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Energetics and structural properties of trapped two-component Fermi gases
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Using two different numerical methods, we study the behavior of two-component Fermi gases interacting
through short-range s-wave interactions in a harmonic trap. A correlated Gaussian basis-set expansion tech-
nique is used to determine the energies and structural properties, i.e., the radial one-body densities and pair
distribution functions, for small systems with either even or odd N, as functions of the s-wave scattering length
and the mass ratio « of the two species. Particular emphasis is put on a discussion of the angular momentum
of the system in the BEC-BCS crossover regime. At unitarity, the excitation spectrum of the four-particle
system with total angular momentum L=0 is calculated as a function of the mass ratio «. The results are
analyzed from a hyperspherical perspective, which offers unique insight into the problem. Additionally, fixed-
node diffusion Monte Carlo calculations are performed for equal-mass Fermi gases with up to N=30 atoms. We
focus on the odd-even oscillations of the ground-state energy of the equal-mass unitary system having up to
N=30 particles, which are related to the excitation gap of the system. Furthermore, we present a detailed
analysis of the structural properties of these systems.
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I. INTRODUCTION

Pure Fermi systems with essentially any interaction
strength can be realized experimentally with ultracold atomic
gases. In most experiments to date, large samples of atomic
Li or K are trapped optically in two different hyperfine
states, in the following simply referred to as “spin-up” and
“spin-down” states. By tuning an external magnetic field in
the vicinity of a Fano-Feshbach resonance [1-4], the inter-
species s-wave scattering length can be varied from nonin-
teracting to infinitely strongly interacting (either attractive or
repulsive). This tunability is unique to atomic systems, and it
has enabled quantitative experimental studies of the cross-
over from the molecular BEC regime to the atomic BCS
regime [5-10]. Since the systems studied experimentally are
in general large, many observations have been explained
quite successfully by applying theoretical treatments based
on the local density approximation (LDA); see, e.g., Ref.
[11], and references therein. The LDA uses the equation of
state of the homogeneous system as input and, in general,
accurately describes the properties of the system near the
trap center, where the density changes slowly. However, it
fails to accurately describe the properties of the system near
the edge of the cloud, where the density varies more rapidly.

In a different set of experiments, atomic Fermi gases are
loaded into an optical lattice with variable barrier height
[12-14]. In the regime where the tunneling of atoms between
neighboring lattice sites can be neglected, each lattice site
provides an approximately harmonic confining potential for
the atoms at that site. Through the application of a so-called
“purification scheme” [15], experimentalists are now able to
realize systems with a deterministic number of atoms per
site. So far, optical lattices have been prepared with one or
zero atoms per site, with two or zero atoms per site, and with
three or zero atoms per site. Optical-lattice experiments thus
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allow for the simultaneous preparation of multiple copies of
identical few-particle systems. We anticipate that these ex-
periments will be extended to larger atom samples in the
future, thereby opening the possibility to study systemati-
cally how the properties of the system change as functions of
the number of atoms. Transitions from few- to many-body
systems have, e.g., been studied experimentally in metal and
rare gas clusters [16,17], and it is exciting that the experi-
mental study of this transition in dilute gaseous systems is
within reach. A mature body of theoretical work has also
investigated the manner in which bulk electronic, magnetic,
and superfluid properties can be understood by studying
small or modest-size clusters [18,19].

This paper presents theoretical results for trapped two-
component Fermi gases with up to N=30 fermions, which
shed light on the few- to many-body transition from a micro-
scopic or few-body point of view. To solve the many-body
Schrodinger equation we use two different numerical meth-
ods, a correlated Gaussian (CG) basis set expansion ap-
proach and a fixed-node (FN) diffusion Monte Carlo (DMC)
approach. The CG approach allows for the determination of
the entire energy spectrum and eigenstates with controlled
accuracy (i.e., no approximations are employed and the con-
vergence can be systematically improved). If we demand an
accuracy of the order of 2% or better, our current CG imple-
mentation limits us to treating systems with up to N=6 atoms
(and to the lowest ten or twenty eigenstates). The FN-DMC
method, in contrast, can be applied to larger systems but its
accuracy crucially depends on the quality of the many-body
nodal surface, which is, in general, unknown. Moreover, the
FN-DMC approach as implemented here treats only ground-
state properties for the chosen symmetry. Careful compari-
sons of the ground-state energy and structural properties cal-
culated by the FN-DMC and CG approach for different
interaction strengths validate the construction of the nodal

©2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.77.043619

VON STECHER, GREENE, AND BLUME

surfaces employed for N=6. We expect, and provide some
evidence, that our nodal surfaces constructed to describe the
energetically lowest-lying gaslike state of larger N are also
quite accurate.

Specifically, we calculate the energy of the energetically
lowest-lying gaslike state of trapped two-species Fermi gases
as a function of the number of particles N, the s-wave scat-
tering length a,, and the mass ratio «. Our ground-state en-
ergies for even and odd N can be readily combined to deter-
mine the excitation gap, which is related to pairing physics.
For small systems, we additionally determine and discuss the
excitation spectrum. Furthermore, we present pair correlation
functions, which provide further insights into the pair forma-
tion process, and radial density profiles for the ground state.
Finally, we elaborate on the interpretation of the behaviors
within a framework that uses hyperspherical coordinates.
This connection has been summarized in an earlier paper
[20]. Here, we present additional results and discuss in more
detail how the even-odd oscillations emerge in the hyper-
spherical framework. Our analysis provides an alternative
means, complementary to conventional many-body theory,
for understanding the excitation gap at unitarity.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Hamiltonian of the system under study,
reviews the definitions of the normalized energy crossover
curve and the excitation gap, and summarizes some peculiar
properties of the unitary gas using hyperspherical coordi-
nates. Section III summarizes the CG and FN-DMC ap-
proaches, and provides some implementation details specific
to the problem at hand. Section IV presents our results for
the ground state energies, the excitation spectrum and struc-
tural properties. Finally, Sec. V concludes.

II. THEORETICAL BACKGROUND
A. Hamiltonian

The main objective of this paper is to obtain and interpret
solutions to the many-body time-independent Schrodinger
equation for a trapped two-component Fermi gas with short-
range interactions. The model Hamiltonian for N; fermions
of mass m; and N, fermions of mass m, reads

, 1 -2 _, 1 o
H= E —V +2m1wr +E —V + My

2

Ny Ny
+E 2 Vo(riin). (1)

=1 =1

Here, 7; and 7;» denote the position vector of the ith mass m,
fermion and the i’th mass m, fermion, respectively. Both
atom species experience a trapping potential characterized by
the same angular frequency w. For equal masses, this is in-
deed the case in ongoing experiments. For unequal masses,
however, the two atomic species typically experience differ-
ent trapping frequencies. Our restriction to equal trapping
frequencies reduces the parameter space which otherwise
would be impractical to explore numerically. Furthermore,
our CG calculations simplify for equal trapping frequencies
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because the center-of-mass and relative motions decouple in
this case. The studies presented here for unequal masses but
equal frequencies complement our earlier study [21], which
treats two-component Fermi gases with unequal masses that
experience trapping frequencies w; and w, adjusted so that
mw,=m,w,. In Eq. (1), V; is a short-range two-body poten-
tial between each pair of mass m; and mass m, atoms. We
characterize the strength of V, by the s-wave scattering
length a,, which can be varied experimentally through the
application of an external magnetic field in the vicinity of a
Fano-Feshbach resonance. Here, we model this situation by
changing the depth of Vj;; our results should be applicable to
systems with a broad s-wave Fano-Feshbach resonance and
vanishingly small p-wave interactions.

The present study considers two-component Fermi gases
with either even or odd N, where N=N;+N,. Because odd-
even oscillations serve as one major subject of this study, we
set Ny=N, for even N, and N;=N, = 1 for odd N. In addition
to the scattering length a,, we vary the mass ratio «

K=m/m,. (2)

Throughout, we take m;=m, so that k=1. In most cases,
we measure lengths in units of the oscillator length ay,, ap,
=v/(2uw), which is defined in terms of the reduced mass
M p=mymy/ (my+m).

It has been shown previously [20,22-24] that small equal-
mass two-component Fermi gases, which interact through
short-range two-body potentials with infinitely large a, that
support no s-wave bound state, support no weakly bound
many-body states with negative energy. For unequal mass
systems the situation is different [23,25-27]. Trimers consist-
ing of two heavy particles and one light particle that interact
through short-range potentials support weakly bound states
with negative energy if the mass ratio and the scattering
length are sufficiently large. Reference [21] discussed the
role of nonuniversal trimer states for unequal-mass systems
in some detail, and we return to this discussion in Sec. IV A.
Throughout this work, we restrict our analysis to gaslike
states, consisting of atomic fermions, molecular bosons, or
both.

