created �1�, manipulated �2�, and detected �3�.
The OAM states are associated with vortices of a helical
phase eim�. Each vortex is a topological defect, characterized
by a winding number m, obtained from the 2�m phase twist
around the vortex. The light with OAM is exemplified by the
Laguerre-Gaussian �LG� modes LGp

m with p the number of
nodes in the radial direction �4,5�. Entanglement through the
OAM degree of freedom has been demonstrated for photon
pairs from parametric down conversion �6�. Since the wind-
ing number can be any integers, the OAM states have been
proposed theoretically for multiple-alphabet quantum cryp-
tography with higher information density and a higher mar-
gin of security �7,8�. Other proposals, such as quantum coin
tossing and violation of Bell inequalities, using the OAM
states have been reviewed in Ref. �9�.

One of the key challenges for optics based quantum-
information processing �QIP� is the difficulty of storing op-
tical fields. It has been demonstrated �10–12� that a superpo-
sition of the OAM states can be stored in a nonrotating Bose-
Einstein condensates �BEC� in terms of vortex states of the
condensate. Meanwhile, the OAM states can also be stored
in “hot” atomic ensembles using slow light techniques
�13–17�. The information of photonic states, namely, the am-
plitude and phase, is continuously transformed into Raman
coherence, i.e., spin-density waves, of the atomic ensemble,
and can be later retrieved. In practice, factors such as inho-
mogeneous magnetic field �18� and/or thermal diffusion can
lead to the decay of the Raman coherence. To what extent
can the optical vortex states really be stored coherently? Are
they going to be more robust than the Gaussian state? The
answers to these questions will determine how the OAM are
used in QIP.

Generally speaking, the topological structure of a vortex
makes it a good candidate for QIP �11,19,20� because it is
stable against continuous deformations which cannot cause it
to decay or to “unwind.” Actual studies of such robustness
against various processes are of course necessary. In particu-
lar, one needs to study the robustness in the presence of atom
diffusion �21,22� for the stored coherence, which is crucial
for applications such as quantum repeaters �23,24� and mul-
tiple beam splitters for generating entangled single photons
�25�. Toward answering this question, Pugatch et al. �17�

have shown that after some time of diffusion, the dark center
of a stored OAM mode is well preserved, and the dark center
of a Gaussian mode generated by blocking its center disap-
pears. They attributed the stable dark center of the stored
OAM mode to the robustness of the topological nature of a
vortex against diffusion.

In this paper, we provide a careful study for the robust-
ness of the stored vortex states �exemplified by p=0 unless
otherwise stated� in the presence of diffusion. We find that
the stable dark center of the vortex states is not directly as-
sociated with the topological robustness. The vortex states
are actually more vulnerable to diffusion than the Gaussian
state. This is because �1� for vortex states, diffusion induces
destructive interference of the coherence, and �2� the diffu-
sion is a global process and can destroy the topological order.

Our basic assumption is that there is no other dynamics
besides diffusion. The evolution therefore obeys the diffu-
sion equation �̇=D�2�, where � and D are the density matrix
and the diffusion coefficient, respectively. We consider a
three-level lambda system as generally used for light storage
�13,14�: the weak probe laser is applied between the ground
state �1� and the excited state �3�, and the pump laser is
addressing the transition between �3� and another ground
state �2�.

Solving the diffusion equation gives the atomic coherence
of a LG mode after diffusion time t �17�,

�12�r�,t� =
�− g/��
�s�t��m�+1

Am�r,�s�t�w0�e−im�, �1�

with g the vacuum Rabi frequency for the probe field, � the
Rabi frequency for the pump laser, s�t�= �w0

2+4Dt� /w0
2

an evolution factor, w0 the waist, and Am�r ,w0�
= �1 /w0��2P /��m�!��2r /w0��m� exp�−r2 /w0

2� the radial pro-
file of a LG mode, where P is the total intensity. Note that
Eq. �1� applies to the Gaussian mode �m=0� as well. For
example, the evolution of stored coherence is shown in Figs.
1�a� and 2�a� for m=1 and m=0, respectively. At large r, the
coherence homogeneously approaches zero due to the expo-
nential factor in Am. Note that Eq. �1� describes both a spread
of the coherence, indicated by �s�t� inside Am, and a decay
of the coherence compared to a purely coherent spread.
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The decay is given by �s�t��m�+1 in the denominator. Then
F=1 /s�t��m�+1 gives the fidelity of the stored coherence. F
shows that angular momentum states with different �m� have
different coherence decay factors. Although we will come
back to the decay of coherence later, we note here that the
larger OAM �m�, the larger the decay factor. The Gaussian
mode, which has no phase singularity, has smaller coherence
decay factor than all vortex states. This is because, without a
vortex, the coherence is always in phase for different loca-

tions and there is no destructive interference to destroy the
coherence. One can show that the retrieval efficiency along
forward direction is the same as the fidelity F. Therefore, we
come to a counterintuitive result—a Gaussian state has a
higher storage fidelity �or retrieval efficiency� than the LG
modes.

