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We introduce an analytical expression for the dynamics of light propagation in a two-dimensional waveguide
lattice including general long range coupling. Additionally, the diffraction properties in such general systems
are investigated in detail. Using these very general results, particular geometries are discussed, including the
possibility of diffraction-free propagation in the center of the Brillouin zone. Furthermore, the transition from
the discrete to the continuum limit is analyzed.
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I. INTRODUCTION

Discreteness is a fundamental phenomenon which can be
found in many aspects of modern physics such as quantum
mechanics and solid state physics. However, most of the the-
oretical predictions concerning discrete systems are only
hard to verify experimentally. Hence systems are required
which exhibit similar structures in their physical behavior
and mathematical formalism. Prominent examples for this
type of system are arrays of evanescently coupled
waveguides, which feature an inherent breaking of the isot-
ropy of space. In waveguide arrays the transverse directions
are physically different from the longitudinal direction of
propagation, which is caused by the discreteness of the trans-
verse coordinates. This is in strong contrast to homogeneous
media. Hence discrete media exhibit a variety of new un-
usual effects such as unique imaging �1� and propagation �2�
properties. Consequently, arrays of evanescently coupled
waveguides present a wide field of research, which has been
under investigation for decades. A great deal of theoretical
and experimental work on discrete optical systems was ini-
tiated when discrete spatial solitary waves were predicted in
waveguide arrays �3�. The experimental verification was per-
formed in etched waveguides on a AlxGa1−xAs substrate �4�,
in optically induced waveguide arrays in photorefractive
crystals �5�, as well as in fs laser written waveguides �6�.
Recently versatile technologies of fabricating even two-
dimensional �2D� waveguide arrays were developed in pho-
torefractive media �7,8� as well as in fs laser written wave-
guide arrays �9�. The key to understand nonlinear discrete
propagation in 2D lattices is the analysis of the interaction of
evanescent coupling between equivalent waveguides and
nonlinear localization. In particular, this allows the investi-
gation of 2D discrete spatial solitons �8,10,11� and surface
lattice solitons �12,13�, which are of high scientific interest
since 2D spatial Kerr solitons are unstable in conventional
isotropic media.

However, during the last years also a variety of interesting
linear effects in waveguide arrays have been discovered and
studied. Diffraction-free propagation �14,15�, polychromatic
diffraction in hexagonal �16,17� and one-dimensional �1D�
curved lattices �18� was analyzed in detail as well as Zener
tunneling �19�, harmonic oscillation �20�, the discrete Talbot
effect �21� and quasi-incoherent propagation �22� in wave-
guide arrays. Furthermore, optical Bloch oscillations were
theoretically predicted �23,24� and experimentally verified in
1D �25,26� and 2D �27� lattices.

The propagation of light in a lossless weakly coupled ar-
ray of identical evenly spaced 2D homogeneous waveguides
is usually modeled by a coupled mode approach. In this ap-
proximation only the amplitudes �m,n�z� in the mth and nth
waveguide in the horizontal and vertical directions, respec-
tively, evolve during propagation while the field shapes re-
main constant. The transverse dynamics of the propagating
field is induced by evanescent coupling of the waveguides,
where energy exchange is caused by the overlap of the eva-
nescent tails of the guided modes. In a conventional approxi-
mation, it is assumed that only neighboring waveguides in-
teract and that higher-order interaction �i.e., interaction of
nonadjacent guides� can be neglected. Then, the propagation
of light in a 2D waveguide array can be adequately modeled
by a set of coupled differential equations �28�.