To solve the Schrodinger equation for eigenstates of H,
we use two different numerical methods: a CG basis set ex-
pansion technique and a FN-DMC technique. For numerical
convenience, we utilize different short-range potentials V;, in
our CG and FN-DMC calculations. We adopt a purely attrac-
tive Gaussian interaction potential defined as

[-5)
Vo(r)=—d ex 3
o(r) = P\~ 3R2 3)
in the CG calculations, and a square well interaction poten-
tial defined as

—d for r<R,
V=1, )

or r> R,
in the FN-DMC calculations. For a fixed range R, the po-
tential depth d is adjusted so that the s-wave scattering length
a, takes the desired value. The range R is selected so that
Ry<<ay,. The premise is that the properties of two-
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component Fermi gases with short-range interactions (or at
least the universal state properties) are determined by the
s-wave scattering length a, alone, and independent of the
details of the underlying two-body potential if the range Ry is
chosen sufficiently small. Ideally, we would consider the
limit Ry=0. This is, however, impossible within the numeri-
cal frameworks employed. Thus, we perform calculations for
different finite R, which allow us to approximately extrapo-
late to the Ry=0 limit and to estimate the dependence of our
results on R, i.e., to estimate the scale of the finite-range
effects.

B. Energy crossover curve and excitation gap

The energetically lowest-lying gaslike states of two-
component Fermi gases with short-range interactions deter-
mine the normalized energy crossover curve A,(\}‘) and the
excitation gap A(N). To simplify the notation, the energeti-
cally lowest-lying gaslike state is referred to as the ground
state in this section. The BCS and BEC limits of the cross-
over can be treated perturbatively. For small |a,| and a,<0,
the system behaves similar to a weakly interacting atomic
Fermi gas whose leading order properties beyond the nonin-
teracting degenerate Fermi gas are determined by a,. For
attractive two-body potentials that generate small a, and a;
>0, in contrast, the system behaves similar to a weakly in-
teracting molecular Bose gas whose properties are to leading
order determined by a,,, where a,; denotes the dimer-dimer
scattering length. (One can also have small, positive a; with
purely repulsive two-body potentials that have no bound mo-
lecular states, but these systems behave quite differently and
will not be considered in this paper.) In the strongly interact-
ing regime (large |a,|), perturbation theory cannot be applied
and it is not clear a priori whether the system behaves more
similar to an atomic gas or a molecular gas, or neither of the
two.

The definition of the normalized energy crossover curve
AE\;?’Nz introduced in Refs. [21,28] for even N can be ex-

tended to odd N,

E(N},N,) = N,E(1,1) = 3N fiw/2
En;— %Nﬁw '

Ariow, = 5)
Here, E(N,,N,) denotes the ground-state energy of the
trapped two-component gas consisting of N; fermions with

mass m; and N, fermions with mass m,. In Eq. (5), N, is
defined by

Ny=min{N,N,}, (6)

and corresponds to the number of dimers formed on the BEC
side, i.e., in the regime where a; is small and positive. Ny is
defined by

Ni=|N, = N,|; (7)

it represents the number of unpaired atoms on the BEC side,
and takes the value O for even N and 1 for odd N.

In Eq. (5), Exg denotes the ground-state energy of the
noninteracting two-component Fermi gas consisting of N at-
oms, where—as before—N=N;+N,. The Ey; can be evalu-
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ated as the sum of the noninteracting energies of polarized

Fermi gases E{; with N, and N, particles, En(N)=ER(N,)

+ER;(N,). Following Ref. [29], EX;(N;) can be written in

terms of the shell number 7, the energy of the closed shell

subsystem Eg?(nj) and the corresponding magic number
S

bl

EX(Ny) = EQG(ny) + (% + n) (N=NSho. (8)

The shell number n, represents the number of closed shells
and is given by

el L gD
ns—Int[g(Ni) + 3 1}, ©)
where

g(V) = V3[27N, = \3(243N2 - 1)] (10)

and Int[x] is the integer part of x. Finally, the energy of the
closed shell subsystem Eﬁ?(ns) and the corresponding magic
number N are

_ nyng+ 1) (ng+2)
- 6

N©S (11)

and

EG(ny)  (ng— Dng(ng+1)(ng+2) 3N
= + . (12)
ho 8 2
On the positive a, side where a high-lying two-body bound
state exists, a significant fraction of the ground-state energy
of the N fermion system is determined by the binding energy
of the trapped dimer, which depends on R,. To reduce the
dependence of AI(\',‘I)J\,2 on the range Ry, the energy E(1,1) of
N, trapped dimer pairs is subtracted in Eq. (5). Thus, AE\}‘I)’NZ
depends to a good approximation only on a, k, N, and N,
and not on the details of the underlying two-body potential
(see also Sec. IV A). By construction, AE\I’(),N changes from
one on the weakly interacting BCS side (small |a, and a;
<0) to zero on the weakly interacting molecular BEC side
(small, positive ay).

The weakly interacting regimes, where |a,| <ay,, can be
treated perturbatively assuming zero-range interactions, i.e.,
a Fermi pseudopotential [30]. For small |a,| and a,<0, the
energy within first order perturbation theory becomes

a
EzENl+ﬁwC,'f,l,N2a—S, (13)
ho

PR . . .
where CNlJVz is a dimensionless quantity. In general, the
evaluation of C]’\‘,l v, 18 @ bit cumbersome since there is no

unique ground-state and degenerate perturbation theory must
be applied. When both N; and N, correspond to closed
shells, then C;pNz can be calculated straightforwardly ana-

lytically [21],
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FIG. 1. (Color online) C}VpNz coefficients divided by Eyp as a
function of N. Circles correspond to L=0 ground state, squares to
L=1 ground state and triangles to L=2 ground state. A solid line
connects the odd-N values while a dashed line connects the even-N
values.

CK/]»NQ =47Tdiof F)p2 I(F)dr (14)

Here, p; N(7) is the density of a one-component noninteract-
ing gas with N; fermions of mass m;, normalized so that
[N (F)dr=N;. Alternatively, one can approximate the p}' by
the Thomas-Fermi density profiles. This approximation
should be quite accurate in the large N limit.

To obtain the C]’f]l'NZ for open-shell systems, we apply
first-order degenerate perturbation theory. This calculation
additionally allows us to obtain the angular momentum
quantum number L of the ground state. Figure 1 and Table I
present the results for N=20 and «=1. The coefficients
C) NN, increase monotonically with increasing N and show a
sllght odd-even staggering. In general, the coefficients C} NN
for even N are comparatively higher than those for odd N,
implying a smaller energy for even N than for odd N and
suggesting that, even in the perturbative regime, the odd-
even oscillations are already present. We note that the CflVl’ N,

TABLE I. Angular momentum L and coefficient C}\,I’Nz for the
ground state of equal-mass two-component Fermi gases in the
weakly attractive regime. Here, we consider N,=N; for even N and
Ny=N,+1 for odd N.

N L c}vl,N2 N L C}\,I’N2
2 0 % 12 0 12.2274
3 1= 13 0 13.1651
4 0 % 14 0 15.2382
5 1 % 15 2 16.1642
6 0 % 16 0 18.2445
7 1 % 17 2 19.1735
8 0 % 18 0 21.2476
9 0 % 19 2 %
10 0 921052 20 0 o
11 0  10.1980
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coefficients for even N shown in Fig. 1 clearly reflect the
shell closure at N=8.

