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The Schrédinger motion of a charged quantum particle in an electromagnetic potential can be simulated by

the paraxial dynamics of photons propagating through a spatially inhomogeneous medium. The inhomogeneity
induces geometric effects that generate an artificial vector potential to which signal photons are coupled. This
phenomenon can be implemented with slow light propagating through a gas of double-A atoms in an electro-
magnetically induced transparency setting with spatially varied control fields. It can lead to a reduced disper-
sion of signal photons and a topological phase shift of Aharonov-Bohm type.
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I. INTRODUCTION

It is known since the ground-breaking work of Berry on
geometric phases [1] that artificial gauge potentials can be
induced if the spatial dynamics of a system that obeys a
wave equation is confined in a certain way. An example is
the gauge field dynamics of neutral atoms if their internal
Hamiltonian contains an energy barrier but the spin eigen-
states are spatially varying [2]. In the limit of ray optics,
moving atomic ensembles could simulate the propagation of
light around a black hole or generate topological phase fac-
tors of the Aharonov-Bohm type [3], and inhomogeneous
dielectric media could generally exhibit geometric effects
such as an optical spin-Hall effect and the optical Magnus
force [4].

In this paper, we propose to use electromagnetically in-
duced transparency (EIT) to generate an artificial vector po-
tential for the paraxial dynamics of signal photons that simu-
lates quantum dynamics of charged particles in a static
electromagnetic field. Not only the ray of light but also its
mode structure is affected, resulting in a paraxial wave equa-
tion that is equivalent to the Schrodinger equation for
charged particles. Furthermore, the form of the artificial vec-
tor potential can be easily controlled through spatial varia-
tions in the control fields. We suggest configurations that
generate homogeneous quasielectric and magnetic fields as
well as a vector potential of Aharonov-Bohm type.

Although the treatment in this paper is based on EIT, the
effect presented here is more general: it will occur in any
medium that supports a set of discrete eigenmodes for propa-
gating signal fields with different indices of refraction. If the
parameters governing these eigenmodes vary in space, the
signal modes will adiabatically follow, acquiring geometric
phases that affect their paraxial dynamics.

II. REVIEW OF EIT WITH MULTI-A ATOMS

The effect takes place in an atomic multi-A system, in
which two ground states are coupled to Q excited states by Q
pairs of control (£,) and signal (d,) fields [Fig. 1(a)]. An
experimentally relevant example of such a system is the fun-
damental D1 transition in atomic rubidium, where both the
ground and excited levels are split into two hyperfine sub-
levels [5]. We assume that the detunings are small so each
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signal field d, interacts only with the respective transition
|B)—|A,) with the associated atomic field operator
é'BAq(x,t) that describes an atomic coherence |B){(A,| at po-
sition x. The respective coupling constant is given by the
vacuum Rabi frequency g,=D, \w/(2e(V), with D, the di-
pole moment for this transition and quantization volume V,
which equals the interaction volume of the mode. The
paraxial wave equation for each signal mode can be cast into
the form

FIG. 1. EIT in a multi A-system. (a) In the original basis, Q
excited states \Aq) are each coupled by a classical control field £}, to
the ground state |C) and by a quantized field a, with detuning & to
state |B). (b) In the transformed atomic and optical bases, the
atomic states {|B),|EB),|C)} form a A system in which the signal

field I;Q experiences EIT.
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d J ic P,
<E+ca—z—ﬁAl>aq=lNgqa'B,Aq, (1)
where the wave propagates along the z axis, N is the number
of atoms in the interaction volume, and k is the wave vector
which we assume approximately independent of g. In this
section, where we review the results of our earlier work [6],
we neglect transverse variations of all fields and hence the
last term in the left-hand side of Eq. (1). We have constructed

a unitary mapping U of atomic excited states such that one
and only one of the new states, the “excited bright state”

|EB)=UlAp) = EJ|A> )
q—l

= \/éi 3)

where

is coupled to the ground state |C) by the control fields. In
addition, we defined a unitary transformation of the optical
signal modes

9
4,= 2 Wb, (4)
s=1

that maps the original field modes a, to a new set of modes

bq, such that one and only one of the new modes, bQ, couples

to an atomic dark state and experiences EIT [6-8].
The transformation W is given explicitly by

W,y = 'ywqw;, — Oy (5)
with
Sps+ R
Y=Rp+1 and quiq_q‘ (6)
Y
The EIT mode is expressed as
bQ E Rq q° (7)

where

0
Q, .
R,= g—; with R= /> |Q,/g,? (8)
q q=1

depend on the control fields.

