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Nonlinear effects in pulse propagation through a medium consisting of four-level double-�-type systems are
studied theoretically. We apply three continuous-wave driving fields and a pulsed probe field such that they
form a closed interaction loop. Due to the closed loop and the finite frequency width of the probe pulses, the
multiphoton resonance condition cannot be fulfilled, such that a time-dependent analysis is required. By
identifying the different underlying physical processes we determine the parts of the solution relevant to
calculate the linear and nonlinear response of the system. We find that the system can exhibit a strong
intensity-dependent refractive index with small absorption over a range of several natural linewidths. For a
realistic example we include Doppler and pressure broadening and calculate the nonlinear self-phase modula-
tion in a gas cell with sodium vapor and argon buffer gas. We find that a self-phase modulation of � is achieved
after the propagation of a few centimeters through the medium while the absorption and pulse shape distortion
in the corresponding spectral range is small.
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I. INTRODUCTION

A main interest in laser-driven atomic media is the study
of their coherence properties. Coherence effects like electro-
magnetically induced transparency �EIT� �1�, coherent popu-
lation trapping �2�, lasing without inversion �3�, and others
�4,5� are examples where the optical properties of an atomic
medium are influenced by coherent fields. The interference
of different excitation channels is the main underlying prin-
ciple here. A particular class of systems in which quantum
mechanical interference plays a major role are the so-called
closed-loop systems �6–17�. In these systems the laser-driven
transitions form a closed interaction loop such that photon
emission and absorption can take place in a cycle. This leads
to interference of indistinguishable transition pathways be-
tween different states. One consequence of this is that it can
render the system dependent on the relative phase of the
driving fields. At the same time, however, the investigation
of closed-loop systems is made difficult by the fact that the
interfering pathways typically prevent the system from
reaching a time-independent steady state. Such a stationary
state in general is only reached when the so-called multipho-
ton resonance condition on the detunings of the different
driving field is fulfilled, which was therefore assumed in
most previous studies. For general laser field detunings, a
time-dependent analysis is mandatory �8,11�.

Laser-driven atomic media are also known to exhibit sig-
nificant nonlinear optical properties �10–30�. A particular ex-
ample is the occurrence of an intensity-dependent refractive
index, with applications such as beam focusing, pulse com-
pression, self-phase or cross-phase modulation, or optical
switching �23–30�. Here, the connection to coherence prop-
erties is the following. While an atomic resonance can
greatly enhance nonlinear effects in atomic media, the ac-
companying linear absorption of the same resonance typi-

cally renders the medium opaque to the probe field. This can
be overcome by tailoring the response via coherence and
interference effects. An advantageous situation arises, e.g., if
the linear absorption vanishes due to destructive interference
while the nonlinear effect is enhanced by constructive inter-
ference.

Motivated by this, we investigate nonlinear effects in
pulse propagation through a closed-loop atomic medium. In
particular, we study a four-level atomic system where the
four dipole-allowed transitions form a double-�-type scheme
�see Fig. 1�. Three of the fields are assumed to be
continuous-wave coupling laser fields, while the fourth field
is a pulsed probe field. We use a time-dependent analysis, as
the multiphoton resonance condition cannot be applied due
to the finite-frequency spectrum of the probe pulses. The
medium is modeled as a dilute gas vapor including Doppler
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FIG. 1. �Color online� The four-level atomic system with the
four dipole-allowed transitions forming a closed-loop double-
�-type scheme. Three transitions are driven by continuous-wave
control fields indicated by the solid blue double arrows. The fourth
transition couples to the pulsed probe field indicated by the dashed
red double arrow. The coupling strengths are given by the Rabi
frequencies � jk. The spontaneous decays with rates � jk are denoted
by the wiggly green lines �j� �3,4�, k� �1,2��.