In the weakly interacting molecular BEC regime, the two-
component Fermi system should behave similar to a system
that consists of N, bosonic molecules and Ny=0 or 1 fermi-
ons. In first order perturbation theory the ground-state energy
of such a system is given by

3N ( 1) 2 add
E%NdE(1,1)+ﬁa) 5 +ﬁwT (dd)
2 ad
+4 NN\/j s 15
WINgIN ¢ Wal(ﬁ,d) (15)

Here, a,; and a,; denote the dimer-dimer and atom-dimer
scattering lengths, respectively. The oscillator lengths aldd
and a](":d) for the dimer-dimer and atom-dimer systems aP‘?
=\h/(2uyyw) and a(“d)— I/ (2u, ) are defined in terms of
the reduced mass u,; of the dimer-dimer system and the
reduced mass u,, of the atom-dimer system, respectively.
The limiting behaviors of the BEC-BCS crossover curve
can be used to guide the construction of the many-body
nodal surface, which is a crucial ingredient for our FN-DMC
calculations (see Sec. III B). In the weakly interacting mo-
lecular BEC regime, even-N systems consist of N/2 dimers.
Each molecule is expected to be in its rotational ground state,
leading to a many-body wave function with total angular
momentum L=0. For odd-N systems, the extra fermion is
expected to occupy the lowest s-wave orbital, leading, as in
the even-N case, to a many-body wave function with L=0.
Thus, the angular momentum of even-N systems is expected
to be the same along the crossover while that of odd-N sys-
tems is expected to change (for N=3, this has been pointed
out recently by two independent groups [31,32]). This sym-
metry change introduces a kink in the normalized energy
curve Ag\l’?”vz for odd N and in the excitation gap A(N) (see

below) at the scattering length where the symmetry change
or inversion occurs.

In addition to the energy crossover curve, we calculate the
excitation gap A(N), which characterizes the odd-even oscil-
lations of two-component Fermi systems, as a function of N.
For homogeneous two-component Fermi systems with equal
masses, the excitation gap A, which equals half the energy it
takes to break a pair, is quite well understood. In the weakly
interacting BCS regime, the excitation gap A becomes expo-
nentially small [33,34], indicating vanishingly little pairing.
In the deep BEC regime, on the other hand, the excitation
gap approaches half the binding energy of the free-space
dimer, indicating essentially complete pairing: By adding an
extra particle to the odd-N system, the energy of the total
system changes by approximately the binding energy of the
free-space dimer. In addition to these limiting cases, the ex-
citation gap of the equal-mass two-component Fermi system
has been determined throughout the crossover regime by,
among other means, the FN-DMC method [35-37]. For
unequal-mass systems, in contrast, the behavior of the gap is
much less studied and understood [38-42].

To define the excitation gap A(N) for trapped unequal-
mass systems, we set N=2n+1 and assume N to be odd. The
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unequal-mass system is characterized by two chemical po-
tentials, the chemical potential u,(N) for species 1 and the
chemical potential u,(N) for species 2 (see, e.g., Ref. [43]),

En+1,n)=Emn,n)+w,2n+1)+AQ2n+1) (16)
and
Enn+1)=E(n,n)+ w,2n+1)+AQ2n+1). (17)

Here, A(2n+1) denotes the excitation gap. If A(2n+1)
vanishes—as is the case for the normal system—then Eqs.
(16) and (17) reduce to the “usual” chemical potentials. Fur-
thermore, w;(N) and u,(N) coincide for equal-mass systems.
To determine w,(N), uy(N), and A(N), we need an additional
relationship. In condensed matter physics, one typically con-
siders the average of the two chemical potentials

%[,LLI(Zn +1)+w,(2n+1)]= %[E(n+ 1,n+1)—E(n,n)].

(18)

Since the average chemical potential is defined in terms of
the energy of the next smaller and the next larger balanced
systems, it is independent of the odd-even oscillations. Equa-
tions (16)—(18) can be solved for wu;(2n+1), w,(2n+1), and
AQ2n+1),
En+1,n+1)-Emnn+1)

2

. E(n+1,n) - En,n)
2

m(2n+1)=

: (19)

En+1,n+1)-E(n+1,n)
2
. E(n,n+1)-E(n,n)
2

(20 +1) =

: (20)

and

_ En+1,n)+E(n,n+1)
- 2
Enn)+En+1,n+1)
5 .

AQ2n+1)

(21)

Note that the energies E(n+1,n) and E(n,n+1) are equal for
equal masses. The excitation gap A(N) and the chemical po-
tentials w;(N) and u,(N) depend on N, k, w, and a,.
Ultimately, one of the goals is to relate the excitation gaps
calculated for the trapped and the homogeneous systems. For
equal masses and equal frequencies, the densities of the two
trapped species overlap fully. Hence, one might expect that
the excitation gaps of the homogeneous and inhomogeneous
systems can be related via the LDA, which predicts that
A(N) scales with N as N'3. Connecting the excitation gaps
for the homogeneous and trapped systems in this way breaks
down, however, if the extra particle sits near the edge of the
gas cloud; this is the region that is poorly described by the
LDA. Indeed, we present some evidence that the extra par-
ticle sits for N= 11 near the cloud edge. For unequal masses,
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the connection between the two excitation gaps becomes
even more challenging, because one now has to first deter-
mine whether the trapped system exhibits phase separation
or not [40,44].

For the trapped system, the density mismatch can be
quantified by comparing the density overlap OX’]’Nz’

Oz’fll,zv2 = aioj p1(P)po(r)dr (22)

of the unequal-mass system with that of the equal-mass sys-
tem for a given scattering length a,. In Eq. (22), the one-
body densities p,(7) and the oscillator length ay,, depend on
k. In the noninteracting limit, the normalized density mis-
match 0;1»1\’2/0’1\’1”"2 reduces to C;\(’lsz/C’lVer' In this case,
01'{,“1\,2/0]1\,1’]\,2 equals one for all k if Ny=N,=1 (see Table II
of Ref. [21]). For larger N, however, OK'I,NQ/O}VI,Nz decreases
from 1 to a finite value that is smaller than one as « varies
from one to infinity. In particular, the Thomas Fermi approxi-
mation predicts Oz’f/],Nz/Ozlvl,N2=3157T/ 102412 ~0.683 for
large noninteracting systems (N;=N,) with large «. For the
small unequal-mass systems considered in Sec. IV, we find
that the density mismatch for finite a, is smaller than that for
a,=0.

C. Hyperspherical formulation at unitarity

The two-component Fermi gas at unitarity is character-
ized by a diverging scattering length, i.e., 1/a,=0. In this
regime, the underlying two-body potential, for sufficiently
small R, has no characteristic length scale, thus leaving only
the size of the system itself. This elimination of the two-body
length scale is the key to obtaining a number of analytical
results; a particularly appealing framework for deriving these
results employs hyperspherical coordinates. The hyperspheri-
cal formulation has been primarily developed in the context
of few-body systems [45-50]. More recently, some proper-
ties of Bose and Fermi gases with essentially arbitrary num-
ber of atoms have been explained successfully within this
formulation [51-53]. The ability to treat both small and large
systems on equal footing makes the hyperspherical formula-
tion particularly suited for studying the transition from few-
to many-body systems.

We define the hyperspherical coordinates by first separat-

ing off the center-of-mass vector R, ,,, and by then dividing
the remaining 3N—3 coordinates into the hyperradius R and
3N -4 hyperangles, collectively denoted by ). The hyperra-
dius R is defined by

Ny N
unRr =, mlri2 + mzriz, - MR? (23)
i=1

c.m.’
i'=1

and can be viewed as a coordinate that measures the overall
size of the system. Here, M denotes the total mass of the
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system, M=m;N;+m,N,, and uy an arbitrary mass scaling
factor. Usually, the value of wy is chosen so that the hyper-
radial potential curves V, (R), defined below, approach
physically motivated asymptotic values as R — .

In the adiabatic approximation [47], the relative wave
function ¥R, Q) reduces to

PR, Q) =R C¥2F (R)D (R Q). (24)

The antisymmetric Pauli correlations are built into the chan-
nel functions ®,(R;{)) at the outset. In addition, the
@ _(R;)) account for a significant fraction of the two-body
correlations of the system. Within the hyperspherical ap-
proximation, the description of the many-body system re-
duces to solving a one-dimensional Schrédinger equation in
the hyperradial coordinate R,

( W& V. (R) ! 2R2>F (R)=E™'F, (R)
-—+V + - = .
2MNdR2 s, 2,(,LN(U vn vn' vn

(25)

The effective hyperradial potential VSV(R) includes part of the
kinetic energy and a contribution due to the short-range two-
body interactions.