i
d

dz
�m,n + a��m+1,n + �m−1,n� + b��m,n+1 + �m,n−1�

+ c��m+1,n+1 + �m−1,n−1� + d��m+1,n−1 + �m−1,n+1� = 0,

�1�

with the fast oscillating phase removed, z as the propagation
length, and where a, b, c, and d are the coupling constants in
horizontal, vertical, and diagonal directions, respectively, de-
scribing the strength of the evanescent coupling. This expres-
sion includes the particular cases of light propagation in a
planar �b=c=d=0�, square �c=d=0�, and hexagonal �d=0�
lattice. Recently, an analytical solution of this system was
found for infinite and finite lattices �29�. However, assuming
only next-neighbor waveguide interaction is a rather inaccu-
rate approximation in the particular cases of long arrays or
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small waveguide separations. While the first case is intuitive,
the latter can be demonstrated by a brief estimation. Since
the coupling depends exponentially on the waveguide spac-
ing � �30�, the first-order coupling reads �1=e−�, while the
second-order coupling is �2=e−2�. Hence the corresponding
ratio of both coupling coefficients is �2 /�1=e−�. When the
spacing is reduced to 50%, the according values read �1
=e−�/2 and �2=e−�. Accordingly, the ratio increases to
�2 /�1=e−�/2. Therefore the influence of higher-order cou-
pling strongly depends on the separation of the individual
waveguides. Following this argument, in the modeling of the
light evolution the coupling of nonadjacent waveguides has
to be taken into account. However, until now no analytical
solution has been presented for either a 1D or a 2D discrete
system, taking into account arbitrary orders of coupling be-
tween the single lattice sites.

In this paper we introduce an analytic expression to de-
scribe the evolution of the amplitudes in a infinite 2D wave-
guide array with arbitrary coupling of all waveguides in all
directions, representing the Green’s function of the system.
Furthermore, the light diffraction in such general systems is
analyzed in detail, revealing modified conditions for
diffraction-free propagation compared to conventional sys-
tems with only next-neighbor interaction. In addition, the
continuum limit of the discrete propagation equations is de-
rived, pointing out the strong correspondence between eva-
nescent coupling in discrete media and diffraction in continu-
ous media.

II. ANALYTICAL SOLUTION

To describe the coupling in an arbitrary waveguide array,
the coupled mode equations �1� are extended to cover gen-
eral higher-order coupling. This results in the generalized
coupled mode equations

i
d

dz
�m,n + �

�=−�

�

�
�=−�

�

��,��m+�,n+� = 0 �2�

with �m,n as the amplitude in the m, nth waveguide. The
coupling constants ��,� between the single guides are shown

in Fig. 1. For symmetry reasons one finds ��,�=�−�,−�. The
values � ,� represent the maximum order of coupling in the
m and n directions, respectively. When only next-neighbor
interaction is assumed in m direction it is �=1, for second-
order interaction, �=2, and so on. Theoretically, � and � can
be set to infinity.

The value �0,0 can be interpreted as self-coupling within
the waveguides and is set to zero since self-coupling can be
normalized by a simple coordinate transformation. The cou-
pling constants of Eq. �1� are represented in Eq. �2� by �1,0
=a, �0,1=b, �1,1=c, and �1,−1=d. Using

�m,n�z� = �
−�

� �
−�

�

d	md	n�̃�	m,	n,z�exp�− i�	mm + 	nn�� ,

�̃�	m,	n,z� =
1

�2��2�
m,n

�m,n�z�exp�i�	mm + 	nn�� �3�

as the corresponding Fourier pair of amplitudes and 	m and
	n as the wave numbers in the horizontal and vertical direc-
tions, respectively, one can perform a discrete transform of
Eq. �2� into the Fourier space. This yields

	i
�

�z
+ �

�=−�

�

�
�=−�

�

��,�ei�	mei�	n
�̃�	m,	n,z� = 0. �4�

The solution of Eq. �4� is

�̃�	m,	n,z� = �
�=1

�

�
�=1

�

e2iz��,0 cos��	m�e2iz�0,� cos��	n�


e2iz��,� cos��	m+�	n�e2iz��,−� cos��	m−�	n�. �5�

After an inverse Fourier transformation, using the identity
�for more information please see also Ref. �29��

