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Bose-Einstein condensates subject to short pulses �“kicks”� from standing waves of light represent a non-
linear analog of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of
dynamical instability �i.e., exponential proliferation of noncondensate particles� suggested that the transition to
instability might be associated with a transition to chaos. Here we conclude instead that instability is due to
resonant driving of Bogoliubov modes. We investigate the Bogoliubov spectrum for both the quantum kicked
rotor �QKR� and a variant, the double kicked rotor �QKR-2�. We present an analytical model, valid in the limit
of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement
with mean-field numerics.
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I. INTRODUCTION

The production of Bose-Einstein condensates �BECs� in
dilute atomic gases has opened up a new domain for research
in quantum dynamics, since BECs are intrinsically phase co-
herent and can be controlled experimentally to an extremely
high degree of precision �1�. An increasingly interesting as-
pect of the dynamics of BECs is that they represent a new
arena for investigation of the interaction between nonlinear-
ity and quantum dynamics, including quantum chaos �2–9�.

A BEC subject to periodic short pulses, or kicks, from
standing waves of light represents a nonlinear generalization
of the well-known chaos paradigm, the quantum kicked rotor
�QKR�. The QKR has been realized using �noncondensed�
cold atoms, permitting experimental investigation of a range
of interesting chaos phenomena �10�. The regime where the
kick period T is a rational multiple of � has also proved of
particular interest: several studies have investigated the dy-
namics here with or without nonlinearity �8,11,12�. A number
of experimental studies have also investigated kicked BECs
�14�. However, these studies considered studied essentially
the �linear� QKR resonances, and any nonlinearity, if present
appears simply as a perturbation on the linear dynamics. To
date, nonlinear resonances �in the sense of resonant driving
of collective modes� have not been investigated in kicked
systems.

Ensuring dynamical stability of the condensate is also
very important in studies of its coherent dynamics: if the
condensate is dynamically unstable, numbers of nonconden-
sate particles grow exponentially. If it is stable, they grow
more slowly �polynomially�. More broadly, the study of dif-
ferent types of instability in static �15� and driven BECs �16�
is of much current interest.

Previous work on kicked systems �3,6,7� considered the
onset of dynamical instability and investigated the relation
with classical chaos. In Ref. �3�, the possibility that instabil-
ity was related to chaos in the one-body limit was investi-
gated for the kicked harmonic oscillator. In Refs. �6,7� the
correlation between chaos in the mean-field dynamics, rather,
and the onset of dynamical instability, was investigated. An
“instability border,” determined by the kick strength K and

the nonlinearity g was mapped out; it was then found �7� that
the parameter ranges for this border corresponds closely to a
transition from regular to chaotic motion, of an effective
classical Hamiltonian derived from the mean-field dynamics.
Hence, present understanding of onset of dynamical instabil-
ity in kicked BECs suggests that it may somehow be related
to a transition to chaos.

In this work, we conclude that a quite different mecha-
nism is primarily responsible for dynamical instability in the
QKR-BEC. Our key finding is that it is the strong resonant
driving of certain condensate modes by the kicking, which
triggers loss of stability of the condensate. This mechanism
is unrelated to the transition to chaos, but is rather an ex-
ample of parametric resonance. In another context, the rela-
tionship between parametric resonance and dynamical insta-
bility of a BEC in a trap modulated periodically in time, is a
topic of much current theoretical �16,18� and experimental
interest �19�. To date, “Bogoliubov spectroscopy” in the
analogous time-periodic system, the �-kicked BEC, has
never been investigated.

Our study shows that the temporally kicked BECs open
up new possibilities in this arena. A key finding is that, for
the rational values of kick period T /�=m �where m is inte-
ger�, our model suggests that resonant excitation can involve
two excited Bogoliubov modes. Hence we can explain the
position of the critical stability border found in Refs. �6,17�.
For irrational T, only single-mode Bogoliubov resonances
have been identified to date. This sensitive dependence of the
character of the Bogoliubov resonant excitation on whether
the period is a rational or irrational multiple of � is a specific
feature of the kicked systems �as opposed to, for example,
traps modulated periodically in time�.