Assuming zero-range interactions, the adiabatic approxi-
mation becomes exact for a subclass of universal states of the
unitary two-component Fermi gas [54]. For these states, the
channel functions @, obey specific boundary conditions im-
posed by the zero-range pseudopotential and become inde-
pendent of R. Furthermore, the functional form of the hyper-
radial potentials V, (R) can be derived analytically [54],

h2s,(s,+1)

VsV(R) = 2,(LNR2

(26)
Equation (25), with the potential from Eq. (26), describes the
well known problem of a particle with finite angular momen-
tum in a trap. Therefore, the solutions of Eq. (25) are simply
extensions of the solutions for a single trapped particle to
arbitrary (noninteger) angular momentum s,. The eigenener-
gies of Eq. (25) are then given by

3
Ef,}:(s,,+2n+5>ﬁw, (27)

where 7 is a non-negative integer, and the hyperradial wave
functions F,,(R) (not normalized) by

2

R
FW(R)=RSv“LQ%”’Z)(Rz/ﬁ)exp(— ) (28)

2L2
where £ denotes the oscillator length associated with gy,
L=\h!(uyw), and Lff“” ? the Laguerre polynomial. The to-
tal energy E,, is obtained from Eﬁf,i by adding the center of
mass energy. The spacing between states labeled by the same
v is 2hw and is thus independent of s,. This implies that
knowledge of the lowest eigenenergy Eﬁf& in each hyperradial
potential curve determines the entire energy spectrum. This
property of the spectrum has also been shown using the scale
invariance properties of unitary systems [55]. Transitions be-
tween vibrational levels that lie within a given hyperradial
potential curve VYV(R) can be driven by an excitation opera-
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tor that depends on R only. Such a driving field results in a
ladder of excitation frequencies of the form 2k%iw, where k
denotes an integer. On the other hand, transitions between
states living in different hyperradial potential curves (labeled
by v and v') require the driving field to depend on €, or
stated more generally, the excitation operator must not com-
mute with the fixed-hyperradius Hamiltonian. The corre-
sponding excitation frequencies are, in general, noninteger
multiples of 24w and depend on the difference between s,
and s,,. Thus, knowledge of the entire excitation spectrum
requires determining all s,. Moreover, the coefficients s, of
the three-body system play a role in determining the three-
body recombination rate for large and negative a, [56], and
the lifetime of weakly bound dimers for large and positive a;
[56]. Similarly, one may expect that the s, of larger systems
play a role in determining the corresponding quantities for
larger systems. Finally, we note that the functional form
given in Eq. (26) can also be derived using density-
dependent two-body interactions within the hyperspherical
framework [57] and that Eq. (27) was obtained in Ref. [58]
for the ground state. Section IV C presents evidence of the
2fw energy spacing and determines the s, coefficients for
the four-particle system for various mass ratios.

Equation (23) defines the hyperradius R without the
center-of-mass motion. Alternatively, we can define a hyper-
radius R’,

MR'? = puyR* + MR?

c.m.’

(29)

which includes the center-of-mass motion and represents the
rms radius of the system. In the adiabatic approxi-
mation, the total wave function W(R',{)’) can be written in
terms of the new hyperradius R’ as W(R',Q)
=R'-GN-D2F (R")D(R';Q), where ' collectively denotes
the 3N—1 hyperangles. Equations (25) and (26) remain valid

if R, wy, and F,, are replaced by R', M, and F,,, respec-
tively [54]. The eigenvalues of the hyperradial Schrodinger
equation equal the eigenenergies E,,, of the total system. De-
fining x=R'/R,, and ¢€,,=E,/Ey;, the hyperradial
Schrodinger equation can be rewritten as

( 1 d* s(s,+1) 1

5\ = _
+ —x°|F,,(x)=¢€,F,,(x),
2:U’effx2 2 ) ( ) ( )

- 2/-Leff dxz

(30)

where u.q=Ex,/ (iw)?. Above, RY; denotes the rms radius of
the noninteracting system; it can be, using the virial theorem

[54,59], expressed in terms of the energy Ey; of the nonin-
teracting two-component Fermi gas

’ mroN h E
R{g= V(R )1 = \/% \/ﬁ_lz)l- (1)

The dimensionless coefficients Cy,
— solso+ 1) so(so+ DA*w?
CN = =

2
Meff Exq

; (32)

characterize the ground state of the system at unitarity. The
scaled hyperradius x and the scaled energies €,,, remain finite
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in the large N limit and are thus particularly well suited to
discuss the large N limit (see Sec. IV B). For small systems,
in contrast, some properties of the system can be highlighted
more naturally using the unscaled hyperradius R or R'.

The coefficients s, describe both the trapped and free sys-
tems, and can be related to the universal parameter & of the
homogeneous system [20]. The hyperspherical framework
thus connects few- and many-body quantities and allows one
to bridge the gap between atomic and condensed matter
physics.

III. NUMERICAL TECHNIQUES
A. Correlated Gaussian approach

The CG method has proven capable of providing an ac-
curate description of trapped few-body systems with short-
range interactions [20,21,60]. The CG method expands the
many-body wave function ¥ in terms of a set of basis func-
tions <I>{dij},

\I’(r_)lv see 7;N) = 2 C{dij}q){dij}(;l’ ’FN)r (33)
{dyj}

where the C{d’_j} denote expansion coefficients and the {d;;} a
set of widths. Each basis function has the form

N
q){d[-j}=8 wo(l_éc.m.)exp(_ E rlZJ/(Zdle)) . (34)

j>i=1

Here, ¢ is the ground state wave function associated with

the center-of-mass vector R, and the operator S ensures
that the basis functions have the proper symmetry under ex-
change of two fermions of the same species. Due to the
simplicity of the basis functions, the elements of the Hamil-
tonian and overlap matrices can be calculated analytically
[61,62]. Since the basis functions depend only on the center
of mass vector and the interparticle distances, i.e., Gaussians
centered around r;=0, the resulting eigenenergies corre-
spond to eigenstates with zero relative angular momentum
L., and zero total angular momentum L; throughout this
work, we do not consider center-of-mass excitations so that
Ly=L for all systems investigated. To determine the
eigenenergies of states of the N-atom system with nonvan-
ishing L., we add a spectator atom and solve the
Schrodinger equation for the (N+1)-atom system. The extra
particle does not interact with the rest of the system but can
have nonvanishing angular momentum. This trick allows us
to describe nonzero angular momentum states of the N-atom
system. We find, e.g., that the ground state of the equal-mass
three- and five-particle systems at unitarity has L =1.

To illustrate how the energies calculated by the CG
method converge with respect to the size of the basis set, we
consider the three-body system with L=0 at unitarity. We
define E, as the eigenenergies obtained for an optimized
basis set of size D. The optimization of the basis functions
for a given size D is performed using the basic ideas of the
stochastic variational approach [62]. The size of the basis set
is then increased and the new basis functions are optimized.
Figure 2 shows an example of the convergence of the lowest
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100 200 SOOD 400 500 600

FIG. 2. Convergence of the energetically lowest-lying energies
as a function of the size D of the basis set for N=3 (L=0) at
unitarity. The range R, is fixed at 0.01ay,. Solid lines connect the
CG energies (filled circles) of a given state for ease of viewing.

few eigenenergies for Ry=0.01a;, as a function of D. The
largest D considered in this study is 700, and the energies
have been tested and are approximately converged for this D
value. Thus, Fig. 2 shows the normalized difference between
E.o and Ep for the lowest few eigenenergies. Figure 2
shows that the basis set can be improved systematically.

For larger number of particles, the size of the basis set
needs to be increased. For N=5 and 6, the size of the basis
set is increased up to approximately D=10* The N=6 ener-
gies reported in Ref. [20], e.g., are calculated for D=1.6
X 10*. Here, we analyze the convergence of these energies as
a function of 1/D. Since the energies behave approximately
linearly as a function 1/D, we can extrapolate straightfor-
wardly to the limit D — . The extrapolated energies for v
=0 are EO(): 848%(1), Em:lO.SOﬁw, and E0221250ﬁw EOO
and E;; agree with those reported in Ref. [20] for D=1.6
X 10* while E, is only 0.02%w lower than the previously
reported value. For v=1 and 2, the extrapolated energies are
Ey=10.43%w and E,;=10.99% w; these energies are lower by
0.01%w than those reported in Ref. [20]. While the extrapo-
lated energies are most likely closer to the exact eigenener-
gies than the energies calculated for D=1.6 X 10*, we note
that the extrapolated energies are no longer variational, i.e.,
they no longer provide upper bounds to the exact eigenener-
gies. Our analysis of the v=2 excited energies shows that
the extrapolated energies follow the expected 2Aw spacing
more closely than those calculated for the largest D consid-
ered, suggesting that the extrapolation procedure is indeed
justified.