This may make the applications of optical vortex �with
storage� for QIP questionable. Even though the excitation
loss of a stored Gaussian or optical vortex state can be iden-
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FIG. 1. �Color online� Effects of diffusion on a stored vortex
with topological charge m=1. Plotted are �a� coherence �12, �b�
population �22, and �c� coherence factor f as functions of radius, for
different diffusion times. w0,D are the waist of the LG mode and the
diffusion coefficient, respectively.
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FIG. 2. �Color online� Effects of diffusion on a stored Gaussian
mode. Plotted are �a� coherence �12, �b� population �22, and �c�
coherence factor f as functions of radius, for different diffusion
times. w0,D are the waist of the Gaussian mode and the diffusion
coefficient, respectively.
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tified as a detected error and the threshold for detected errors
allowed by quantum computation are realistic �26�, fast
quantum computation with reasonable resource overhead
still requires relatively low error rates. This is also true for
quantum communication �23,24�, where, although the exci-
tation loss can be fully controlled by its intrinsic purification,
a fast quantum repeater still needs a fairly high retrieval ef-
ficiency.

The scaling factor �s�t� in Am of Eq. �1� means that the
functional forms of coherence are preserved for both the LG
mode and the Gaussian mode. This implies that the func-
tional form stability of stored coherence against diffusion
does not require topological defects. Indeed, the disappear-
ance of the dark center of the center-blocked Gaussian mode
after diffusion �17� demonstrates the stability of the Gaussian
mode: diffusion tries to restore the nonzero intensity at its
center. Of course, the restoration can also be understood by
decomposing the center-blocked Gaussian mode to LGp

0 and
noting that p�0 modes decay faster than the p=0 mode and
what is left after some time of diffusion is just the Gaussian
mode.

From the above discussion, it is clear that for the LG light
�m�0�, the coherence at the center r=0 stays zero during
diffusion. However, as we show now, population at r=0 does
not stay zero. To simplify the discussion, we assume that, at
time t=0, the populations of atoms are �11�r� , t=0�=1 and
�22�r� , t=0�= ��12�r� , t=0��2, which is a good assumption for
strong pump and weak probe lasers as usually used in light-
storage experiments. At time t after diffusion, we have
�11�r� , t�=1 and

�22�r,t� =
4e−2r2/8Dt+w0

2
P�32D2t2 + r2w0

2 + 4Dtw0
2�

��8Dt + w0
2�3 �2�

for the m=1 vortex state and

�22�r,t� =
2e−2r2/8Dt+w0

2
P

��8Dt + w0
2�

�3�

for a Gaussian mode. The evolution of the population is plot-
ted in Figs. 1�b� and 2�b�. While it seems that coherence only
diffuses outwards in Fig. 1�a�, Eq. �2� and Fig. 1�b� clearly
show that diffusion goes in all directions as it should be. The
outwards moving coherence during diffusion is because in-
terference cancels the inwards diffusing coherence. In con-
trast, population does not interfere with itself and thus diffu-
sion toward the center is clearly seen. Indeed, the population
at the center quickly approaches a global maximum as time
increases �Fig. 1�b��. We also note that the integrated �22
over the whole space is conserved during the diffusion, i.e.,
no population is actually transferred.

We have seen that coherence and population diffuse dif-
ferently �Eqs. �1�–�3��. This brings in phase decoherence for
the stored coherence. To characterize the decoherence, we

define a coherence factor f =lim�→0
��12�2+�

�11�22+� . f is a function
with f =1 for a pure state and f =0 for a completely mixed
state. Thus, f is a good parameter to describe the �local�
coherence property. As a specific example, we plot the co-
herence factor f in Figs. 1�c� and 2�c�. Figure 1�c� shows that

right after diffusion begins, the coherence factor f�r=0� of
the stored vortex drops from 1 to 0 because at r=0, the
population becomes nonzero when diffusion starts while the
coherence stays zero. We note that such sudden changes
within an infinitesimal time are very uncommon in physical
processes �32� and f�r� approaches zero at very large times.
This latter result holds for a Gaussian mode as well �shown
in Fig. 2�c��. We also note that at those distances where the
diffusion of stored inhomogeneous coherence and population
has not yet arrived, the coherence factor f stays at 1 because
all population is in �1�, a pure state. But the weight �22,
justified by its non-negative and conserved integration of
these coherence factors for the retrieved light approaches
zero.