�
k

ikJk�x�ei�k = eix cos �, �6�

one obtains the solution of Eq. �2�,

�m,n�z� = im+n � Jm−�
�=2
� �k�−�

�=1
� �

�=1
� ��s

�
�+t

�
���2z�1,0�Jn−�

�=2
� �r�−�

�=1
� �

�=1
� ��s

�
�−t

�
���2z�0,1�	�

�=2

�

i��−1�k�Jk�
�2z��,0�



	�
�=2

�

i−���−1��r�Jr�
�2z�0,��
	�

�=1

�

�
�=1

�

i−���+�−1�s�
�+��−�−1�t�

��Js
�
��2z��,��Jt

�
��2z��,−��
 . �7�

Here, Jn�x� are Bessel functions of the first kind of order n.
The sum in Eq. �7� denotes the summation over all values
k2 , . . . ,k� ,r2 , . . . ,r� ,s1

1 , . . . ,s�
� , t1

1 , . . . , t�
� . The first line of Eq.

�7� represents to some extent the superposition of the ampli-
tudes in a horizontal and vertical 1D waveguide array. These
expressions are coupled by the terms in the second and third
line. The expression in the second line is caused by the in-

fluence of the long-range interaction, while the terms in the
third line describe the diagonal coupling.

III. LIMITING CASES

The very general expression �7� describes the light evolu-
tion in a general lattice where all waveguides interact. How-
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ever, for particular cases this formula can be simplified.

A. General 2D lattice with only first-order coupling

One important setup is the general 2D lattice with only
first-order coupling ��=�=1�. Hence one finds that �=�
=0 yielding directly ��,0=�0,�=k�=r�=0 and �=�=1. This
results in the expression

�m,n�z� = im+n �
s1
1,t1

1

i−s1
1+t1

1
Jm−s1

1−t1
1�2z�1,0�Jn−s1

1+t1
1�2z�0,1�


Js1
1�2z�1,1�Jt1

1�2z�1,−1� , �8�

which is identical to the corresponding expression in Ref.
�29�. In physical terms this equation represents the superpo-
sition of amplitudes caused by virtual sources at positions
s1

1+ t1
1, s1

1− t1
1 weighted by multiplicative factors

Js1
1�2z�1,1�Jt1

1�2z�1,1�.

B. 1D lattice with higher-order coupling

Another important limiting case is the 1D waveguide ar-
ray with higher-order waveguide interaction �Fig. 2�a��. Here
it is ��,�=0 ∀��0 and �=0 and hence �0,�=r�=s�

�= t�
�=0.

With this, one arrives at

�m�z� = im �
k2,. . .,k�

Jm−�
�=2
� �k�

�2z�1��
�=2

�

i−��−1�k�Jk�
�2z���

�9�

where the abbreviated notation �1=�1,0 and ��=��,0 was
used. As a convention, the propagation distance will be given
in terms of coupling lengths lc=� /2�1. The infinite sum can
be truncated according to Ref. �29�. For large orders m for
the first maximum xm of a Bessel function Jm�xm� the relation

xm � m �10�

holds. It is assumed that a contributing Bessel function has to
reach at least its first maximum to give a significant contri-
bution. Hence every sum can be truncated approximately at

k�,max � 2z��. �11�

Inserting this into the indices of the first Bessel function in
Eq. �9�, one arrives at the relation

mmax − �
�=2

�

�2z�� = 2z�1. �12�

Hence the approximate width of a propagating light pattern
is given as

mmax = 2z	�
�=1

�

���
 . �13�

The width mmax is a crucial attribute for propagating light
which experiences higher-order coupling. According to Eq.
�13� this results in a stronger broadening of the propagating
field. However, it turns out that the propagation pattern in the
array does not only broaden but changes significantly for an
increasing influence of higher-order coupling. As an ex-
ample, in Fig. 2�b� the propagation with only next-neighbor
interaction after a propagation distance of 4.5lc is shown,
where �1=1. In Fig. 2�c� the second-order interaction is set
to �2=0.5, while the propagation distance is kept. The influ-
ence of an additional third-order coupling with �3=0.25 is
demonstrated in Fig. 2�d�. An intriguing feature of the ac-
cording propagation pattern is that, besides a stronger diver-
gence of the side lobes, the main fraction of the propagating

FIG. 1. �Color online� Some examples of coupling constants
��,�.