PHYSICAL REVIEW A 77, 043805 �2008�

1050-2947/2008/77�4�/043805�9� ©2008 The American Physical Society043805-1

http://dx.doi.org/10.1103/PhysRevA.77.043805


and pressure broadening and an additional buffer gas using
realistic parameters. Our main observable is the nonlinear
index of refraction of the medium. We find that our system
exhibits a high nonlinear index of refraction with small linear
and nonlinear absorption over a spectral range of several
natural linewidths. In this spectral region of interest, group
velocity dispersion is low, such that pulse shape distortions
are minimized. For sodium atoms with argon buffer gas, we
obtain a nonlinear self-phase modulation of � after 6.4 cm of
passage through the medium.

The paper is organized as follows. In Sec. II A we present
our model. In Sec. II B we solve for the time-dependent
long-time limit arising from the closed interaction loop in the
form of a series. The interpretation of the series coefficients
with respect to their physical meaning �Sec. II C� will enable
us to identify the quantities necessary to calculate the linear
and nonlinear susceptibility for the probe field of our system
�Sec. II D�. Doppler and pressure broadening are discussed
in Secs. II E and II F. Our results are presented in Sec. III,
both with and without broadening. Finally, Sec. IV discusses
and summarizes our results.

II. THEORETICAL ANALYSIS

A. Model

In this section we present the Hamiltonian for the four-
level system and the interaction with the coupling fields in a
suitable interaction picture. We write the field coupling to
transition �j�↔ �k� �j� �3,4�, k� �1,2�� as

E jk =
Ejk

2
�ê jke

−i�jkt + c . c.� , �1�

with amplitude Ejk, unit polarization vector ê jk, and fre-
quency � jk. For better readability we suppress the space de-
pendence of the fields. The Hamiltonian in dipole and
rotating-wave approximation reads �4,5�

H = 	
j=1

4

�� jAjj − 	
j=3

4

	
k=1

2
�� jk

2
�e−i��jkt−�jk�Ajk + H.c.� . �2�

The energy of level �j� is denoted by �� j, and we have
introduced the Rabi frequencies � jk=Ejk�ê jkd jk� /� with d jk
being the dipole matrix element of transition �j�↔ �k�
�j� �3,4�, k� �1,2��. The complex phase of the Rabi fre-
quencies was included in the exponential function where
� jk=arg�ê jkd jk�. The atomic transition or projection operator
is defined as Ajk= �j�
k�.

The canonical approach with a Hamiltonian of the sort we
have just introduced would be to transform it into an inter-
action picture where the time dependence fully vanishes. Un-
fortunately, this is not possible in our case. Due to the closed
interaction loop, in general a residual time dependence in the
Hamiltonian remains. Physically, this means that we cannot
expect the system to reach a true stationary state in the long-
time limit. The best we can do is to use a unitary transfor-
mation that gathers all the time dependence in a single ex-
ponential factor in front of the probe field Rabi frequency. In
this interaction picture we obtain

HI = ���32 − �31�A22 − ��31A33 + ���32 − �31 − �42�A44

−
�

2
��31A31 + �32A32 + �42A42

+ �41A41e
−i��t−�� + H.c.� , �3�

where the detunings are defined as � jk=� jk− �� j −�k�. We
have also defined the so-called multiphoton detuning and an
equivalent combination of the dipole phases:

� = �41 + �32 − �31 − �42, �4a�

� = �41 + �32 − �31 − �42. �4b�

The multiphoton detuning is a typical quantity characterizing
a system with a closed interaction loop. Its significance will
become more apparent in Sec. II C.

We now set up the master equation for the atomic density
matrix �. We include the unitary evolution due to the Hamil-
tonian in the interaction picture and relaxation dynamics due
to spontaneous decay in a Born-Markov approximation. The
collision-induced dynamics will be considered in Sec. II F.
The unitary evolution is given by the von Neumann equa-
tion, and the spontaneous decay can be written in Lindblad
form �4�. The master equation in the interaction picture then
reads

�t�
I =

1

i�
�HI,�

I� − 	
j=3

4

	
k=1

2
� jk

2
���IAjk,Akj� + H.c.� , �5�

where �I is the density matrix in the interaction picture and
� jk is the radiative decay rate of transition �j�↔ �k�. For the
further analysis we rewrite the master equation in a matrix-
vector form. Because the trace of the density matrix is con-
served, we use the corresponding condition

Tr �I = 	
j=1

4

� j j
I = 1 �6�

to eliminate the diagonal element �44. Here, � jk
I = 
j��I�k�.