In general, the convergence of the energies with respect to
the basis set depends on the scattering length a, and the
number of states considered. Usually, an accurate determina-
tion of the spectrum at unitarity requires a larger basis than
the determination of the spectrum on both the weakly inter-
acting BEC and BCS sides. For equal-mass systems, a con-
verged basis at unitarity usually describes the spectrum in the
entire crossover region accurately. Of the equal-mass sys-
tems treated, the N=5 (L=1) calculations have been the
hardest to converge. For L=1 states, we can estimate the
uncertainty of the calculations by monitoring the energy of
the spare noninteracting particle, which is known analyti-
cally. For example, for the N=5 equal-mass calculations pre-
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FIG. 3. (Color online) Three-body energies E, at unitarity for
L=0 [(a) =0, (b) v=1, and (c) v=2] as a function of the range Ry,.
Symbols show the CG energies and solid lines the linear extrapola-
tion to the Ry=0 limit.

sented in Ref. [20], the energies of the spare noninteracting
particle deviate from the exact solution by approximately
0.01%w, which is less than 1%. We find that systems with
large « are typically harder to converge than the correspond-
ing equal-mass systems.

To analyze the effects of finite range interactions we study
the eigenenergies of the three-particle system at unitarity
(L=0) as a function of the range R,. Figures 3(a)-3(c) show
the energies for the lowest state in the hyperradial potential
curve VSV(R) with =0, 1, and 2. The energies show a linear
dependence on R, and can thus be extrapolated straightfor-
wardly to the zero range limit. Neglecting the basis set error,
which is estimated to be smaller than the uncertainty of the
extrapolation, we  find  Ey=4.66622(1)how, E
=7.627 38(2)hw, and E,;=9.614 66(4)hw. Our three-body
energies compare favorably with those calculated solving Eq.
(27) for the s, coefficients, »=0 and 1, determined numeri-
cally in Ref. [56], Ey=4.6662220hw and E;,
=7.627 352 1iw. These energies can also be obtained semi-
analytically by solving a transcendental equation [63]. Sec-
tion IV A reports three-particle energies for equal masses for
Ry=0.01a,,, which—according to Fig. 3—agree to better
than 0.027iw with those calculated in the zero-range limit.
We additionally performed systematic studies of the depen-
dence of the energies on the range R, for the three-body
system with equal and unequal masses in the weakly inter-
acting molecular BEC regime, where two-body bound states
form (see Secs. I B and IV A), and for the four-body sys-
tem. For the five- and six-body calculations, it is prohibi-
tively expensive to perform calculations for different R,,. For
these systems, we estimate the finite range effects based on
our findings for the N=3 and 4 systems.

In addition to the energies, Sec. IV D reports structural
properties calculated by the CG approach. The one-body
density and the pair distribution functions are extracted from
the total wave function W calculated by the CG approach by
integrating W2 over the relevant Jacobi coordinates.

B. Fixed-node diffusion Monte Carlo approach

For larger systems, the CG approach in our current imple-
mentation becomes prohibitively expensive and we instead
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determine first-principles solutions of the time-independent
Schrodinger equation using Monte Carlo techniques. In this
study, we use the FN-DMC method [64,65], a variant of the
DMC method, to determine solutions for up to N=30 fermi-
ons. The DMC method, which interprets the system’s wave
function as a density, allows for the accurate determination
of the energy of nodeless ground states but is not suited to
determine the energy of excited states of bosonic systems or
of fermionic systems. To treat systems whose eigenfunctions
have nodes, the DMC algorithm has to be modified slightly.
Here, we adopt the FN-DMC method, which obtains a solu-
tion of the Schrodinger equation that has the same symmetry
as a so-called guiding function ¢7. The FN-DMC method
provides, to within statistical uncertainties, an upper bound
to the exact eigenenergy of the many-boson or many-fermion
system, i.e., to the lowest-lying state with the same symme-
try as .

If the nodal surface of #; coincides with that of the exact
eigenfunction, then the FN-DMC method results in the exact
eigenenergy of the system. In general, however, the nodal
surface of the exact eigenfunction is not known and the FN-
DMC results depend crucially on the quality of the nodal
surface of ;. In this work, we consider three different pa-
rametrizations of the nodal surface of two-component Fermi
systems.

The guiding function i, reads

Ny Ny Ny
> > T1 > -
Y = H @, (r) H Do(ri ) Froge(rys - - aer)H gn(ry)
i=1 i=1 i<j
Ny NNy
x I1 g22(ryrj1) IT gia(risn). (35)
i'<j’ ii’
The function F!!,. determines the nodal structure of i, and

is, for even N and N;=N,, constructed by antisymmetrizing a
product of pair functions f [66],

Froge= A flrn), o flrw)), (36)

where A is the antisymmetrization operator. The pair func-
tion f is given by the free-space two-body solution [66]: f
coincides with the free-space two-body bound state solution
for positive scattering length a,, and with the free-space scat-
tering solution, calculated at the scattering energy E., for
negative a,. For N=6, we treat E, as a variational parameter
and find a reduction of the energy of 1% or 2% for a finite
E compared to E=0. For larger N, we simply use E
=0. For odd N, we add a single particle orbital ¢,; in Eq.
(36) so that FI! becomes, for Ny=N,+1 [35,67],

node

Fr{(l)de = A(f(rl 1')’ c ’f(er_l’Ng)s ¢nl(;N1/a£110)))

frypn) flriy,) bulFilaly)

flra) oo flray)  @(Faall)
=det . . . )

flry,10) flryn,) ¢n1(;1vl/dﬁ,))

(37)

where a{)=\%/(m;w). We consider a number of different

043619-8



ENERGETICS AND STRUCTURAL PROPERTIES OF ...

single particle orbitals ¢,,;, and determine the optimal nl/ val-
ues by performing a series of FN-DMC calculatlons For the
lowest n and [, the 0rb1tals read qboo(r/ aho) 1, ¢oi(Flal)
=z/a\l),  dro(Flal))=1-2(r/al))?/3, and qﬁoz(r/ahi)
=3(z/a))?- (r/a(lil)

In Eq. (35), the ®; (i=1 and 2) denote Gaussian single
particle orbitals that depend on a width parameter b;, ®;(7)
=exp[-r2/(2b})]. If b;=\h/(mw), ®; coincides with the
ground-state orbital of the harmonic oscﬂlator The param-
eters b, and b, are optimized variationally. For even N (N,
=N,) and equal masses, we require b, =b,. At unitarity, e.g.,
we find that the b; are smaller than the a”, reflecting the
attractlve nature of the 1ntersp601es interaction potential. If
b= aho, the product @, (f)(ﬁn,(r/ a}1 equals the harmonic os-
cillator wave function &7 all)).

In Eq. (35), the pair functions g,;, g,,, and g, are intro-
duced to improve the variational energy and to additionally
ensure that the structural properties calculated at the varia-
tional Monte Carlo (VMC) and FN-DMC levels agree at
least qualitatively. The pair functions g;; and g,, allow for
the effective repulsion between equal fermions to be ac-
counted for,

gii(r) = exp(= p;r~4) (38)

for i=1 and 2. The parameters p;, p,, q;, and ¢, are opti-
mized variationally. For even N and equal masses, we require
pi1=p, and q;=¢q,. The pair function g, is parametrized in
terms of the three variational parameters ¢, p,, and g,

g12(r) =1+t exp(=ppr2). (39)

The parameters ¢, p;,, and g, are optimized under the con-
straint that g, =0.

The guiding function ¢, is expected to provide a good
description of the system in the weakly interacting molecular
BEC regime, where we expect bound dimer pairs to form.
Section IV B shows that this wave function also provides a
good description of the unitary gas for sufficiently large N.
This is in agreement with FN-DMC studies for the homoge-
neous system [66]. Since each pair function f has vanishing
relative orbital angular momentum, the total angular momen-
tum L of ¢ is O for even N and N;=N,. For odd N, L of i,
is determined by the angular momentum of ¢, i.e., L=1.

In addition to ¢, we consider the guiding function i,

Ny Ny NpN;

= H‘D (”)H P (V/)\I’node(rl, -~~’;N2) H f(rii')'

-
i'=1 1,0

(40)
The nodal surface of i, is determined by W2 which is
defined so that the product I, ®, (7, )H V2 @y (F)WE2 . coin-

cides for b,-a%’(), with the wave function of N trapped nonin-

teracting fermions. Thus, the nodal surface of ¢~ coincides
with that of the corresponding noninteracting system. The

pair function f coincides with the pair function f introduced
above for r=R,,, where R,, is a matching point determined

variationally. For r>R,,, f is given by ¢;+c, exp(-ar). The
parameters ¢; and ¢, are determined by the condition that f
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and its derivative be continuous at r=R,, while « is opti-
mized variationally.