Here is how the coherence factor f may be obtained from
the experiments. When the reading pulse is applied, the in-
coherent part will be retrieved as fluorescence in all direc-
tions. Collecting both the fluorescent and the coherent emis-
sion then allows extracting f . Of course, setting the detector
at the forward direction as generally used, e.g., in �17�, can
only collect a finite fraction of the fluorescence, while the
coherent part is collected by the detector �27�. What we want
to emphasize is that incoherence makes intensity at the cen-
ter of a retrieved vortex nonzero, very different from a co-
herent vortex state. As the diffusion time increases, nonzero
intensity at the center builds up. Therefore, generation of a
mixed state makes an additional loss of retrieved fidelity.
Diffusion of the population makes visibility decrease and
finally kills the vortex. Of course, this part of the reduction
of fidelity can be alleviated by using spatial filtering of the
optical mode to prevent spontaneously emitted photons from
going to the detector. In this case, the retrieval probability is
just the fidelity F=1 /s�t��m�+1.

The different collection efficiencies of fluorescent photons
and coherent photons by a forward-set detector help to ex-
plain why the hole of the center-blocked Gaussian mode dis-
appears very quickly, while the hole of a vortex disappears
very slowly �17�. The homogeneous phase of the center-
blocked Gaussian mode makes nonzero coherence inside the
hole after diffusion and thus the disappearance of the hole
once the coherence is read. This is in contrast with a stored
vortex, whose coherence at the center remains zero all the
time. The nonzero intensity at its center comes only from
incoherence of the center. However, if most of the fluores-
cent photons are collected by the detector, the dark center of
a vortex would disappear quicker than that of the Gaussian
mode. It is the spatial filtering of the optical mode that helps
to overcome the fluorescence from the center.

We now come back to the decay of coherence. We noted
that the coherence of stored LG modes decays according to a
power law F=1 /s�t��m�+1. The larger the order of phase sin-
gularity given by m is, the faster the coherence decays. An
additional example of the exponential decay rate 2Dk2 due to
the diffusion of a plane wave e−ikx, which is faster than any
power law decay, also corroborates this idea, because a plane
wave has an infinite number of phase singularities. We also
note that the larger is the k of a plane wave, the larger is the
decay rate, which is because a larger k means that the pattern
has a higher spatial frequency and the diffusion cancels the
coherence faster. Such diffusion of the plane wave happens if
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the pump and probe lasers have different wave vectors.
As a direct application, the smaller the phase gradient is,

the more stable is the stored coherence against diffusion. For
example, diffusion of a stored general mode LGp

m with both
winding number and number of radial nodes being nonzero
�5� induces faster decay for p�0 than for p=0. Furthermore,
we note that although the number of nodes in the coherence
does not change with diffusion time, the positions for the
off-center radial nodes change, which is different from the
center node. The nonmoving position of the center node
comes from geometric symmetry of the vortex. Since the
decay rate depends on both �m� and p for the mode LGp

m, if
OAM states are to be used as bases for quantum information,
a preferred basis to reduce loss of entanglement for quantum
information is actually two modes with the same p but op-
posite m.

So far, we have only discussed decoherence induced by
the classical diffusion associated with the inhomogeneous
distribution of coherence. We note that decoherence can also
happen in a homogeneous system as a result of the quantum
diffusion. The quantum diffusion in a light storage system
happens when pump and probe lasers couple different mo-
mentum states, which introduces decoherence �28�. But this
decoherence is reversible, e.g., by photon echo techniques, in
contrast with the classical diffusion. This is because the
quantum diffusion is described by a complex Schrödinger
equation while classical diffusion is not. Finally, we note that
when the same momentum states are coupled by choosing
pump and probe lasers to have the same wave vectors, the
quantum diffusion disappears �28�. Incidentally, inhomoge-

neous magnetic fields also induce quantum diffusion �18�.
Our results indicate that diffusion actually introduces

more decoherence in a stored vortex mode than a stored
Gaussian mode, which implies that optical vortex states may
not be preferable for quantum information when diffusion is
involved. Of course, we also do not rule out that in other
processes, such as a quantum gate operation, vortex states
are possibly much better than the Gaussian state. Nor did we
discuss diffusion-free systems such as BEC �10� and bound
excitons in semiconductors �29,30�. Additionally, we believe
that the formation of vortex solitons �31� due to nonlinear
interaction in the presence of diffusion is interesting.

In conclusion, we have found that during diffusion,
the coherence of stored vortex states decays faster than that
of Gaussian states. This is surprising because vortex states
are associated with topological properties, and are presum-
ably more stable than Gaussian states. The underlying reason
is that diffusion is a nonlocal process. More generally, the
less the phase gradient in stored coherence, the better it is
against diffusion. Furthermore, calculations show that the
center of a stored vortex becomes completely incoherent
once diffusion begins, and when the reading laser is applied,
the optical intensity at its center builds up. The implication
of our results to quantum information is discussed. Finally,
we have compared the classical diffusion and the quantum
diffusion.
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