Introducing the vector R= ��11
I ,�12

I ,�13
I , . . . ,�43

I �T containing
the remaining 15 elements of the density matrix we find

�tR + 	 = MR , �7�

with an inhomogeneous part 	 that stems from the elimina-
tion of �44 and a coefficient matrix M. Both 	 and M can be
directly derived from the master equation �5� and contain the
explicit time dependence arising from the time-dependent
Hamiltonian �3�. The explicit form of M and 	 is given in
the Appendix.

B. Time-dependent solution

To treat the explicit time dependence of the equation of
motion we first separate 	 and M into the time-independent
part and the explicitly time-dependent part. For this, we de-
fine
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	 = 	0 + 	−1�41e
i��t−�� + 	1�41e

−i��t−��, �8a�

M = M0 + M−1�41e
i��t−�� + M1�41e

−i��t−��, �8b�

with time-independent 	 j and Mj �j� �0, 
1��. We see that
under the condition �=0 the explicit time dependence van-
ishes. This is the so-called multiphoton resonance condition.
For fixed coupling field frequencies this condition can only
be fulfilled for a single probe field detuning �41. But we
want to investigate probe fields consisting of pulses with
finite temporal length, which due to the Fourier relations
implies that a whole spectrum of probe field frequencies in-
teracts with the medium at the same time. Thus, we cannot
assume the multiphoton resonance condition to be fulfilled
�8�. Instead, we have to solve Eq. �7� including the explicit
time dependence. To do so, we expand R as a power series in
�41:

R = 	
n=0

�

Rn�41
n . �9�

If we assume that the probe field strength is small compared
to the control fields, this series will converge. Inserting Eqs.
�8a�, �8b�, and �9� into Eq. �7�, we can derive equations of
motion for the individual coefficients Rn. To order O��41

n �
we find

�tRn = M0Rn + �n,1�	−1ei��t−�� + 	1e−i��t−���

+ �M−1ei��t−�� + M1e−i��t−���Rn−1. �10�

This is an equation for Rn where the coefficient matrix M0 is
time independent and only the inhomogeneous part is time
dependent. This time dependence is twofold, first again ex-
plicitly because of the exponential functions and second be-
cause of the dependence on Rn−1. Thus, we make an ansatz
for the solution and write Rn in a Fourier series:

Rn = 	
m=−�

�

Rn
�m�e−im��t−��. �11�

Projecting on the Fourier basis functions we derive a hierar-
chy of time-independent equations for the coefficients Rn

�m�.
Up to order O��41

3 � we find

R0
�0� = M0

−1	0, �12a�

R1
�
1� = �M0 
 i�1�−1�	
1 − M
1R0

�0�� , �12b�

R2
�0� = − M0

−1�M−1R1
�1� + M1R1

�−1�� , �12c�

R2
�
2� = − �M0 
 2i�1�−1M
1R1

�
1�, �12d�

R3
�
1� = − �M0 
 i�1�−1�M
1R2

�0� + M1R2
�
2�� , �12e�

R3
�
3� = − �M0 
 3i�1�−1M
1R2

�
2�, �12f�

where 1 is the unit matrix and all other Rn
�m� up to this order

vanish. In general, we find that

R = 	
n=0

�

	
m=−n,

−n+2,. . .

n

Rn
�m��41

n e−im��t−��. �13�

Since the Fourier coefficients Rn
�m� in Eq. �12a�–�12f� only

depend on the Fourier coefficients Rn−1
�m� of the next lower

order, the full solution can be calculated recursively.