We find that, in general, for weak driving �small K and g�
the number of noncondensed atoms Nex�t� grows exponen-
tially only very close to a few, isolated resonance peaks.
With increasing K and g, the number of resonances which
can be strongly excited by the kicking proliferates and over-
laps. Our calculations show this is associated with general-
ized exponential instability; however, this regime is, to a
large degree, beyond the scope of our methods. For moderate
K and g, though, we introduce a simple perturbative model
which provides the approximate position and width of the
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important resonances for both rational and irrational T.
We investigate both the usual QKR-BEC as well as a

simple modification, obtained by applying a series of pairs of
closely spaced opposing kicks �the QKR2-BEC�. This modi-
fies substantially the relative strengths of the resonances, and
provides the added novelty that the lowest modes are excited
by an effective imaginary kick strength. It is closely related
to the double-kicked quantum rotor, investigated in cold at-
oms experiments and theory �20�. We introduce a simple
analytical model based on the properties of the unperturbed
condensate, which gives the distinctive properties and scal-
ing behavior of the condensate oscillations on and off reso-
nance.

In Sec. II we introduce briefly the kicked and double-
kicked BEC systems. In Sec. III we introduce the time-
dependent Bogoliubov method proposed by Castin and Dum
and present numerics for the growth of noncondensate at-
oms. In Sec. IV we introduce a simple perturbative model,
based on the one period time evolution operator for a kicked
BEC. In Sec. V we show that the simple model and the
time-dependent Bogoliubov numerics give excellent agree-
ment in the limit of weak kicks. In Sec. VI we consider the
case T=2� with both numerics and the perturbative model
and show that the instability border found in Refs. �6,7� is
due to a type of compound Bogoliubov resonance.

II. KICKED BEC SYSTEMS

As in Ref. �6�, we consider a BEC confined in a ring-
shaped trap of radius R. We assume that the lateral dimen-
sion r of the trap is much smaller than its circumference, and
thus we are dealing with an effectively 1D system �21�. The
dynamics of the condensate wave function at temperatures
well below the transition temperature are then governed by
the 1D Gross-Pitaevskii �GP� Hamiltonian with an additional
kicking potential

H = HGP + K cos �f�t� , �1�

yielding a dimensionless GP equation

HGP = −
1

2

�2

��2 + g����,t��2. �2�

The short-range interactions between the atoms in the con-
densate are described by a mean-field term with scaled
strength g=8NtotaSR /r2, where aS is the s-wave scattering
length, and Ntot is the total number of atoms. The length is
measured in units of R and energy in units of �2

2mR2 �6�. For
the QKR-BEC system f�t�=�n��t−nT�, while for the QKR2-
BEC

f�t� = �
n

���t − nT� − ��t − nT + ��� , �3�

where T is the total period of the driving; ��T, and thus the
second kick nearly cancels the first.

Experimental and theoretical studies of the double-kicked
rotor �20� have shown that its quantum behavior is largely
determined by an effective kick strength K�=K�, provided
T	�. Here we take �=1 /25. Hence, while for the QKR-

BEC, the value K=1 represents a relatively large impulse for
a kicked BEC, for a double kicked BEC, K=1 in the numer-
ics below corresponds to K�=0.04, and represents only a
very weak impulse. The reason for this is the near cancella-
tion of consecutive kicks in each pair.

This mechanism has certain analogies with the so-called
“quantum antiresonance” investigated in Ref. �6�: for QKRs
kicked at T=2�, consecutive kicks effectively cancel. This
means that even large values of K�1 and g
1 represent
only weak driving; for example, the instability border was
found by Ref. �6� to occur at g�2 and K=0.8.