The EIT mode I;Q interacts with the multi-A atoms in the
same fashion as does the signal field in a regular three-level
system: it gives rise to a dark-state polariton associated with
zero interaction energy [9] [Fig. 1(b)]. The paraxial propaga-
tion equation takes the form

R T
(_"'C_)bQ:lNgO'B,EB (9)
<

with a real coupling constant g=€}/R and
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gUBEB—E
g=1

ngUBA (10)

Because the response of an EIT medium is linear with re-
spect to the signal field, we can write

A

R ck
Ngoppp= ?XQan (11)

where the susceptibility is [15]

2Ng? 5 _2Ng* S
ck —5(5+i%)+92 ck Q¥

Xo= (12)

the approximation being valid for §<<().
All other optical modes 5q(q¢Q) couple to absorbing

atomic states |EDq>:U|Aq> (¢# Q) and do not experience
EIT. The associated susceptibilities have large imaginary
components, and are thus significantly different from the sus-

ceptibility of the EIT mode l;Q. This difference guarantees
that, if the amplitudes and phases of the control fields are
slowly changed, the composition of the dark-state polariton,
and hence the EIT mode, will adiabatically follow. It has
been proposed [6] and experimentally demonstrated [5] that,
by varying the control fields in time while the signal pulse is
inside the medium, one can adiabatically transfer optical
states between different signal modes a,. In this paper, we
focus on spatial propagation of the EIT mode under control
fields that are constant in time, but varied in space.

III. DERIVATION OF THE GAUGE POTENTIAL

We proceed by expressing Eq. (1) (now taking the spatial
term into account) in terms of the new signal modes l;q.

Employlng the vector notation a={dj,...,dp} and
054={816.4,5 - ’g*Qa-B,AQ} we get
J J ic o2 -
—+c——-_—A, |Wb=iNog,. 13
(at gz 2k i) B (13)

Throughout the paper, the double arrow denotes a QX Q
matrix. Because W depends on space and time, the differen-
tial operators have to be applied to both W and b. As a result,
transformation (4) brings about additional terms into the
equation of motion that can be written in the form of a mini-

mal coupling scheme by introducing the Hermitian gauge
field

A =iWiaw, (14)

where [=t,x,y,z. We multiply both sides of Eq. (13) by w
and exploit the unitarity of W to show that
&,W' W’(ﬁ,W)W' from which it follows that —W‘o?ZW

=A? +1(9,A, The dynamic equation for the b modes can then
be ertten as
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(id,+ A)b = — (icd, + cA. )b + —(- iV, -A)? h- WiNGz,

(15)

with (‘ﬁ 1)gq' = 6,V 1. This equation has the structure of a
2+2 dimensional field theory with minimal coupling.

Under the assumption that the control fields do not de-
pend on ¢ and z we can make a temporal Fourier transforma-
tion of the slowly varying amplitudes, which results in the
paraxial wave equation

1 o \z .
PRt —Al)z)b(é) — Wi =Gp4(5).
C

(16)

i0.5(8) = (-

The gauge potential is given explicitly (see the Appendix) by

o
AL =i RV R)Ww! —in(V W) +iy'wV '
g=1

(17)

The full matrix A | is a pure gauge: it has emerged solely as
a consequence of the unitary transformation (4), which re-
flects our choice to describe the system in terms of the new

modes l;q rather than the original modes &q. However, this

choice is motivated by the fact that the EIT mode I;Q is the
only mode that is not absorbed. Absorption of other modes

I;q (with ¢ # Q) means that the index of refraction for these
modes has a significant imaginary part. This separates the

EIT mode l;Q from other b modes and ensures that it will
adiabatically follow variations of the control fields. There-

fore when analyzing the evolution of ISQ, we can neglect the
off-diagonal terms in the matrix (—iV, —A | )? in Eq. (16) and
write

iﬂzéQ(5) =- (‘X}T%I&BA> (5) _bQ( )

Vo=V =A),0bo(d).