The guiding function W, is expected to provide a good
description of the system in the weakly interacting BCS re-
gime. In this regime, we construct the guiding function so
that its angular momentum agrees with that predicted ana-
lytically (see Table I). Section IV B shows that the guiding
function W, also provides a good description of small fer-
mionic systems at unitarity. Finally, the guiding function ¢/
is constructed following Egs. (3) and (4) of Ref. [68]. We
find that iy gives the lowest energy for N=11.

Expectation values (A) of operators A that do not com-
mute with the Hamiltonian cannot be calculated as straight-
forwardly by the FN-DMC method as the energy. Here, we
use the mixed estimator (A)ixeq [65,69],

<A>mixed = 2<A>DMC - <A>VMC- (41)

In Eq. (41), (A)ymc denotes the expectation value calculated
by the VMC method and {(A)pyc that calculated by the FN-
DMC method. We note that some algorithms for the calcu-
lation of pure estimators exist [70,71] but we do not use
them in this work.

In some cases, we optimize the variational parameters,
collectively denoted by p, by not only minimizing the energy
expectation value but by additionally ensuring that ¢ cap-
tures selected structural properties correctly. To this end, we
compare the structural properties calculated by the VMC
method for a given p, with those obtained by the FN-DMC
method, which uses ¢;(p,) as a guiding function, and then
choose a new parameter set p; so that the VMC structural
properties calculated using p, agree better with the FN-DMC
structural properties calculated using p,. This procedure is
repeated until the VMC and FN-DMC structural properties
and energy expectation values agree sufficiently well. For
equal-mass systems with N=20, our VMC energies are at
most 15% higher than the corresponding FN-DMC energies.
The optimization strategy employed here is similar in spirit
to that discussed in Ref. [72] for the homogeneous system.

IV. RESULTS
A. Ground-state energy in the crossover regime

This section discusses the behavior of the crossover curve
and the excitation gap for N=3 for different mass ratios «.
This odd-N study complements our earlier results for even N
[21]. Our analysis for N=4 showed that the crossover curve
AI(\;‘) is independent of the details of the two-body potential
and allowed us to extract the dimer-dimer scattering length
ay, and the dimer-dimer effective range r;; as a function of
k. The ay; and ry, results from Ref. [21] are summarized in
Table II. Furthermore, for larger even-N systems, we deter-
mined the validity regimes of the analytically calculated lim-
iting behaviors in the weakly interacting molecular BEC and
atomic BCS regimes. Our even-N study resulted in a deeper
understanding of some of the peculiarities of trapped systems
and emphasized similarities and differences between the
trapped and homogeneous systems.

The behavior of odd-N systems is rich and, in many cases,
qualitatively different from that of even-N systems. One
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TABLE II. Dimer-dimer scattering length a,; and dimer-dimer
effective range r , obtained using (a) the CG spectrum and (b) the
FN-DMC energies. The reported uncertainties reflect the uncertain-
ties due to the fitting procedure; the potential limitations of the
FN-DMC method to accurately describe the energetically lowest-
lying gaslike state, e.g., are not included here (see Sec. III B of Ref.

[21]).

K aqqlag (a) aqql a (b) Fagl ag () rqq! as (b)
1 0.608(2) 0.64(1) 0.13(2) 0.12(4)
0.77(1) 0.79(1) 0.15(1) 0.23(1)
8 0.96(1) 0.98(1) 0.28(1) 0.38(2)
12 11001) 1.08(2) 0.39(2) 0.55(2)
16 1.20(1) 12103) 0.55(2) 0.60(5)
20 12702) 1.26(5) 0.68(2) 0.74(5)

characteristic of odd-N systems is the possible change of the
angular momentum of the ground state as the scattering
length is tuned through the BEC-BCS crossover region (see
Sec. II B and Refs. [31,32]). Figure 4 shows the three-
particle energy E, with the energy E(1,1)+3fiw/2 sub-
tracted, for L=0 (solid lines) and L=1 (dashed lines). The
upper panel shows results for k=1, and the two lower panels
for k=4 [panels (b) and (c) consider the three-particle system
with a spare heavy and a spare light particle, respectively].
The ground state has L=1 for ay,/a;——% and L=0 for
ay./ a;— %, independent of « and independent of whether the
spare particle is heavy or light. For equal masses, the change
of symmetry occurs at a,=~ay,. For k=4, in contrast, it oc-
curs at a;=~0.3ay, if the extra particle is a heavy atom [panel
(b)] and at a,=~ 3a,, if the extra particle is a light atom [panel
(c)]. The dashed and solid lines shown in Fig. 4 coincide
with the normalized crossover curve Al(‘fl)»Nz’ Eq. (5), in the

region where the ground state of the three-particle system
has L=1 and 0, respectively. The normalized crossover curve
A(3K) changes from 1 in the weakly interacting molecular
BEC regime to O in the weakly interacting BCS regime.

We find that the normalized L=1 energy curve for two
heavy atoms and one light atom [Fig. 4(b)] depends notably
on the range of the underlying two-body potential if the scat-
tering length a; is positive. For example, the normalized en-
ergy curve changes by as much as 20% if the range R, of the
two-body potential changes from 0.01a;,, to 0.02a;,. This
comparatively large dependence on R indicates that the
properties of the system with two heavy atoms and one light
atom are not fully determined by the s-wave scattering length
for the ranges considered. In the Ry— 0 limit, the k=4 sys-
tem is expected to behave universal [23,27]. We speculate
that the comparatively strong dependence of the normalized
energy curve on the range for a,>0 is related to the fact that
the three-particle system supports, for sufficiently large «,
bound states with negative energy.

For comparison, circles and crosses in Fig. 4 show se-
lected three-particle energies calculated by the FN-DMC
method for L=0 and L=1, respectively. The good agreement
with the CG results (lines) indicates that the FN-DMC
method can be used to accurately describe different symme-
try states.
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FIG. 4. (Color online) Normalized energy [E-E(1,1)
—3hw/2]/hw for N=3 as a function of a,,/a, calculated by the CG
approach (lines). E denotes the three-body energy for L=0 (solid
lines) and for L=1 (dashed lines): (a) equal-mass atoms [«=1, E
=E(2,1)=E(1,2)], (b) two heavy atoms and one light atom
[k=4, E=E(2,1)], and (c) two light atoms and one heavy atom
[k=4, E=E(1,2)]. The normalized energy crossover curve Ag"), Eq.
(5), coincides with the dashed and solid lines, respectively, depend-
ing on whether the three-particle ground state has L=1 or 0. In the
CG calculations, the range R, of the two-body potential is fixed at
0.01ay,. For comparison, crosses and circles show selected FN-
DMC energies for L=0 and L=1, respectively.

Our CG energies for equal-mass systems interacting
through short-range potentials presented in Fig. 4(a) can be
compared with those of Kestner and Duan [31] obtained for
zero-range interactions. Our L=1 energy curve agrees with
that of Kestner and Duan for all scattering lengths a, consid-
ered. The L=0 energy curve, however, only agrees for a,
<0. For a;>0, our results are noticeably lower than those of
Kestner and Duan. As shown below, our a,>0 results for
L=0 predict the correct atom-dimer scattering length sug-
gesting that our energies should be very close to those for
Ry=0 and that the disagreement is not due to finite-range
effects. We speculate that the results of Kestner and Duan
might not be fully converged for a,>0 although other pos-
sibilities cannot be excluded.

Figures 5(a) and 5(b) present the BCS and BEC limiting
behaviors for an equal mass system with N=3. The pertur-
bative expression Eq. (15) on the BEC side is expected to be
applicable if Ry<<a,<<ay,; thus, we choose a small Ry, i.e.,
Ry=0.005a;,, in the CG calculations. The energy is in this
region determined by the atom-dimer scattering length a,,
[see Eq. (15)]. The CG energies change linearly with a,,
showing that a,; is proportional to a, i.e., a,;=c,ua, A
simple linear fit to the CG results predicts c,,~ 1.21, in good
agreement with previous studies [73,74], which found a,;
~1.2a,. A solid line in Fig. 5(a) shows the resulting linear
expression. A more sophisticated analysis accounts for the
energy-dependence of a,; [75,76], which results in a more
reliable determination of c¢,; and also a determination of the
effective range r,; [21]. Considering the three lowest energy
levels on the BEC side [21], we obtain c¢,,~1.18(1) and
r.a=0.08(1)a,. It was suggested earlier [24] that the atom-
dimer system is characterized by a soft-core repulsion with

043619-10



ENERGETICS AND STRUCTURAL PROPERTIES OF ...