(a)

(b) (c) (d)

FIG. 2. �Color online� �a� Higher-order waveguide interaction in
a 1D lattice. When a single waveguide is excited, the light couples
to all neighboring guides with the coupling constants �1 ,�2 , . . . ,��.
In �b� the propagation pattern of a waveguide array after 4.5lc is
shown, when only next-neighbor interaction �1=1 is taken into ac-
count. When additionally second-order coupling is taken into ac-
count with �2=0.5, the resulting output pattern changes �c�. A fur-
ther consideration of third-order coupling �3=0.25 yields the
pattern shown in �d�. A particular feature is the stronger broadening
of the side lobes of the light patterns and a stronger localization
around the excited waveguide with increasing higher-order coupling
from �b� to �d�. In all figures, the propagation direction is from top
to bottom, while the waveguide numbering goes from left to right.
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light remains more and more localized around the excited
waveguide for increasing higher-order coupling. This inter-
esting behavior is caused by a modification of the band struc-
ture and will be discussed in detail in the next section.

However, in planar setups the evanescent coupling usually
decreases exponentially, which makes it difficult to tune the
range of the coupling. To overcome this, a sophisticated
implementation is the extension of a 1D lattice into the sec-
ond transverse dimension �see Fig. 3�a��. The waveguides are
alternately shifted up and down to achieve a zigzag arrange-
ment �31�, which is the basis for the experimental tuning of
second-order coupling by precisely adjusting the transverse
shift of the waveguides �Fig. 3�b��. The fabrication of such a
device can be achieved in particular using the fs laser writing
technique, with which large two-dimensional lattices with
arbitrary topology can be fabricated �16,30�. In the zigzag
array the two coupling constants �1 and �2 can be individu-
ally tuned by the waveguide separation. This provides the
feasibility for the detailed analysis of a variety of arrange-
ments for the ratio �2 /�1. A case of particular interest is when
�2 /�11, where the unique situation is met that the second-
order coupling is stronger than the first-order coupling.

In such a geometry, one finds mainly first and second
order coupling, so that the light evolution is described by the
equation

�m�z� = �
k

im−kJm−2k�2zc1�Jk�2zc2� , �14�

which can be derived from Eq. �7� using k=k2, c1=�1,0, and
c2=�2,0. An increasing ratio c2 /c1 yields considerable varia-
tions of the light evolutions. In Fig. 4�b� the black dashed
line shows the output pattern of a 1D lattice with only first-
order coupling after a propagation distance of 13lc. When
taking the second-order coupling into account with a strength
of �2=0.1�1, then the corresponding output pattern changes,
which is shown by the solid red line in Fig. 4�b�. Due to Eq.
�13� the field broadens stronger under the influence of the
second-order coupling and, again, a significant fraction of
the light remains close to the excited waveguide.

IV. DIFFRACTION WITH LONG-RANGE INTERACTION

A convenient tool for the investigation of the propagation
properties of the evolving light is the dispersion relation of a
medium, which connects transverse and longitudinal phase

evolution for a fixed optical frequency. The eigenmodes of a
general waveguide lattice with higher-order coupling are
plane waves and read as

�m,n = �0ei	mmei	nnei	zz �15�

with 	z as the longitudinal and 	m, 	n as the normalized
transverse wave numbers. Inserting Eq. �15� into Eq. �2�, one
obtains the general dispersion relation, which connects the
longitudinal and the transverse wave numbers and reads as

	z =
1

2 �
�=−�

�

�
�=−�

�

��,� cos��	m + �	n� + ��,−� cos��	m − �	n� ,

�16�

where the self-coupling is again assumed to be normalized,
i.e., �0,0=0. The transverse wave numbers 	m, 	n represent
the phase shift among successive lattice sites and play the
role of a “particle momentum.” They may be introduced by
exciting several waveguides and tilting the beam �32�. In Fig.
5 different dispersion relations are shown. The case
�1st order=1, �order1=0 is shown in Fig. 5�a�, the case
�1st order=1, �2nd order=0.5, �order2=0 is illustrated in Fig.
5�b�, and the dispersion relation for �1st order=1, �2nd order
=0.5, �3rd order=0.25, �order3=0 is shown in Fig. 5�c�. For
increasing higher-order coupling a growth of the maximal
longitudinal wave number 	z is observed as well as a nar-
rowing of the central maximum. This involves a flattening of
the dispersion relation in the outer regions of the Brillouin
zone, which is important for the analysis of the diffraction in
lattices with higher-order coupling.