(18)

1 [¢]
— S -V, -A
+2kg( iv,

This equation does not include the whole matrix A 1. Conse-
quently, this potential no longer acts like a pure gauge but
attains physical significance in determining the spatial dy-
namics of the EIT mode.

The first term on the right-hand side of Eq. (18) is respon-
sible for the usual interaction of the signal field with the EIT
medium and can be rewritten using Egs. (10) and (11) as

<. N kxo
c 0 2

In linear approximation in the detuning &, this transforms Eq.
(18) to
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(1 5 @)
“9sz = <5<[— lVJ_ - (IAJ‘)QQ]2 - E + i)bQ (20)

with the EIT group velocity

c 692 (21)
VEIT= g L
7&—(? +1 Ng

and (see the Appendix for a detailed derivation)

(AL)QQ—ZE R, VLR = E |Rq|2VL arg(R )\
gq=1

0-1

D=2 [(A))g,) = (AL)QQ+EIVLR4|2 (22)
q=1

being, respectively, the “quasivector” and “quasiscalar” po-
tentials. Note that vgr depends on the spatial position be-
cause () does.

We see that the paraxial spatial evolution of the EIT signal
mode is governed by the equation that is identical (up to
coefficients) to the Schrddinger equation of a charged par-
ticle in an electromagnetic field. This is the main result of
this work. By arranging the control field in a certain configu-
ration, one can control the spatial propagation of the signal
mode through the EIT medium.

IV. CASE OF TWO CONTROL FIELDS: HOMOGENEOUS
ELECTRIC AND MAGNETIC QUASIFIELDS

Some steering of the EIT mode is possible even in a
single-A system by affecting the term &/vgp in Eq. (20),
which results in nonuniform refraction for this mode. For
example, in a “Stern-Gerlach experiment for slow light”
[11], a magnetic field gradient inside the interaction volume
translates into a gradient of the two-photon detuning, which
plays the role of gauge-independent potential energy in Eq.
(20). This results in a quasiforce deflecting the EIT beam.
Another relevant phenomenon is “waveguiding” [10] of the
probe field. Here, again, the potential é/vgr is affected: the
group velocity is higher in the center of the Gaussian pump
beam than at the periphery, resulting in a quasiforce pointing
toward the beam center.

Both of these phenomena rely upon spatial variation of
the refractive index. The origin of quasigauge potentials (22)
is, however, fundamentally different: they can take place
only in a multi-A system and are a consequence of a unitary
gauge transformation [16]. A somewhat paradoxical feature
of the resulting quasiforces is that they can occur even at the
two-photon resonance, where the refraction index is a con-
stant unity. Below, we present a few important examples of
this case.

Of particular practical importance is the simplest non-
trivial case with O=2. We parametrize the control fields by
writing
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/1 e
Rip=1/5* Sel#=0), (23)

The corresponding Rabi frequencies are then (),
=h(x,y)g;R;, with h(x,y) a certain common prefactor. This
parametrization yields the gauge potentials

(AL)QQ:_Vid)_zSVLgs

_(V.8)?
T 1-482

@ +(V, 0)%(1 -45%). (24)
Similarly to usual electrodynamics we can use a gauge trans-
formation [12], Aj,=App+V .f, to eliminate the term V| ¢
from Eq. (24). The common phase ¢ of the control fields
therefore does not contribute and can be set to zero.

A. Electric quasifields

A simple way to generate a term that corresponds to a
one-dimensional scalar potential V(x) for a Schrodinger par-
ticle is to choose S=0 and

0= f dx'\2kV(x"). (25)
0

This choice of control fields leads to Ayp,=0 and
DO=2kV(x).

For the special case of a constant electric quasifield along
the x axis, V(x)=V,—Fx and subsequently

0= L%[2(\/ Fx)]?? 26
=52V x) ] (26)

The constant V is physically insignificant and only included
to ensure that V(x) is positive in the region of interest. A
resonant (§=0) Gaussian solution to Eq. (20) that has width
w when the signal field enters the medium at z=0 is then
characterized by the following spatial mode function:

Ne—iVOZ (§ - gctr)2 . ( 1 > :|
bQ_ \“’mexp - 1+ lg + ZFZRW§ g_ 3§ctr s

(27)

where A is the normalization constant. Here we have ig-
nored the evolution in the y direction for brevity, introduced
the Rayleigh length zz=kw?/2, as well as the scaled vari-
ables (=z/zz, é=x/w, and &,=Fz*/(2kw). The corre-
sponding field intensity /~ |bQ|2 has the form of a Gaussian
whose center is shifted by an amount wé_,. This is equivalent
to the motion of a charged particle in a constant electric field,
see Fig. 2.