III. TIME-DEPENDENT BOGOLIUBOV METHOD

The number of noncondensed atoms were calculated by
making the usual Bogoliubov approximation, and following
the formalism of Castin and Dum �22�. This adaptation of the
Bogoliubov linearization for time-dependent potentials has
been used in all studies to date of the dynamical stability of
kicked condensates �3,6,13,17�. The mean number of non-
condensed atoms at zero temperature is given by Nex�t�
=�k=1

� �vk�t� �vk�t�	, where the amplitudes �uk ,vk� of the Bo-
goliubov quasiparticle operators are governed by the coupled
equations

i�
�

�t

uk

vk
� = 
H + gQ���2Q gQ�2Q�

− gQ���2Q − H − gQ����2Q� �
uk

vk
� .

�4�

In this expression, Q= I− ��	��� are projection operators that
orthogonalize the quasiparticle modes with respect to the
condensate �22�. We assume that at time t=0, we have a
homogeneous condensate �0=1 /�2�. Further discussion of
the theory is given in Ref. �23�.

The regime of validity of the method is discussed in Ref.
�22�. The method is valid in the weakly interacting limit 1
	as

3�, where � is the density. A limit is identified where this
condition is satisfied, if one works with a constant g

Ntotas; thus the limit as→0 corresponds to Ntot→�. A fur-
ther requirement is that condensate depletion remains negli-
gible. This condition fails after a few kicks in exponentially
unstable regions. Here the method is employed only to iden-
tify the parameter range for the onset of instability. We cutoff
our calculations for Nex
102–103 �a reasonable threshold
for small depletion in a condensate with Ntot
105�.

In Figs. 1�a� and 1�b� we show the number of noncon-
densed atoms Nex�t=NT�, calculated from the Bogoliubov
Eqs. �4� after N=200. For small K=0.2, g=1, a single reso-
nance is seen at T�10. For small K, resonances occur when-
ever the resonance condition �16� �l�

2n�
T is satisfied, where

n=1,2 ,3 , . . . , is an integer and �l is the eigenfrequency of
the lth collective mode. For larger K=1, the figure shows
that resonances are extremely dense and overlap with each
other �and we show the behavior in this regime for T�10�.
For overlapping resonances, unambiguous identification of
each resonance is no longer possible. The key point here,
however, is that in the stable regions outside the resonances,
Nex remains very small even after prolonged kicking.

Figure 1�b� shows oscillations of Nex, as a function of
time, for weak K=0.2, g=1, close to the isolated resonance
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at T�10. The three possible regimes of �nonresonant� weak
quasiperiodic oscillations in time; �near-resonant� slower,
large periodic oscillations; and �resonant� exponential growth
are illustrated. The condensate energy E�N�=�0

2�d����N�
��− 1

2
�2

��2 + g
2 ���N��2���N� after N kicks, obtained from the

GPE itself, is also shown, for comparison, in the inset: at
resonance, large oscillations are also seen.

Figure 2 shows the corresponding behavior for the
double-kicked BEC, but now as a function of g, keeping T
=2, �=1 /25 constant, and K=1 or K=5 �hence K�=0.04 or
0.2�. The curve K�=0.04 corresponds to weak impulses and
shows two isolated Bogoliubov resonances.

While values of g�1–10 are large �but not unreasonably
so� compared with current experimental values, resonances
nearer small g
1 more suitable for experimental spectros-
copy can be identified by considering larger T and other
parameter ranges. For these effective one-dimensional sys-
tems, typical experimental values of g1D �in units of the re-
coil energy ER� include g
0.5 �13� �see discussion of ex-
perimental g in Ref. �13��; or for a study of dynamics in a 1D

modulated optical lattice a value g1D=0.73ER, based on ex-
periment, was considered �16�. Even larger values of g are,
in principle, attainable using Feshbach resonances or by
varying the transverse confinement of a quasi-one-
dimensional condensate.

The curve K�=0.2 is in the overlapping resonance regime,
so produces generalized instability. In order to understand
the behavior at the resonances, we now introduce a model for
the time evolution of perturbations from the kicked conden-
sate, based on the usual linearization with respect to small
perturbations.