C. Physical interpretation

To physically interpret the meaning of the different coef-
ficients we study the influence of the different parts of the
solution on the probe field. First, we write down the expan-
sion series for the relevant probe field coherence in the
Schrödinger picture �41 using the explicit transformation re-
lation connecting the Schrödinger picture with our interac-
tion picture. We find

�41 = �41
I e−i��41t−�41�ei��t−��. �14�

With �41
I given as component of the solution for R we find

�41 = 	
n=0

�

	
m=−n,

−n+2,. . .

n

�Rn
�m��13�41

n e−i��41+�m−1���tei��41+�m−1���,

�15�

where �Rn
�m��13 refers to the 13th component of the vector

Rn
�m�. Thus, the coefficient �Rn

�m��13 gives a contribution at the
probe field frequency �41 plus a frequency shift of �m−1��.
The corresponding physical process can be identified as fol-
lows. A combination of dipole phases �=�41−�42+�32
−�31 indicates a full evolution through a loop which extends
from state �1� to �4� and via �2� and �3� back to state �1�. The
transition direction is given by the sign of the corresponding
dipole phase. The evolution around the interaction loop is
also the physical reason for the frequency shift � of such a
process. Altogether, �Rn

�m��13 represents a process with �m
−1�-loop cycles where the sign of m−1 defines the direction,
clockwise for positive or counterclockwise for negative sign.
The remainder of the n probe transitions can be interpreted
as direct transitions.

D. Linear and nonlinear susceptibility

With the above interpretation we can easily identify the
parts of the solution leading to the linear and nonlinear sus-
ceptibility in the probe field. Because both contributions
should oscillate at the probe field frequency, we see that m
=1 must be fulfilled in Eq. �15�. The order of �41 enables
one to identify

��1���41� � �R1
�1��13 at O��41

1 � , �16a�

��3���41� � �R3
�1��13 at O��41

3 � . �16b�

There is no second-order contribution to the susceptibility as
expected for an isotropic medium �18�. By comparing the
microscopically calculated value for the polarization �4,5�

P41 = N�d14�41 + c.c.� �17�

with the definition of the susceptibility �18�,
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P41 = �0
E41

2
���1� +

3

4
E41

2 ��3��ê41e
−i�41t + c.c., �18�

we find

��1���41� =
3

8�2�41
3 N�41�R1

�1��13, �19�

3

4
E41

2 ��3���41� =
3

8�2�41
3 N�41�41

2 �R3
�1��13, �20�

with �0 being the permittivity of free space, �41 the wave-
length of the probe field transition, and N the density of
atoms in the gas.

We remark that ��3���41�=��3���=�41−�41+�41� is the
lowest-order nonlinear contribution at the probe field fre-
quency. It leads to an intensity-dependent refractive index
that also depends on �41 and can be different for each re-
spective frequency of the probe pulse spectrum. This is not
the case for other contributions to ��3�. For example, �R0

�0��13
oscillates at the frequency �=�41−� and leads to a contri-
bution ��3���=�31−�32+�42� �four-wave mixing�. Here, the
resulting frequency is independent of �41. Nevertheless, in
principle those processes can influence the result for the lin-
ear and third-order susceptibility at certain probe field fre-
quencies. For example, light can be scattered into the probe
field mode via different processes. Whether this or similar
contributions change the probe pulse depends on the pulse’s
frequency width compared to the multiphoton detuning �
and more general also on the propagation direction of the
probe field relative to the control fields. A definite answer to
this question requires an analysis of the full pulse propaga-
tion dynamics through the medium which is beyond the
scope of this work.