(a)

(b)

FIG. 3. �Color online� �a� Implementation of a zigzag configu-
ration of waveguides for the experimental investigation of second-
order coupling. �b� First-order �1 and second-order coupling �2 in a
zigzag array.

FIG. 4. �Color online� Comparison of the amplitude distribution
in a planar array with only first order coupling �black dashed line�
and additional second order coupling, when �2=0.1�1 �red solid
line� and �2=0.25�1 �blue dotted line�. In �a� the evolution of the
variance of the light pattern is shown. The shape of the output
patterns after a propagation length of 13lc are shown in �b�.
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The diffraction strength of the propagating beam is given
by the second derivative of Eq. �16� �2,29�

�2	z

�	m
2 = −

1

2 �
�=−�

�

�
�=−�

�

�2���,� cos��	m + �	n�

+ ��,−� cos��	m − �	n�� , �17�

�2	z

�	n
2 = −

1

2 �
�=−�

�

�
�=−�

�

�2���,� cos��	m + �	n�

+ ��,−� cos��	m − �	n�� . �18�

A. Diffraction-free propagation in 2D

Diffraction-free propagation is obtained when �2	z /�	m
2

=�2	z /�	n
2=0. In the following, a symmetric lattice will be

considered, where one finds ��,0=�0,� for �=� and ��,�
=��,−� and ��,�=�−�,� for arbitrary values of � and �. Hence
in the diffraction-free case, subtracting Eq. �18� from Eq.
�17� yields the condition

�
�=1

�

�2��,0 cos��	m� = �
�=1

�

�2�0,� cos��	n� . �19�

Due to ��,0=�0,� for �=� this is equivalent to the condition

�
�=1

�

�2��,0�cos��	m� − cos��	n�� = 0. �20�

Within the first Brillouin zone �−��	m ,	n���, a solution
is 	m= �	n. Inserting this into Eqs. �17� and �18� results in
single isolated points in the first Brillouin zone, where the
propagation is diffraction free. For �=�=1 this is the only
solution �29�. However, for ��=��1 more solutions exist
whose number is determined by the coupling coefficients
and, in particular, by the order of the coupling. To solve Eq.
�20� for both 	m and 	n it is required that

�
�=1

�

�2�� cos��	 j� = ��	 j� , �21�

where 	 j =	m=	n and ��	m�=��	n�. For �1, the function
f�x�=��=1

� �2�� cos��x� exhibits local extrema, in whose vi-
cinity two different values of 	 j fulfill the condition �21� for
a given value ��	 j�. In the general case, the number of local
extrema gives an upper limit for the number of possible com-
binations �	m ;	n� yielding the same ��	 j�. This is shown in
Fig. 6�a�, where ��	 j�=−0.75, �=�=3 and �1,0=1, �2,0
=0.3, and �3,0=0.2.

To estimate the number of possible combinations �	m ;	n�,
one has to take the extreme values of the function ��	 j� into
account, which are defined by

���	 j�
�	 j

= − �
�=1

�

�3�� sin��	 j�=
! 0. �22�

Due to the polynomial character of the equation, within the
first Brillouin zone, there are �+1 roots, each corresponding
to a maximum of Eq. �21�. Furthermore, obviously three
roots of this equation can be always found in the center and
at the edge of the first Brillouin zone �	 j =0, ���. Hence Eq.
�21� exhibits 2�+1 extreme values and, therefore, 2� com-
binations �	m ; �	n1

, �	n2
, �	n�

� exist for every value of
��	 j�. This results in a variety of directions, in which
diffraction-free propagation is possible. They occur not only
as single points in the first Brillouin zone �Fig. 6�b��, but as
extended contours as shown in Fig. 6�c�, which is solely
caused by the higher-order coupling.