IV. KICKED CONDENSATE MODEL

The time evolution of small perturbations of the conden-
sate itself are described by an equation similar to Eq. �4�, see
Ref. �22�. We write the condensate wave function in the form
�=�0+��, where �0 is the unperturbed condensate and ��
represent the excited components. Inserting this form in the
GPE and linearizing with respect to ��, we can write

i�
�

�t

 ��

��� � = L�t�
 ��

��� � , �5�

where

L�t� = 
H�t� + g���2 g�2

− g��2 − H�t� − g���2
� . �6�

The analysis of condensate stability for a time-periodic sys-
tem �16� reduces to the analysis of the operator L�t� over one
period T. In general, for systems similar to BECs in modu-
lated optical lattices, intermode coupling requires a detailed
analysis of the instantaneous evolution. The nature of the
�-kicked potential permits considerable simplification.

The effect of L�t� reduces to the free-ringing of the eigen-
modes of the unperturbed condensate for period T, inter-
spersed by instantaneous impulses which mix the modes.
Even for an experiment �where the kicks are approximated
by pulses of very short, but finite duration� numerical time
propagation is avoided: intermode coupling occurs over a
very short time scale, during which eigenmode phases re-
main essentially constant.

Excluding the kick term for the moment, we recall that
the time propagation under HGP can be analyzed in terms of
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FIG. 1. �Color online� �a� Shows that for weak kicks �solid line�,
instability occurs only at one isolated Bogoliubov �1, 1� resonance,
where �n , l� denotes the nth resonance of eigenmode l. “Up” arrows
indicate onset of exponential instability; “ down” arrows means
stability is regained. g=1. The total number of noncondensate at-
oms generated after 200 kicks, Nex�N=200�, is plotted as a function
of kicking period T. For stronger kicks �dotted line; K=1,T�10�
resonances proliferate and there is instability over almost all the
parameter range. �b� Time dependence near the �1, 1� resonance at
T�10 corresponding to �a�. Nonresonant �T=13� curve shows
weak quasiperiodic oscillations in Nex; the near-resonant regime,
T=10 is characterized by slow, large oscillations; at resonance T
=10.5, there is exponential growth in Nex�t�. Inset shows that the
condensate energy �calculated from the GPE itself� has similar
oscillations.
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FIG. 2. Double-kicked BEC �QKR2�: Shows zones of instability
occur at Bogoliubov resonances. Condensate losses as a function of
nonlinearity parameter g. “Up” arrows indicate onset of exponential
instability; “ down” arrows means stability is regained. Nex�t
=1000� is plotted as a function of g �for T=2, �=1 /25� for weak
kicks �K=1 so effective kick is K�=0.04� and stronger kicks �K
=5 so effective kick K�=0.2�.
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the eigenmodes (uk�t� ,vk�t�) and eigenvalues of �k�t� of the
2�2 matrix on the right-hand side of Eq. �6�. Setting �
=1 /�2�, the matrix can be diagonalized and there are well-
known analytical expressions for the unperturbed eigen-
modes �1�

„uk�t = 0�,vk�t = 0�… = 
Uk

Vk
� eik�

�2�
, �7�

where Uk+Vk=Ak ,Uk−Vk=Ak
−1 and Ak= � �2k2

2 � �2k2

2 + g
� ��1/4.

In order to understand the behavior at the resonances, we
introduce below a simple model using the eigenmodes Eq.
�7� as a basis. Writing the small perturbation in this basis:


 ���t�
����t�

� = �
k

bk�t�
Uk

Vk
� eik�

�2�
+ bk

��t�
Vk

Uk
� e−ik�

�2�
. �8�

Neglecting the kick, evolving the modes from some initial
time t0, each eigenmode �uk ,vk� simply acquires a phase, i.e.,

bk�t� = bk�t0�e−i�k�t−t0�, �9�

where �k=� k2

2 � �2k2

2 + g
� �.