0.2}@

0 0.05 0.1 0.15 0.2
55
3 [

<
~.5.48
—

— 546

Q)
5.44

83
_005 -004 -003 -002 001 0

as/aho

FIG. 5. (Color online) Limiting behavior of the ground-state
energy for N=3 equal mass fermions. (a) Energy correction AE
=E2,1)-E(1,1)-3%w/2 on the BEC side. Circles show the CG
results while the solid line shows the first order correction for a,,
=~ 1.2a,. (b) Energy E(2,1) on the BCS side. Circles show the CG
results while the solid line shows the first order correction on the
BCS side.

range of the order of a; our calculations support this general
picture but predict a range about ten times smaller than a.
On the BCS side, the first order correction varies also lin-
early with a,. Circles in Fig. 5(b) show the CG results while
the solid line shows the prediction from Eq. (13). Good
agreement is observed in both limiting behaviors.

Our CG energies for N=2, 3, and 4 can be readily com-
bined to determine the excitation gap A(3), Eq. (21). Figure
6 shows the excitation gap A(3) as a function of ay,/a, for
two different mass ratios, i.e., k=1 and 4. In the weakly
interacting molecular BEC regime, the excitation gap ap-
proaches 3fiw/2—E(1,1)/2 (circles), independent of the
mass ratio. In the weakly interacting BCS regime, however,
the excitation gap depends on the mass ratio (see inset of
Fig. 6). For equal masses, A(3) is very well described by the
perturbative expression for a;=<-0.5qa, (dashed-dotted line
in the inset). Figure 6 shows that A(3) is smaller for k=4

25

aho/as

FIG. 6. (Color online) Excitation gap A(N) for N=3 as a func-
tion of ay,./ay calculated by the CG approach for k=1 (solid line)
and «=4 (dashed line). Circles present the BEC limiting behavior
3fhw/2—E(1,1)/2 which is independent of . The inset shows a
blow-up of the region where A(3) is smallest; in this region, the
dependence of A(3) on « is most pronounced. The dashed-dotted
line shows the limiting behavior for k=1 obtained by approximat-
ing the E(N) in Eq. (21) by their perturbative values, Eq. (13).
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TABLE III. CG and FN-DMC energies E at unitarity for small
equal-mass systems with angular momentum L=0 and 1. The CG
energies are calculated for the Gaussian interaction potential with
Ry=0.01ay, for N=3 and 4, and with Ry=0.054y,, for N=5 and 6.
The FN-DMC energies are calculated for the square well interaction
potential with Ry=0.01ay,. The guiding functions ¢y and ¢, Egs.
(35) and (40), are used to obtain the energies of states with L=0 and
1, respectively.

N L E/(fw) (CG) E/(fw) (FN-DMC)
3 0 4.682 4.67(3)
3 1 4275 4.281(4)
4 0 5.028 5.051(9)
5 0 8.03 8.10(3)
5 1 7.53 7.61(1)
6 0 8.48 8.64(3)
7 0 11.85(5)
7 1 11.36(2)
8 0 12.58(3)
9 0 15.84(6)
9 1 15.69(1)

than for x=1. Intuitively, this might be expected since the
radial densities of the two species do not fully overlap for
unequal masses (recall, we consider the case where species
one and two experience the same trapping frequency). Thus,
the pairing mechanism is expected to be less efficient in the
unequal-mass system, especially on the BCS side, than in the
equal-mass system. The next section discusses the behavior
of the excitation gap at unitarity in more detail.

B. Ground-state energy at unitarity

This section explores the odd-even behavior of two-
component Fermi gases at unitarity. In particular, we present
the excitation gap for equal-mass systems with up to N=30
fermions and interpret the behaviors of these systems within
the hyperspherical framework. We also discuss the excitation
gap for small unequal-mass systems.

Table III summarizes selected CG and FN-DMC energies
for small equal-mass systems at unitarity. Some of these en-
ergies were already reported in Refs. [20,21], and we include
them in Table III for comparative purposes. A comparison of
the CG and FN-DMC energies for N=6 shows that the FN-
DMC energies agree to within 2% with the CG energies for
both L=0 and 1 states. This agreement suggests that the
nodal surface used in the FN-DMC calculations is quite ac-
curate. Thus, Table III shows that the FN-DMC method al-
lows not only for an accurate description of the ground state
but also of excited states. For N=9, the energy of the L=1
state is by only about 0.15% @ smaller than that of the L=0
state. The ground state energies for larger N are reported in
Table II of Ref. [20]. For both even and odd N (N>9), we
find that the angular momentum of the lowest-energy state at
unitarity is zero. Our FN-DMC energies thus suggest that the
total angular momentum of the lowest-energy states at uni-
tarity has L=1 for small odd-N systems and L=0 for larger
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FIG. 7. (Color online) Excitation gap A(N) (squares) and re-
sidual energy Eqy(N)—Ey, (circles) for equal-mass Fermi systems at
unitarity as a function of N calculated from the FN-DMC energies.
Triangles show A(N) calculated using density functional theory
[78].

odd-N systems. We note that this conclusion depends cru-
cially on the construction of the nodal surface entering the
FN-DMC calculations. For N=19, e.g., the energies at uni-
tarity for L=2 and 1 are less than 0.8%w higher than the L
=0 energy; thus, the definite determination of the ordering of
the states at unitarity with different angular momenta re-
mains a challenge for odd-N systems with N>9.

For homogeneous systems, the ground-state energy per
particle at unitarity E, is related to the energy per particle
Er; of the noninteracting system by a universal proportion-
ality constant &, E,=E&Ep¢ [35,37,66]. Applying this result to
the trapped unitary system with even N through the LDA, the
ground-state energy Eqy(N) of the trapped system becomes
directly proportional to the energy Eyy of the noninteracting
trapped system [21]

Ego(N) = VEEn;. (42)

An analysis of our FN-DMC energies for N=2-30 suggests
that the trapped unitary system shows little shell structure.
This motivates us to “smooth” the noninteracting energies,
i.e., we approximate Ey; by the extended Thomas-Fermi ex-
pression [77]

1 1
ENI,ETF = ﬁ(l)Z(3N 4/3(1 + 5(3N _2/3> . (43)

To determine the proportionality constant & we fit our
even-N energies for N=2-30 to the expression \e"fTrENLETF.
We find £,=0.467, and denote the resulting energies by Ejy;.
This value is in very good agreement with our previous re-
sult §,=0.465 obtained by including the energies for N
=2-20 only [21]. Circles in Fig. 7 show the residual energy
Eqo(N)—Ejg, for both even and odd N. For even N, the energy
difference Eqy(N)—Ep, is at most 0.154w (except for N=30,
for which the error bar is large). This suggests that the ener-
gies of the trapped unitary system are indeed quite well de-
scribed by V&,Exigre; in other words, our energies show
little residual shell structure. As expected, the odd-N energies
are not even quantitatively described correctly by Egy(N)
—Eg,. Instead, Fig. 7 shows that the residual energy Eqy(N)
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FIG. 8. Hyperradial potential curves V(R) for equal-mass two-
component Fermi systems with (a) vanishing interactions and (b)
infinitely strong interactions as a function of R. The hyperradial
potential curves naturally appear ordered as N increases: Solid lines
correspond, from bottom to top, to N=4-20 (N even), while dashed
lines correspond, from bottom to top, to N=3-19 (N odd).

—Ej;, for odd N (circles) agrees quite well with the excitation
gap A(N) (squares). For comparison, triangles in Fig. 7 show
the excitation gap calculated using density functional theory
(DFT) [78]. The good agreement between the DFT and
FN-DMC results is encouraging.

The ground-state energies Eyy(N) determine the coeffi-
cients s, [see Eq. (27)] of the hyperradial potential VSO(R)
[see Eq. (26)]. Figures 8(a) and 8(b) show the lowest hyper-
radial potential curves V(R) [V(R)=VX0(R)+Vmp(R), where
Virap(R) = % un@’R? and uy=m] for N=3-20 in the noninter-
acting limit and at unitarity, respectively. The small R behav-
ior of V(R) is dominated by V; (R) while the large R behav-
ior of V(R) is dominated by Vi;,,(R). Comparison of Figs.
8(a) and 8(b) shows that the attractive interactions lead to a
lowering of the potential curves at unitarity compared to
those of the noninteracting system. Furthermore, the V(R) at
unitarity appear “staggered,” i.e., odd-even oscillations are
visible, reflecting the finite excitation gap at unitarity. In the
noninteracting limit, in contrast, the excitation gap is zero
and no odd-even staggering of the hyperradial potential
curves is visible.