B. Diffraction-free propagation in 1D

Further peculiarities of propagation in lattices exhibiting
higher-order coupling become evident in particular in 1D
lattices. The 1D dispersion relation reads as

(a)

(b)

(c)

FIG. 5. �Color online� The dispersion relation for a lattice with
symmetric first-order coupling �1st order is shown in �a�, for a lattice
with second-order coupling �2nd order=0.5
�1st order is shown in �b�
and a dispersion relation for a lattice with �3rd order=0.5

�2nd order=0.25
�1st order is shown in �c�. The center peak
growths and narrows for increasing coupling order, while the outer
regions of the dispersion relation flatten.
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	z = �
�=1

�

2�� cos��	m� , �23�

and the corresponding condition for diffraction-free propaga-
tion is given as

�2	z

�	m
2 = − �

�=1

�

2�2�� cos��	m�=! 0, �24�

which is a special case of Eq. �21�. Diffraction-free propaga-
tion with only next-neighbor interaction �i.e., �=1� is ob-
tained for 	m=� /2 since

cos�	m�=! 0 ⇒ 	m =
�

2
. �25�

However, including higher-order coupling reduces the angle
for the diffraction-free propagation. An interesting result is
obtained for the particular case of �1=4�2, which directly
yields

cos�	m� + cos�2	m�=! 0 ⇒ 	m =
�

3
�26�

and in general for �th-order coupling with �1=4�2= ¯

=�2��, one obtains

�
�=1

�

cos��	m�=! 0 ⇒ 	m =
�

� + 1
. �27�

Hence for sufficiently strong higher-order coupling, the angle
for diffraction-free propagation is significantly reduced.

A completely new situation can be obtained when nega-
tive coupling constants are introduced. In the case of second
order-coupling the condition for diffraction-free propagation
according to Eq. �24� is

�1 cos�	m� = − 4�2 cos�2	m� . �28�

If one chooses �1=−4�2, diffraction-free propagation is ob-
tained for 	m=0, which is in the center of the first Brillouin
zone. In addition, this interesting behavior can be achieved
for every even �, where, e.g., �1=−4�2=9�3= ¯ =−�2��.
Negative coupling constants are physically equivalent to an
additional phase shift of � caused by the coupling. However,
this is not feasible for pure evanescent coupling which in-
duces no additional phase shift. Hence this effect is not ob-
servable in conventional waveguide lattices. For a possible
experimental realization one has to use a different coupling
mechanism, which is found, e.g., in radiative coupling, as it
occurs in so-called Bragg waveguides �33�. A particular
implementation of such waveguides are defects in photonic
crystals �34,35�. Due to the periodicity of this medium the
wave number of the light lies within a band gap, so that the
light propagation inside the medium is forbidden. Hence
light is confined in artificial defects which then act as
waveguides. The waveguide modes, also called leaky modes,
steadily emit radiation, which in turn can excite modes in
adjacent defect waveguides. With such a Bragg waveguide
lattice, the coupling can be tuned appropriately to meet the
conditions given above for diffraction-free propagation in the
center of the Brillouin zone. Hence lattices of coupled Bragg
waveguides provide an excellent base for the investigation of
these new and interesting discrete propagation effects.

(a)

(b)

(c)

FIG. 6. �Color online� �a� The function Eq. �21� within the first
Brillouin zone. The intersections with the dashed line mark six val-
ues of 	 j which yield ��	 j�=−0.75. �b� Zeros of Eq. �17� �red,
solid� and Eq. �18� �blue, dashed� indicating diffraction-free propa-
gation in the m and n direction in a lattice with only first-order
symmetric coupling �1,0=�0,1=�1,1=�1,−1. The intersection of both
lines yields the values of the corresponding transverse wave num-
bers for total diffraction-free propagation. In a lattice with only
first-order coupling these are single points. �c� In contrast for a
lattice with coupling up to the third order ��3rd order=0.5

�2nd order=0.25
�1st order� the intersection of the zeros can be
extended regions, in which diffraction-free propagation is possible.
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V. CONTINUUM LIMIT