The control field phase profile (26) can be implemented
using, for example, a phase plate. The assumption that the
control fields do not depend on z implies that the Fresnel
number for these fields must be above 1, i.e., that the char-
acteristic transverse distance over which these fields signifi-
cantly change must be larger than ~\V\L, where L is the EIT
cell length. This imposes a limitation on the magnitude of the
electric quasifield: from Eq. (26) we find F<\""2L732 and
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FIG. 2. (Color online) Paraxial propagation of a signal beam
over twice the Rayleigh length in the presence (solid line) and ab-
sence (gray line) of a constant electric quasifield along the x axis.
The dashed line represents the center of the gray beam.

thus x., =< VL/X. Assuming that the signal field also has a
Fresnel number of at least 1, and thus satisfies 2z =L, we
find that in a realistic experiment, the maximum possible
signal beam displacement due to the quasielectric field is on
the order of the signal beam width w. An essential condition
for obtaining observable displacements is focusing the beams
into the medium so a small Fresnel number geometry is
maintained.

B. Magnetic quasifields

To generate a homogeneous magnetic quasifield along the
z axis the quantity B=V X A,,=2V | XV | § should be con-
stant. However, it seems difficult to simultaneously achieve a
vanishing electric quasifield E=—V | ®. A choice that mini-
mizes the electric quasifield around the origin is given by
6=+B/2x and S=\B/2y. The quasipotentials then become
Ayp=-Bye,, which corresponds to the Landau gauge in
standard electrodynamics, and ®=B+2B3y*+0(y%). If ® is
neglected, a Gaussian solution to the paraxial wave equation
is given by

B B
bo=N csc u(z)exp{i[ ZCOt u(z)Ax* + Ax - p, - EAxAy

1 1
- Epc,xpc,y + Eycpc,y:| } s (28)
where  we  have  set Ax=(x-x.,y-y.), u(2)

=Bz/(2k)—i tanh™'(27), and n=Bw?/4. Here
x.=Xo+ (k/B){x sin(Bz/k)+X([1—cos(Bz/k)]} denotes the
classical spiral trajectory of a charged particle in a magnetic
field, with x/=dx_/dz, initial position x,, and initial velocity
x,,. For convenience we also have defined X=(y,,—x;) and
the classical canonical momentum p,=kx'+A,. Its inter-
pretation in the case of a light beam is that it describes a
small initial misalignment between the signal field and the
control beams. We remark that p. . =kx,—By is a constant of
motion. The evolution of the signal mode is displayed in
Fig. 3.

A surprising feature of solution (28) is that the diffractive
divergence of the signal beam is reduced: the width squared
of the Gaussian,
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FIG. 3. (Color online) Paraxial propagation of a signal beam
over twice the Rayleigh length in the presence (solid line) and ab-
sence (gray line) of a constant magnetic quasifield along z. The
dashed line represents the center of the gray beam. The effect of the
fields is somewhat exaggerated.

2
Re(iB cot u)

2
= 8w_772 1+477-(1 —4772)005(%)},
(29)

varies periodically with z instead of monotonically increas-
ing. This effect is known for electron wave packets [13] and
can be understood as a consequence of the circular motion of
particles in a magnetic field: instead of dispersing, two-
dimensional particles in a magnetic field will simply move in
circles of different size (depending on their velocity), but
with the same angular velocity. The particle cloud will there-
fore not spread but “breathe.”