E. Doppler broadening

A typical experimental setup to investigate the coherence
properties of a laser-driven atomic gas would be a gas cell
with a dilute alkali-metal-atom vapor. For a dilute atomic gas
theoretical predictions for the linear and nonlinear suscepti-
bility can be made on the basis of a single atom analysis.
This greatly facilitates the theoretical analysis. However, in a
dilute gas at room temperature or above the atoms move at
velocities where the frequency shift due to Doppler effect
cannot be neglected compared to the natural linewidth given
by the radiative decay rate �. To calculate the Doppler effect
for a single field, we assume a Maxwell-Boltzmann velocity
distribution in laser propagation direction with a most prob-
able velocity given by �32�

vm =2kBT

m
, �21�

with kB the Boltzmann constant, T the temperature, and m
the mass of the atom. The nonrelativistic Doppler frequency
shift is given by

�eff = ��1 −
v
c
� , �22�

where �eff is the shifted frequency seen by the moving atom,
� is the laboratory frame laser frequency, v is the velocity of
the atom in laser propagation direction, and c is the speed of
light. The Doppler shift effectively leads to an additional
detuning �Dop with a Gaussian distribution �32�

f��Dop�d�Dop =
1

�kvm

e−��Dop/kvm�2
d�Dop, �23�

where k is the wave number. The corresponding linewidth
�full width at half maximum �FWHM�� is then given by

�� = kln�2�
8kBT

m
. �24�

To actually calculate the linear and nonlinear susceptibility
for a Doppler-broadened medium, for each propagation di-
rection, we have to add �Dop to the detuning of the fields
propagating in this direction and then average the resulting
susceptibility over the velocity distribution �23�.

F. Buffer gas and pressure broadening

Introducing a buffer gas to the gas cell leads to more
frequent collisions between the atoms. This has two main
consequences. First of all it causes pressure broadening. For
moderate densities, a collision between two atoms disturbs
the level energies for a short time which results in the loss of
phase coherence. In a simple approach this can be modeled
by an additional decay rate �c for the coherences. This col-
lisional decay rate consists of a contribution due to the stud-
ied gas itself and a contribution due to the buffer gas. Both
depend linearly on the respective densities Ns and Nb �18�,

�c = CsNs + CbNb, �25�

with gas specific constants Cs for the studied gas and Cb for
the buffer gas.

A second major effect of a buffer gas is closely connected
to Doppler broadening. Due to the higher density, the mean
free path of a single atom moving in the gas is reduced. If it
is reduced below the transition wavelength, an averaging
over different velocities during a single emission or absorp-
tion process can effectively renarrow a Doppler-broadened
line. This phenomenon is known as Dicke narrowing �31�.

III. RESULTS

In principle, Eqs. �12a�–�12f� can be used to calculate
analytical results for the desired ��1� and ��3�. But in our
situation of interest where all four electromagnetic fields,
possibly all with different detuning, interact with the atom,
these are usually too lengthy to give any physical insight.
Therefore, we proceed with a numerical study of the linear
and nonlinear susceptibility.

A. Without Doppler broadening

Here, our primary goal is to find a set of parameters where
the intensity-dependent refractive index is large enough to
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cause an appreciable amount of nonlinear self-phase modu-
lation while the attenuation of a light pulse due to absorption
is small. To achieve a high nonlinear index of refraction with
low linear and nonlinear loss all in the same spectral region
is challenging because resonances that enhance the nonlinear

response typically come with strong absorption. Still, we find
such a suitable parameter set by manipulating the linear and
nonlinear susceptibility of the probe field as described next.

We first split the unperturbed resonance of the probe field
transition by a strong coupling field �42 and again about half
as much by the second coupling field �31. This gives rise to
four resonance structures in the linear response; see Fig. 2.