In the following, the transition from the discrete regime to
the continuum limit will be analyzed. For reasons of simplic-
ity the considerations are restricted to a 1D lattice but can be
easily extended to the 2D case. For well-separated
waveguides, higher-order coupling can be neglected and the
coupled mode equations �Eq. �2�� simplify to

i
d

dz
�m�z� + �1��m+1�z� + �m−1�z�� = 0 �29�

with �1 as the first-order coupling constant. For a broad ex-
citation covering multiple waveguides under normal inci-
dence �so that no phase shift between adjacent guides is in-
troduced�, the amplitudes vary only slowly over a number of
waveguides. Then, one can define a transversely extended
function q�x ,z�, which is connected to the modal amplitudes
�m�z� by

�m�z� = q�x,z�e2i�1z, �30�

where � is the waveguide spacing and x=m�. Inserting this
in Eq. �29� and using the discrete transverse second deriva-
tive

�m
�2� =

�m+1 + �m−1 − 2�m

�2 �31�

yields

	i
�

�z
+ �1�2 �2

�x2
q�x,z� = 0, �32�

which is the paraxial Helmholtz equation, describing the
beam evolution in a waveguide layer. Hence for broad nor-
mal incident excitation, the discrete character of the light
evolution disappears and the intensity distribution inside the
waveguides is equivalent to a single continuous layer. Ac-
cordingly, the dispersion relation can be obtained by substi-
tuting the plane wave solution q�x ,z�=exp�i�	xx+	zz�� into
Eq. �32� yielding the parabolic relation

	z = − �1�2	x
2. �33�

However, the question arises what happens if the waveguide
separation is in a domain where higher-order coupling has to
be taken into account. In this case the coupled mode equa-
tions �Eq. �2�� reduce only to

i
d

dz
�m�z� + �

j=1

�

� j��m+j�z� + �m−j�z�� = 0, �34�

while the higher-order coupling pendant of Eq. �30� reads as

�m�x� = q�x,z��
�=1

�

e2i��z. �35�

For the transformation into the continuum limit, one has to
deal with higher-order discrete derivatives. The coefficients
of the derivatives follow a modified Pascal’s triangle �36�,
which is given as

1

1 − 1

1 − 2 1

1 − 3 3 − 1

1 − 4 6 − 4 1

1 − 5 10 − 10 5 − 1

1 − 6 15 − 20 15 − 6 1

� ] �

.

Hence the discrete derivatives of even order read as �note
that the argument has been omitted�

�m
�2�� =

1

�2��
j=0

2�

�− 1� j	2�

j

�m+�−j . �36�

Inserting Eq. �35� into Eq. �34�, the continuum limit consid-
ering higher-order coupling up to the order � is found to be

	i
�

�z
+ �

�=1

�

���
�=0

�−1

A�
��2��−�� �2��−��

�x2��−��
q�x,z� = 0 �37�

with some coefficients A�
� with ��1, which are defined by

A0
�=1 and for �0 by the recurrence formula

A�
� = �

j=1

�

�− 1� j−1	2�� − � + j�
j


A�−j
� . �38�

A particular feature of Eq. �37� is the appearance of higher-
order differentials. As a result, the dispersion relation in the
continuum limit is no longer purely parabolic, but includes
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higher orders of the transverse wave number:

	z = − �
�=1

�

���
�=0

�−1

A�
��2��−��	x

2��−��. �39�

Hence including higher-order coupling into the propagation
equations �34� results in a deformation of the band structure
of the propagation constants due to the modified dispersion
relation Eq. �39�. Thus, the continuum limit Eq. �32� of a
waveguide layer is only valid for broad excitations when the
single guides are sufficiently separated, i.e., the higher-order
coupling is negligible. In contrast, for decreasing waveguide
separations the higher-order coupling gives significant con-
tributions, so that one arrives at Eq. �39�. Hence within the
coupled mode approximation an increase of the width of the
excitation is physically not equivalent to a decrease of the
waveguide separation at a constant excitation width.