It remains to show that nonadiabatic coupling to other
modes can be suppressed for realistic experimental param-
eters. For systems described by the Schrodinger equation,
nonadiabatic coupling between two states is suppressed if the
energy difference between the states is much larger than
those terms in the Hamiltonian that induce a transition be-
tween both states. In our case, the light modes are described
by the paraxial wave equation and the linear susceptibility
plays the role of the energy difference. Thus nonadiabatic
coupling is suppressed if the gauge field terms coupling b, to
other modes in Eq. (16) are much smaller than the difference
in the respective linear susceptibilities y;. Using Egs. (17)
and (23) one can derive the coupling term,

(A= ——=[-iV S+(1-45)V 6], (30)

YW1 -4§?

that describes the transfer of photons from the EIT mode l;Q
to the other mode. Inserting the specific parameters for the
magnetic quasifield one can easily see that at the center of
the Gaussian solution (28) the coupling terms between the
two modes in

Eq.(16) are given by (A?);,/(2k) ~V | A,/k~ B/(2k), and
A12VLbQ~ \’ch/(Zk)

For the EIT mode by, x, is defined by Eq. (12); for the
other modes it can be approximated by the susceptibility of a
two-level medium,
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Ng? 6-i% Ng*
X1==— - 4=

S

c &+ %

Thus at resonance the difference between the susceptibilities
of the EIT mode and the second mode is given by
Ax,=2ig?N/ . Requiring that this difference is much larger
than the coupling terms yields, for sufficiently small canoni-
cal momentum p,, the condition B/(2k)<<Ay; on the mag-
netic quasifield strength which can be expressed as
n<(kw)?n3m/2, with n=N/(Vk?®) being the number of at-
oms in the volume k3. This condition can easily be fulfilled
in an experiment.

5—%). 31)

V. AHARONOV-BOHM POTENTIAL FOR PHOTONS

One of the most intriguing phenomena of charged quan-
tum particles in electromagnetic fields is the Aharonov-
Bohm (AB) effect [14]. Its two astonishing features are (i) a
phase shift induced by the vector potential in a region in
which electric and magnetic fields are absent, and (ii) its
topological nature: the phase shift does not depend on the
particle trajectory as long as it encloses a magnetic flux.
Because (unlike genuine electromagnetism) the potential
(14) is a differential function of the control fields, it is im-
possible to simulate feature (i) with quasicharged photons.
However, we will show here that a mathematically equiva-
lent topological phase shift does exist for the optical case.

To generate an AB potential for photons we propose to
use two counter-rotating Laguerre-Gaussian control fields,
i.e., fields that possess an orbital angular momentum. If these
control fields are spatially wider than the signal fields, the
corresponding Rabi frequencies can be approximated in cy-
lindrical ~ coordinates (r,¢) by Q,=g;s;re’® and
QO,=g,5,re”*¢. The gauge potentials (24) then become
Apo=-28/re, and ®=(1-48%)/r?, with

_ sy =52 _ 10,7 =19,
2 sy + sl 207 + [

(32)

where the last equality only holds for |g,|=|g,|. The potential
Ay corresponds exactly to an Aharonov-Bohm potential for
charged particles as it is created by a solenoid.

Because of ()~ r, the EIT group velocity can be written
as vgrr=0r? with o= c\/[s,|*+|s,|>/ N. Therefore signal light
closer to the propagation axis travels slower. We remark that
this also implies that the EIT model breaks down close to the
propagation axis because the pump field goes to zero. To find
a solution of the paraxial wave Eq. (20) we introduce the
scaled variable u=z/(2k) and cylindrical corrdinates r, ¢ to
rewrite the dynamical equation as

(1= o
idbg= 2 —1?04,—

1 1
-9, a,——az)b . (33
r " }’2 ¢ 0 ( )

For monochromatic signal fields, the Aharonov-Bohm term
xS generates a rotation of the transverse mode structure. A
quick way to understand this is to ignore all terms but the
Aharonov-Bohm term, which results in the simplified equa-
tion
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FIG. 4. (Color online) Photonic Aharonov-Bohm effect for a
signal field in a TEM-01 mode. (a) Initial field, (b) field after a
propagation length of 2.8 Rayleigh lengths without Aharonov-
Bohm effect (S=0), and (c) with Aharonov-Bohm effect (S=0.4).