After a time interval T, a kick is applied which couples
the eigenmodes. Its effect is obtained by expressing the per-
turbation in a momentum basis �=�lal�t��l	, where �l	= eil�

�2�
,

and we can restrict ourselves to the symmetric subspace al
=a−l of the initial condensate �parity is conserved in our
system�. Then, we can see by inspection that

ak�t� = Ukbk�t� + Vkb−k
� �t� . �10�

Note that bk=b−k for this system. Conversely, the corre-
sponding amplitude bk in each eigenmode k is given trivially
from Eq. �8� using orthonormality of the momentum states
and the relation Uk

2−Vk
2=1, yielding

bk�t� = Ukak�t� − Vkak
��t� . �11�

If the evolving condensate is given in the momentum basis,
the effect of a kick operator Ukick=e�i�K/�� cos � is well
known. Its matrix elements are

Unl = �n�Ukick�l	 = Jn−l�K/��i��l−n�. �12�

The Jn−l are Bessel functions.
The amplitudes al�t� are given by

an�t+� = �
l

i��l−n�Jn−l
K

�
�al�t−� , �13�

where an�t+� /an�t−� denotes the amplitude in state �n	 just
after/before the kick. We can now define a “time-evolution”
operator L��T�=B−1Lfree�T�BUkick, where Lfree denotes free
ringing of the eigenmodes, B is the transformation from mo-
mentum basis to Bogoliubov basis, and Ukick is the action of
the kick. A usual procedure �16� for stability analysis of a
driven condensate is to examine the eigenvalues of an opera-
tor such as L��T� to ascertain whether they produce expo-
nential growth in the amplitudes a�l.

However, to compare with GPE numerics, we simply
evolve the mode amplitudes in time over a few kicks and
examine the overall condensate response to the kicking �in

the limit of very weak kicking�. Hence we can evolve the
amplitudes al�t=NT� of the condensate perturbation from pe-
riod N to period N+1:

a„�N + 1�T… = L��T�a�N� , �14�

using only the simple analytical coefficients in Eqs. �13� and
�9�, provided we use the simple transformations in Eqs. �10�
and �11� to switch between the Bogoliubov mode basis and
the momentum basis. L��T� is nonunitary, but the method is
quantitative in the perturbative limit provided ���0, i.e., if
we assume a0�N��a0�0��1.

We calculate the average energy over the first few N
kicks, �E�N�	= 1

N�t=1
N E�t�. Slow, large amplitude oscillations

in E�t� yield a large �E�t�	 and indicate a resonance. Figure 3
shows the QKR-BEC behavior, for equivalent parameters to
Fig. 1�a�. For low K=0.2, there is the same single �1, 1�
resonance at T�10 as in Fig. 1�a�. For higher K=1 the
method is far from quantitative: the model Eq. �14� is only a
valid means of time evolving the perturbation over a few
kicks for small K�1 since it assumes the perturbed compo-
nent is negligible; nevertheless, for K=1 it illustrates the
regime of dense, overlapping resonances.

In Fig. 4 we compare the perturbative Eq. �14� results
with full GPE numerics for the first 20 kick pairs of the
QKR2 in the limit of weak kicks. It shows remarkably good
agreement. Moreover the scaling of the resonances with K is
well described. The QKR2 resonant Bogoliubov spectrum
differs appreciably from the QKR case. Figure 4 shows that
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FIG. 3. �Color online� Average energy �E	 after 40 kicks. The
dashed lines indicate the model of Eq. �14�; all other plots use full
numerics. The label �n , l� denotes nth resonance of mode l. Reso-
nances of the QKR-BEC for parameters comparable to Fig. 1�a�.
For low g=1, K=0.2, only the single isolated �1, 1� resonance is
seen. For higher K=1, resonances proliferate and overlap.
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FIG. 4. �Color online� Comparison between full GPE numerics
and the model of Eq. �14� for the QKR2-BEC, showing excellent
agreement. Average energy �E	 after 20 kick pairs. The label �n , l�
denotes nth resonance of mode l. g=1 and �=1 /25 so K=1 corre-
sponds to effective kick strength K�=0.04. For low K, the l=1
resonance amplitudes scale as 
K2 while those of the l=2 modes
scale as 
K4.
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for QKR2, even for low K=1,�=1 /25, i.e., K��0.04 and
low g=1, both l=1 and l=2 resonances are strongly excited.
The QKR2-BEC resonance intensity depends strongly on K:
the l=2 resonances scale as K4, while the l=1 scaling is
closer to K2. In the full GPE numerics, the position of the
maxima depends slightly on K and g, but remains within a
few percent of the unperturbed value, even for longer kick-
ing times if K� remains small.