In this figure, the linear absorption of the resonance at
�41�−25� can be lowered by a small detuning �31, which
modifies the dressed-state populations. Finally, optimizing
the result with the third coupling �32, we can tune one-half
of the resonance to a small linear and nonlinear absorption
while still maintaining a substantial nonlinear real part. In
Fig. 3 it is shown how gradually introducing a detuning �31
influences the linear absorption, the nonlinear gain, and the
real part of the nonlinear susceptibility. It decreases the linear
absorption and the nonlinear gain faster than the real part and
thereby improves their ratio. Interestingly, the imaginary
parts of the linear and the nonlinear parts of the susceptibility
can have opposite signs in this spectral region. The linear
response induces absorption, while the nonlinear response
leads to gain. Absorption could in this spectral region there-
fore be reduced even further by a partial canceling of linear
absorption and nonlinear gain. However, these results are
preliminary in the sense that no effects due to Doppler and
pressure broadening have been included yet.
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FIG. 2. �Color online� Real part �solid blue line� and imaginary
part �dashed red line� of the linear susceptibility of the probe field.
Due to strong control fields �42=100� and �31=50�, the probe
field resonance is split into four different resonances. Further, �32

=�31=�32=�42=0 and all spontaneous decay rates � jk have been
set to �. The susceptibility is plotted in units of 3 /8�2�41
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FIG. 3. �Color online� Real part �dash-dotted blue line� and imaginary part �solid red line� of the nonlinear susceptibility together with
the imaginary part of the linear susceptibility �dashed red line�. All figures show the resonance around �41=−25�. The susceptibility is
plotted in units of 3 /8�2�41

3 N, and for comparability ��3� has been scaled with 3 /4E41
2 . The parameters are �32=�42=0, �31=50�, �32

=34�, and �42=100�. The probe field strength is assumed to be one-tenth of the weakest control field in all cases. The detuning �31 is
chosen as �a� �31=0, �b� �31=0.7�, �c� �31=1.5�, and �d� �31=1.7�. Note the different axis scales in the four subpanels.
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B. Including Doppler broadening

Using our considerations from Secs. II E and II F we now
want to calculate the linear and nonlinear susceptibility in a
Doppler-broadened atomic gas. As a realistic example, we
want to assume a sodium vapor with a density of Ns=1.0
�1020 m−3. To reach a vapor pressure that corresponds to
this density the gas cell must be heated to a temperature of
T=547.6 K �33�. At this temperature the Doppler linewidth
is ��=2��1.78 GHz which is very broad compared to the
natural linewidth of the sodium D1 transition of �=2�
�9.76 MHz. In a pure sodium vapor the spectral features
we found in Sec. III A would be averaged out by the Doppler
effect. But if we introduce a buffer gas, strong pressure
broadening can preserve them. For sodium and argon, the
gas parameters in Eq. �25� are given by Cs=1.50
�10−13 m3 s−1 and Cb=2.53�10−15 m3 s−1 �18�. We want
to assume a collision-induced coherence loss rate of �c
=1.0 GHz which corresponds to a buffer gas density of Nb
=3.95�1023 m−3. At such a density the mean free path is of
order �=10−5 m. This is much larger than the transition
wavelength �=589.2�10−9 m such that the limit of Dicke
narrowing is not reached.

We now try to recover results similar to the unbroadened
case shown in Fig. 3. Because of the strong broadening, we

have to apply correspondingly stronger control fields. For
�42=60.0 GHz and �31=30.0 GHz, we find the resonance
studied in the unbroadened case at around �41=−15.0 GHz.
The third control field is set to �32=25.0 GHz and the de-
tuning to �31=1.6 GHz. For the Doppler averaging we have
assumed all fields to be copropagating. The different subpan-
els in Fig. 4 correspond to different Doppler linewidths and
thus, via Eq. �24�, to different temperatures. In Fig. 4�a�, the
Doppler linewidth is chosen below the natural linewidth of
the probe transition, and as expected we find results that are
similar in shape to the unbroadened case �see Fig. 3�d��. The
differences are mainly due to pressure broadening. In Figs.
4�b�–4�d� we gradually increase the Doppler linewidth up to
the full Doppler width expected for the gas parameters dis-
cussed above. We find that while the shapes of the different
curves change, our main result of high nonlinear index of
refraction with small linear and nonlinear absorption persists
with Doppler broadening. Also in the broadened case, a par-
tial canceling of linear absorption and nonlinear gain could
be possible. Note that since the averaging process affects not
only the probe field detuning but all four detunings at the
same time, the results cannot be explained in terms of a
simple smoothing of the curves without the Doppler effect.