) S
<z(9u+21—2>bQ=0. (34)
r

The general solution of this equation is given by
bo(p,u)=by(¢—2uS/r*,0), which indicates that after propa-
gating over a distance z the mode structure is rotated by an
angle
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z S
A¢AB=_%;~ (35)
For S= *1/2 the Aharonov-Bohm potential transfers a unit
amount of angular momentum to the signal light, but gener-
ally the amount can vary continuously between —# and #.
Signal photons in the EIT mode therefore form a two-
dimensional bosonic quantum system in an Aharonov-Bohm
potential. A realistic estimate for A¢,p can be given by con-
sidering the rotation of a mode structure whose radial extent
r is comparable to its minimum width w. After propagation
over two Rayleigh lengths, z=kw?, the rotation angle is then
given by A¢,g=-S which could easily be observed.

When the signal field mode is expanded as
bo=2,,cyB,(r,u)exp(ime), solutions to the paraxial wave
equation are given by Bessel functions,

B, = e—ixzu[amJV(Kr) + B, Y (kr)], (36)

with v=\1+m?+2mS—-2ké&/ 0. This can be exploited to write
down the general solution of Eq. (33) in terms of a Hankel
transformation,

B, (r,u) = f ’ kdkJ (kr)e "B, (k), (37)
0

B, (k)= fx rdrJ (kr)B,,(r,0). (38)
0

In Fig. 4 we have plotted the effect of the Aharonov-Bohm
potential for an incident signal field of the form
bo(x,y,0)xx exp[—(x*>+y?)/(2w?)], which corresponds to a
TEM 01 mode with B.(r,0)xr exp[-r*/(2w?)]. The inte-
grals appearing in Egs. (37) and (38) have been evaluated
numerically. The rotation angle of the mode structure is in
agreement with the simple estimate based on neglecting the
radial dependence.

VI. CONCLUSION

We have shown that EIT in a multi-A system can be used
to generate a variety of geometric effects on propagating
signal pulses that mimic the behavior of a charged particle in
an electromagnetic field. We found specific arrangements of
two spatially inhomogeneous pump fields in a double-A sys-
tem which generate quasigauge potentials which correspond
to constant electric and magnetic fields. Furthermore, topo-
logical effects like the Aharonov-Bohm phase shift can be
induced. The latter is significantly different from the pro-
posal of Ref. [3] in that it is based on spatially inhomoge-
neous pump fields rather than the Doppler effect in moving
media.

This paper investigated EIT in systems with two ground
levels. In such a system, there is only one EIT mode, which
results in an Abelian U(1) gauge theory, making the physics
analogous to electromagnetism. By extending to multiple
ground levels, it may be possible to obtain multiple EIT
modes and model non-Abelian gauge potentials. This will be
explored in a future publication.
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APPENDIX: DERIVATION OF EQS. (17) and (22)

To derive Eq. (17) one uses the definitions of the quanti-
ties Waqrs s and Wy in terms of R, With

(9]
2R =1 (A1)
g=1
one finds
o 4
> ww, = Y Z . (A2)
r=1 |7|

Inserting this in the matrix element of the gauge potential,

Q
(AL)qq’ = 2 thqVLqu”

r=1

(A3)

and sorting all terms into those multiplying wqw:,, w,V Lw:;,,
or (V qu)wz, yields

(¢
(A, = zwqwq,(¥Viy+ V2>, w,Vlwr> —iy(Vow)w,,
r=1
+ i'y*quLwZ,. (A4)

Using that V, y=V | R, one then can show that
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(9] , o
1 *
DwiV,w,= W(_ %VLRQ + RfViR,), (AS)

r=1 r=1

from which Eq. (17) follows.

The explicit form of the quasivector potential in Eq. (22)
follows from Eq. (17) if one notices that w,=1. Furthermore,
from R,=|R,|e' & Rs we find

RV (R =R,V |R,|+iR,|*V  argR,. (A6)
When we sum over all ¢’s, the first term in the above equa-
tion vanishes due to Eq. (Al):

] (9]

1
DRIV IR, = EVL(E R, =0, (A7)
g=1 g=1

yielding the expression for (A | ).

In order to find the quasiscalar potential, one can write
with the help of Eq. (17)
Now employing the results (A2) and (A5), as well as
V Ry=V, yand

0-1 (9] v 7* v y
W2V ow [ =2 VLR + i(AL)QQ< - ?>’
q=1 q=1

(A9)

yields expression (22) for ®.
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