In the limit of weak driving, one can obtain explicit ex-
pressions for the condensate wave function as a function of
time. We assume that a0�1 /�2�	al�0. Then Eq. �13� can
be approximated by al�t+��al�t−�+Ul0 / ��2��. From Eqs.
�11� and �9� we see that the amplitude accumulated over a
single period in each eigenmode is

bl�N + 1� = �bl�N� + �UlUl0 − VlUl0
� ��ei�lT. �15�

Summing all contributions iteratively from t=0, taking
bl�0�=0, we obtain

bl�N� = �UlUl0 − VlUl0
� ��

n=0

N−1

ein�lT, �16�

and so for �lT�2� all the contributions add in phase, analo-
gously to the well-known �but unrelated� resonances of the
noninteracting limit �11�.

We can write �n=0
N−1ein�lT=e−i�N−1��lT��

N�lT
2 �, where the �

function is

�
N�lT

2
� =

sin�N�lT/2�
sin��lT/2�

. �17�

We thus expect oscillations in each set of �l momentum
components of amplitude

�2al�N��2 
 4�Ul0�2�2
N�lT

2
� . �18�

Off-resonance there will be quasiperiodic oscillations �in,
e.g., the condensate energy� from the superposition of con-
tributions characterized by different eigenfrequencies �l.
Close to resonance, a single component dominates; if the lth
mode is resonant we can write �lT�2�M +2�, where 2�
�1 is the dephasing from resonance. Then

�al�N��2 

�Ul0�2

�2 sin2�N�� , �19�

and there are slow, periodic oscillations of large amplitude


4
�Ul0�2

�2 , at a frequency � which is not related to any eigen-
mode frequency, but given rather by the dephasing from
resonance. The QKR2 resonant excitation spectrum is rather
different from the QKR, and is analyzed further in the next
section.

V. RESONANCES OF THE QKR2-BEC

In the limit K�→0, we can obtain analytical expressions
for the BEC wave function of the double-kicked system.
First note that when g��1, the nonlinearity has little effect
during the short time interval �. Using the relation

e+i�K/�� cos �e−ip2t�/2e−i�K/�� cos��� = e−�it/2���p̂ + K sin ��2
, �20�

the time evolution can be given as a “one-kick” operator

Û�T� � UGP
�0��T,0�e−�i�/2���p̂ + K sin ��2

. �21�

In the limit p��0, one can split the operators in Eq. �21� and
neglect a term K sin �p̂ to obtain the approximation

Û�T� � e−�i/2��p̂2Te−�i/����K2�/2� sin2 �−iK�� cos ��, �22�

leaving an effective single-kick quantum rotor with a kicking
potential

Vkick = �K2�

2
sin2 � − iK�� cos ���

N

��t − NT� . �23�

The second term, curiously, appears as kicking potential with
an imaginary, and � dependent, kick strength iK�. It is of
purely quantum origin as it arises from the noncommutativ-
ity of p and sin �, i.e.,

iK� cos � = �K sin �, p̂� . �24�

Nevertheless, as seen below, it is important for weak driving
as it controls the amplitude of the first excited mode l= �1.

The matrix elements of the modified kick Vkick, similar to
those in Eq. �13�, are Bessel functions. Specifically, the ef-
fect of Vkick on the condensate amplitudes al is given by

an�t+� = �
l

Unlal�t−� , �25�

where Unl=�min−l−mJm� K2�
4� �Jn−l−2m�iK��, and an�t�� indicates

momentum amplitudes before�−� and after�+� the kick, as in
Eq. �13�. Since K��1 and J�n�
1�z��0, only Bessel func-
tions of low order �m=0 or 1� will be non-negligible, and we
can use the small-argument approximations for them,
namely, J0�z��1, J�1�z�� �z /2.