We also considered different laser geometries, such as
control fields propagating perpendicular to the probe field, or
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FIG. 4. �Color online� Real part �dash-dotted blue line� and imaginary part �solid red line� of the nonlinear susceptibility together with
the real part �blue dotted line� and the imaginary part of the linear susceptibility �dashed red line� at the resonance around �41

=−15.0 GHz. The control fields have Rabi frequencies �42=60 GHz, �31=30 GHz, and �32=25 GHz, and the detunings are �31

=1.6 GHz and �32=�42=0. The medium parameters described in the main text correspond to sodium as the active medium with argon as
a buffer gas. The four different plots show Doppler-averaged results with a Doppler linewidth of �a� below the natural linewidth, �b� 50%,
�c� 90%, and �d� 100% of the full Doppler linewidth of ��=2��1.78 GHz. In plot �d� we also included the second derivative of the real
part of the linear susceptibility �long-dashed black line�.
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one or two control fields propagating in opposite directions,
and found the copropagating case to be the most advanta-
geous one. This is similar to the case of Doppler broadening
in standard electromagnetically induced transparency setups
where copropagating lasers typically are preferable.

We finally use our results to calculate the required optical
length for a nonlinear self-phase modulation of � at a probe
field frequency with vanishing group velocity dispersion.
The group velocity dispersion is given by �4�

�2 =
k

4

�2 Re���1��
��2 , �26�

where the wave vector k gives the characteristic length scale.
The frequency of vanishing group velocity dispersion is thus
given by the condition

�2 Re���1��
��2 = 0, �27�

which for the considered gas parameters yields

�41
min = 17.63 GHz. �28�

This probe field frequency is indicated by the vertical solid
blue line in Fig. 4�d�.

The nonlinear self-phase modulation is given by �18�

��NL = n2IkL , �29�

with n2 the intensity-dependent refractive index, I the probe
field intensity, k the wave vector, and L the propagation
length. We assume a probe field strength one-tenth of the
smallest control field and find at frequency �41

min:

L� = 6.4 cm. �30�

From Fig. 4�d� we see that at �41
min the magnitude of the

imaginary parts of the linear and nonlinear susceptibility is
more than one order of magnitude smaller than the real part
of the nonlinear susceptibility. Therefore, the equivalent
characteristic length scale is more than one order of magni-
tude larger. Furthermore, both linear and nonlinear parts give
rise to small gain rather than absorption.

To assess the frequency range in which the calculated
nonlinear self-phase modulation length can be achieved
without significant pulse shape distortion we in addition
studied the group velocity dispersion. It is related via Eq.
�26� to the second derivative of the real part of the linear
susceptibility which is shown as the long-dashed black curve
in Fig. 4�d�. Figure 5 shows a magnification of Fig. 4�d�
around �41

min. We see that in a spectral range of several natu-
ral linewidth the second derivative of the real part of the
linear susceptibility is about one order of magnitude smaller
than the real part of the nonlinear susceptibility that is re-
sponsible for the nonlinear self-phase modulation. This sug-
gests that a pulse with a bandwidth of up to several natural
linewidth would suffer only little from group velocity disper-
sion on the calculated nonlinear self-phase modulation
length.

For a more quantitative measure, we calculate the ratio of
time spread to temporal width of a pulse with a bandwidth of
x times the natural linewidth �. The corresponding temporal
width of the pulse is

� =
2�

x�
. �31�

The time spread of such a pulse is related to the parameter �2
given by Eq. �26� in the following way �4�:

�� = L�2x� . �32�

From Fig. 5, we estimate an average value of the second
derivative of the real part of the linear susceptibility around
�41

min of 0.2 �scaled quantity�. For the ratio of �� and � after
a propagation length of L� we find

��

�
=

1

2�
L��2�2x2 �33�

=0.042x2. �34�

Thus, the pulse doubles its temporal width for x=4.9. For
longer pulses, x becomes smaller and this ratio improves
with x2.