However, for very broad excitations in Eq. �37� only the
second-order derivatives give a significant contribution and
the higher-order derivatives �4 /�x4 , . . . ,�2� /�x2� can be ne-
glected, since the amplitudes change only marginally be-
tween adjacent guides. Furthermore, one can show that the
relation

A�−1
� = �2 �40�

holds. Then, Eq. �37� simplifies to

	i
�

�z
+ �2 �2

�x2 �
�=1

�

���2
q�x,z� = 0. �41�

One particular solution of the paraxial Helmholtz equation is
a Gaussian beam. The term ��=1

� ���2 has a direct impact on
the divergence of the beam inside the lattice in the con-
tinuum limit. Hence the coupling coefficients �� are the ana-
log to the wavelength in the continuum limit. The higher-
order coupling constants cause a strong broadening of the
beam caused by the quadratic coefficients �2. For instance, in
the case that ��2=0 and �1��2 the divergence is five times
larger than for pure first order coupling ��2=0�.

For a further investigation it is useful to reduce Eq. �41�
once more by defining

�2 = �1�1,

�3 = �2�2 = �2�1�1,

]

�� = �1�
j=0

�

� j , �42�

with �0 : =1, so that it takes the form

	i
�

�z
+ �1�2 �2

�x2 �
�=1

�

�2�
j=0

�−1

� j
q�x,z� = 0. �43�

Now, the investigation of the broadening of the propagating
beam reduces to the analysis of the series

���� = �
�=1

�

�2�
j=0

�−1

� j . �44�

The sum ���� corresponds to a value which gives the relative
broadening of the beam in comparison to first-order coupling
as it is obtained in Eq. �32�.

A particular situation is the exponential decay of the cou-
pling constants. In this case, a decay constant � is defined
with �1= ¯ =��=e−�, which is used in the relations

�2 = e−��1,

�3 = e−��2 = e−2��1,

]

�� = �1e−��−1��. �45�

In addition, due to the exponential decay one can assume
�→�. Consequently, the diffraction is described by the in-
finite series

�̃��� = �
�=1

�

�2e−��−1��. �46�

The question arises, for which values of � this series con-

verges, i.e., �̃�����. To derive a condition for convergence
of an infinite series ��=1

� a� with the single terms a�, one can
use the quotient criterion

a�+1

a�
 � � � 1 �47�

for arbitrary values of �. Using Eq. �46�, this criterion reads
as

�� + 1�2e−��

�2e−��−1�� � � . �48�

Extracting the square root yields

�� + 1�e−��/2

�e−��−1��/2 =
�� + 1�
�e�/2 � �� . �49�

Applying the natural logarithm to this expression, one arrives
at

−
�

2
+ ln�� + 1

�
� � ln�� =

1

2
ln � . �50�

For large values of � the second term on the left side ap-
proaches zero. Remembering that ��1 one obtains

−
�

2
� −

1

2
�ln �� �51�

and, respectively,

� � �ln �� . �52�

Since ��1, this yields
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�  0 �53�

for the decay constant. Hence for evanescent coupling, in
which all orders are taken into account, the diffraction
strength does not approach infinity as long as the coupling
coefficients for higher-order coupling decay exponentially,
while the only requirement on the decay constant � is that
�0.

VI. CONCLUSIONS

In conclusion we presented an analytical expression for
2D high-order coupling in waveguide lattices, representing
the Green’s function of a system with general long-range
waveguide interaction. The properties of the light evolution
in such a system significantly change compared to a conven-
tional system, where only adjacent waveguides experience
evanescent coupling. In addition to the expected stronger
broadening of the light in the lattice, the diffraction is re-
duced around the center of the Brillouin zone. Hence for

sufficiently strong higher-order coupling, a significant frac-
tion of the propagating light remains localized around the
excited waveguide. In addition, it could be shown that in the
continuum limit of the coupled mode approximation, an in-
crease of the excitation width is not physically equivalent to
a decrease in the waveguide separation. This work may help
to understand advanced lattice geometries, where due to a
significant higher-order coupling the conventional model of
only next-neighbor interaction yields inaccurate results.
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