Then, if the condensate is relatively unperturbed, the main
effect of the kick will be to simply excite a small amount of
l= �1 and l= �2 from the �0	 state

e−�i/��Vkick� � e−�i/��Vkick�0	 = �
l

Ul0�0	 , �26�

where

�
l

Ul0�0	 �
1

�2�
+ iJ1
 iK�

2
���1	 + iJ1
K2�

4�
���2	

�
1

�2�
−

K�

4
��1	 + i

K2�

8�
��2	 �27�

We obtain a similar equation to the QKR-BEC for the mode
amplitudes, i.e.,

bl�N� = �UlUl0 − VlUl0
� ��n=0

N−1
exp�in�lT� .

However, if only the lowest excited modes are significant,
then, in particular,
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b1�N� = − K�
4 �U1 − V1��n=0

N−1
exp�in�1T�

and b2�N�= i K2�
8� �U2+V2��n=0

N−1exp�in�2T�. For �lT�2� all
the contributions add in phase and we will have a resonance
of either the l=1 or l=2 modes, the regime illustrated in Fig.
2�b�.

Similarly as for the QKR-BEC, we can sum all the con-
tributions to obtain an approximate analytical expression for
the evolving condensate wave function including excited
modes l= �1 and l= �2,

��N� �
1

2�
�1 + C1

K�

2
cos � + C2

K2�

4�
cos 2�� , �28�

where

C1 = − ��N�̃1��cos�N − 1��̃1 − iA1
−2 sin�N − 1��̃1� ,

C2 = ��N�̃2��A2
2 sin�N − 1��̃2 + i cos�N − 1��̃2� ,

and �̃ j =� jT /2.
Equation �28� shows that the amplitudes �a1�2 and �a2�2

scale as K2 and K4, respectively, as seen in the numerics in
Fig. 4. Figure 5�a� shows that Eq. �28� gives excellent agree-
ment with GPE numerics, giving accurately the nonresonant
quasiperiodic condensate oscillations. Near the l=2 reso-
nance of Fig. 2, Fig. 5�b� confirms the QKR2 condensate
oscillations �obtained from the GPE� scale quite accurately
as 


1
���2 sin2 N� as expected from Eqs. �19� and �28�.

Figure 5�c� shows that, near resonance, there are corre-
sponding large oscillations in the noncondensate numbers
calculated from Eq. �4�. Near-resonance Nex increases qua-
dratically with time, on-resonance, the increase is exponen-
tial.

VI. BOGOLIUBOV RESONANCES FOR T=2�

The kick period T=2�, in a noninteracting system of cold
atoms �i.e., g=0� corresponds to a so-called “quantum anti-
resonance,” where the cold atom cloud exhibits periodic
�period-2� oscillations. Hence the isolated Bogoliubov reso-
nance regime persists to higher K than would be expected for
generic T. The effect of a nonzero g for T=2� was investi-
gated in Ref. �6�. An instability border occurring at a critical
value of nonlinearity, e.g., for g�2 at K=0.8, was identified
where the growth on noncondensate particles with time be-
came exponential.

In Fig. 6�a� we investigate the behavior near critical g, for
K=0.8. We see that if a wider range of g is considered, the
stability border is also a resonance: the condensate rapidly
recovers stability after the instability border is passed. The
condensate is exponentially unstable for g�2→2.6, but is
quite stable for both g=1.5 and g=3, as shown. Figure 6�b�
shows oscillations in the condensate energy, as a function of
time; a smoothed plot is also shown. For g=1.5 and g=2.8
�off resonance� the smoothed plots are flat; for g=2.2 and
g=2.5 �near resonance�, slow deep oscillations are apparent.