Our results show that in a spectral range of several natural
linewidths a nonlinear self-phase modulation of � can be
achieved on a realistic laboratory length scale. We showed
that in the same spectral range group velocity dispersion is
low such that pulse shape distortions can be expected to be
small. Interestingly, the real part of the linear susceptibility
has a negative slope in the considered frequency region, in
contrast to a positive slope typically found in an electromag-
netically induced transparency window.

IV. CONCLUSION

We have studied nonlinear effects in pulse propagation
through a laser-driven medium where the applied fields form
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FIG. 5. �Color online� A magnification of Fig. 4�d� around the
probe field frequency �41

min with vanishing group velocity dispersion
�see Eq. �28�� is shown. The frequency axis is shown in units of the
natural decay rate �, which for the considered sodium D1 transition
is 2��9.76 MHz. The parameters are the same as for Fig. 4�d�.
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a closed interaction loop. Such loop systems in general only
allow for a time-independent treatment at a single probe field
frequency, where the so-called multiphoton resonance condi-
tion is fulfilled. As a probe field pulse has a finite frequency
width, this condition, which allows for a straightforward the-
oretical treatment, could not be applied. Instead, we treated
the time-dependent problem by turning it into a hierarchy of
equations that describe the various physical processes occur-
ring in the medium. We have included Doppler and pressure
broadening as well as a buffer gas in our analysis and have
used realistic parameters for a medium consisting of sodium
vapor. We could show that the studied system can exhibit a
high nonlinear refractive index with small absorption or gain
over a spectral range of several natural linewidths. For the
chosen parameters, group velocity dispersion is low, such
that pulse shape distortions are minimized, and the slope of
the linear dispersion is negative. A nonlinear self-phase
modulation of � is obtained after 6.4 cm propagation
through the medium.

APPENDIX: COEFFICIENT MATRIX

The explicit form of the coefficient matrix M and the
inhomogeneous part 	 can be derived from Eq. �7�. Here, we
list all nonzero elements Mj,k and 	 j, which are given by

M1,1 = M1,6 = M6,6 =
1

2
M11,11 = 	1 = 	6 = − �r,

M1,3
� = M1,9 = M2,10 = M3,4 = M4,12 = M5,7

�

= M9,11 = M13,15
� =

i

2
�31,

M2,3
� = M5,9 = M6,7

� = M6,10 = M7,11 = M8,12

= M10,11
� = M14,15

� =
i

2
�32,

M1,4
� = M1,13 = M2,14 = M3,15 =

1

2
M4,1

� = M4,6
� = M4,11

�

= M5,8
� = M9,12

� =
1

2
M13,1 = M13,6 = M13,11

= 	4
� = 	13 =

i

2
�41e

−i��t−��,

M2,4
� = M5,13 = M6,8

� = M6,14 = M7,15 = M8,1
� =

1

2
M8,6

� = M8,11
�

= M10,12
� = M14,1 =

1

2
M14,6 = M14,11 = 	8

� = 	14 =
i

2
�42,

M3,3 = M9,9
� = − �r − i�31,

M4,4 = M13,13
� = − �r − i��31 + �42 − �32� ,

M7,7 = M10,10
� = − �r − i�32,

M7,8 = M10,10 = − �r − i�32,

M12,12 = M15,15
� = − 2�r − i��42 − �32� ,

M2,2 = M5,5
� = − i��31 − �32� ,

M6,4 = M11,4 = M6,13 = M11,13 = M1,8

= M11,8 = M1,14 = M11,14 = 0,

where Mj,k=Mk,j holds if not noted otherwise and by Mj,k
� we

indicate the complex conjugate of Mj,k.
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