The behavior is analogous to that of generic T; however,
the analysis of the condensate resonances for T=2� is less
straightforward: the strongest resonances, even for low K
�2, do not, in fact, occur for �lT�2�M, where M
=1,2 ,3 , . . .. A significant difference between generic T and
T=2� is that, for the generic case, if we write

0.6

0.7

0.8

0.9

1

E
ne

rg
y

(sin
2

Nδ)/δ2

near resonance

0 200 400time (N)

1

10

N
ex

(t
) t

2

0 20 40 60 80 100N
0.159

0.1595

0.16

0.1605

E
ne

rg
y

numerical
model

Off-resonance

g=9.5

9

g=9.5

10

7.5

9
10

7.5 (x10)

(a)

(b)

(c)

FIG. 5. �Color online� Test of perturbative model. �a� Conden-
sate energy oscillations from GPE numerics and Eq. �28�. K�

=0.04, g=2, T=2. Beating between modes 1 and 2 is very accu-
rately described by Eq. �28�. �b� Behavior of l=2 resonance of Fig.
1�b� K�=0.04,T=2, and g�9.5. As the resonance is approached the
amplitude of the oscillations is proportional to the square of their
wavelength, i.e., E�t=NT�
K4 1

���2 sin2 N�, where 2� is the distance
from the resonance peak. �c� Corresponding number of nonconden-
sate atoms from Eq. �4�.
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FIG. 6. �Color online� �a� Noncondensate particles for kicking
period T=2�, K=0.8, g�2. The inset shows the rate of exponential
growth of noncondensate atoms; zero denotes polynomial growth or
less. The graph shows this instability border is a resonance: the
condensate is unstable for g=2–2.5 but is stable for g=1.5 and g
=3.0. �b� Energy oscillations as a function of time; smoothed plots
are also shown. Before and after the resonance �g=1.5 and g=2.8�
the smoothed plots are flat. Near resonance �g=2.2 and g=2.5� the
energy shows the characteristic slow, deep resonant oscillations.
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�lT � 2�Ml + 2��l� �29�

we see that for arbitrary generic T, the distance from the
nearest resonance, for the different modes, depends on l. In
contrast, for T=2�, for large l �i.e., l�3� we find �lT��l2

+ g
� ��; in other words, the dephasing from the nearest reso-

nance �and hence the period of the mode oscillations� is
similar �either 2�� g

� or 2��1− g
� � for all modes. So all

mode oscillations for high l are approximately in phase with
each other.

For K=0.8, only low modes l=1,2 are significantly popu-
lated. These low modes �l=1 and l=2� are only in phase with
each other at certain precise values of g ,T. For these param-
eters, the model of Eq. �14� predicts large resonances when-
ever the condition ��1+�2�T�2�M is satisfied. In particu-
lar, for the resonance near g�2, we find that for the l=1
mode, �1T��1−2��2� while for the l=2 mode �2T��2
+2��2�, with 2��0.25.

These results suggest that “two-mode resonances,” i.e.,
synchronized oscillations of pairs of the lowest excited
modes are the dominant mechanism for T=2�. They account
for the shifting position of the critical instability border
found by Ref. �6� in the T=2� case. For example, for
slightly higher kick strengths, such as K�2, a resonance
appears for g�1.65 corresponding to ��2+�3�T�2�M,
which accounts for the displacement of the instability border
to lower values of g. Note that the resonance positions in the
full numerics are K dependent, whereas in the perturbative

model of Eq. �14� this dependence is neglected; the model is
only valid for very small K.

VII. CONCLUSION

In conclusion, we have shown that exponential instability
in kicked BECs is related to parametric resonances, i.e., driv-
ing of low-lying collective modes at their natural frequen-
cies, rather than to chaos in the underlying mean-field dy-
namics �24�. The signature of this process is in the onset of
slow, large amplitude periodic oscillations in the condensate
energy as well as the number of noncondensate atoms calcu-
lated from the time-dependent Bogoliubov formalism, as a
resonance is approached. The resonances proliferate and
overlap for large kick strengths K, leading to instability over
wider ranges of K and g. The time-dependent Bogoliubov
approximation used here and in all other previous studies is
only valid in regimes where the condensate depletion is neg-
ligible; for realistic condensates analysis of the dynamics in
the narrow �for weak driving� windows of parametric insta-
bility, would require other approaches. However, away from
these windows, the kicked condensate remains stable and
relatively unperturbed, even after prolonged kicking.
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