To extrapolate to the large N limit, Fig. 9 shows the nor-

malized coefficients Cy, Eq. (32) with Ey replaced by
Exipre as a function of N (just as in our analysis of the
energies Eg, we find it useful to smooth the energies Eyy).

The coefficients C‘N oscillate between two smooth curves, a
curve for even N (circles) and a curve for odd N (crosses). As
N increases, the difference between the two curves decreases.

In the large N limit, the value of Cy for two-component
Fermi gases at unitarity should approach the universal pa-
rameter & [20]. This can be shown by relating the ground-
state energy obtained within the hyperspherical framework,
Eq. (27), to the LDA prediction (see above), or by applying
renormalized zero-range interactions within the hyperspheri-
cal framework [57]. The dashed-dotted and dashed lines in
Fig. 9 show the ¢ value obtained by FN-DMC calculations
for the homogeneous system (£=0.42) [37,66] and the ¢
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FIG. 9. (Color online) Normalized coefficients Cy, Eq. (32) with
Exy replaced by Exygrr, as a function of N; values for even N are
shown by circles and values for odd N by crosses. The dashed-
dotted line shows the value £=0.42 obtained by FN-DMC calcula-
tions for the homogeneous system [37,66], while a dashed curve
shows the value £=0.508 obtained with a renormalization proce-
dure [79]. The inset shows the same quantities as a function of 1/N
instead of N.

value obtained with a renormalization procedure (£€=0.508)
[79], respectively. The FN-DMC energies place, neglecting
finite size effects, an upper bound on & and are expected to
be more reliable than the result obtained from the renormal-
ization procedure. For comparison, our energies for the
trapped system predict &,=0.467 (see above). The circles in
Fig. 9 approach this value. We attribute the fact that & is
larger than the corresponding value of the bulk system, i.e.,
£=0.42, to the comparatively small system sizes (N=30)
included in our analysis. If this was true, we would expect
the circles in the main part of Fig. 9 to turn around at larger
N values. We note that we cannot rule out that the nodal
surface entering our FN-DMC calculations might not be op-
timal.

In addition to equal-mass unitary systems, we study small
systems with unequal masses at unitarity. Figure 10 shows
the excitation gap A(N) for N=3 at unitarity as a function of
the mass ratio k. A(3) decreases from about 0.8%w for «
=1 to about 0.3%w for k=8. A decrease of the excitation gap
as a function of « has recently also been reported for the
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FIG. 10. (Color online) Circles show the excitation gap A(N) for
N=3 as a function of the mass ratio « at unitarity. Triangles and
squares show the chemical potentials w,(3) and u,(3), respectively.
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FIG. 11. (Color online) Four-body energy spectrum for L=0 at
unitarity as a function of k. Circles correspond to the numerical
results obtained by the CG approach. Solid, dashed, and dashed-
dotted lines show the energies E,+2nfiw for v=0, 1, and 2, respec-
tively (n=0,1,...).

homogeneous unequal-mass system at unitary [80]. To better
understand the decrease of A(N) with increasing «, triangles
and squares in Fig. 10 show the chemical potentials wu,(3)
and u,(3) for the two species. The decrease of w, is related
to the fact that trimers with negative energy form for suffi-
ciently large . We additionally note that the densities of the
light and heavy particles do not fully overlap. This effect is
unique to the trapped system (the study of the homogeneous
system with unequal masses [80] assumes equal densities of
the two components and full pairing). Simple arguments lead
one to conclude that a partial density overlap as opposed to a
full density overlap leads to a decrease of the excitation gap.
Thus, it is not clear if the decrease of A(3) visible in Fig. 10
with « is due to the same mechanisms that lead to a decrease
of A in the homogeneous system or due to the specifics of
the trapping potentials, or possibly both.

C. Excitation spectrum at unitarity

Excitation spectra of two-component Fermi gases are rich.
For four equal-mass fermions, e.g., Ref. [60] shows how the
spectrum evolves from the noninteracting limit for small |a,]|,
ay,<0, to different families in the small a, region, a,>0:
One family consists of states that describe two bound dimers,
another consists of states that describe a bound dimer plus
two atoms, and yet another consists of states that describe a
gas. Between these two limiting cases is the unitary region
where the eigenspectrum is expected to be characterized by
unique properties, similar to those of the noninteracting sys-
tem (see Sec. I C). In particular, in the unitary regime fami-
lies of eigenenergies separated by 2fiw are expected to exist
[54]. This prediction has recently been verified for up to six
particles with equal masses to within numerical accuracy,
i.e., to within 2% [20]. Here we extend our analysis to
unequal-mass systems with N=4 and L=0.

Circles in Fig. 11 show the zero angular-momentum en-
ergy spectrum calculated by the CG approach for four par-
ticles at unitarity as a function of «. The range of the Gauss-
ian potential is Ry=0.01ay,. To analyze the eigenenergies, we
employ the hyperspherical framework. Assuming that the
separation of the wave function (see Sec. II C) holds for the
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TABLE IV. Coefficients s, of the hyperradial potential curves
VSV(R), Eq. (26), for the N=4 system with L=0 for various mass
ratios K.

K So S1 Sy K So s SH
1 203 446 5.05 8 245 381 5.29
2 209 441 4.88 9 245 374 535
3 218 427 490 10 242 3,68 539
4 227 415 498 11 237 362 539
5 234 404 5.06 12229 357 5.30
6 240 395 515 13 217 351 5.18
7 243 3.88 522

short-range interactions considered here, we expect that the
energy spectrum consists of families of energy levels sepa-
rated by 2Aw. Solid lines show the energies Ey+2nfiw (n
non-negative integer), where E, denotes the lowest positive
energy of the spectrum (for sufficiently large «, negative
energy states form; these are not shown in Fig. 11). The
agreement between the solid lines and the CG energies indi-
cates that the 2hw spacing, predicted for zero-range interac-
tions, is fulfilled within our numerical accuracy. We repeat
this exercise for the next family of energy levels: Dashed
lines show the energy E,(+2nfiw, where E;, corresponds to
the lowest positive energy not yet assigned to a family. Simi-
larly, dashed-dotted lines connect states belonging to the
third family. In addition to the just outlined assignment of
quantum numbers, we checked in a few cases that the hyper-
radial wave functions F,,(R) corresponding to the energies
E,, possess n hyperradial nodes (see also Sec. IV E). The
lines in Fig. 11 show a crossing of energy levels belonging to
different families at k=4. In close vicinity to this crossing,
the spacing may not be exactly 2% w.

As already pointed out in the previous section, the ener-
gies E, determine the coefficients s, of the hyperradial po-
tential curves VSD(R). Table IV summarizes the three smallest
coefficients for various «.

D. Structural properties along the BEC-BCS crossover

In addition to the energetics, we analyze the one-body
densities and pair distribution functions of two-component
Fermi systems in the crossover regime for different x. While
the densities p,(F) of L=0 states are spherically symmetric,
those of states with L>0 are not spherically symmetric. In
the following, we determine the averaged radial densities
pi(r), normalized so that 47 [ p;(r)r’dr=N;; 47r’p/(r)/ N; tells
one the probability of finding a particle with mass m; at a
distance r from the center of the trap. If Ny=N, and m;
=m,, the radial one-body densities p,(r) and p,(r) coincide.
If m; and m, or Ny and N, differ, however, the radial one-
body densities p,(r) and p,(r) are, in general, different. We
also determine the averaged radial pair distribution functions
P;i(r), normalized so that 477fPl-j(r)r2dr=1; 477r2Pij(r) tells
one the probability to find a particle of mass m; and a particle
of mass m; at a distance r from each other. For notational

J
simplicity, we refer to the radial one-body densities as one-
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FIG. 12. (Color online) Pair distribution functions P,(r), mul-
tiplied by 2, for equal mass two-component Fermi systems with
N=3 and L=0 (dashed lines), N=3 and L=1 (dashed-dotted lines),
and N=4 and L=0 (solid lines) obtained by the CG approach for
three different scattering lengths ay: (a) a;=—ay, (BCS regime), (b)
1/ay=0 (unitarity), and (c) a,=0.1a,, (BEC regime). The pair dis-
tribution function for N=4 and a,=0.1ay, [solid line in panel (c)] is
shown in more detail in Fig. 13.

body densities and to the radial pair distribution functions as
pair distribution functions in the following.

Figure 12 shows the pair distribution function P,(r) for
N=3 (dashed and dashed-dotted lines correspond to L=0 and
1, respectively) and N=4 (solid lines) along the crossover for
k=1. Panel (a) shows results for a,=—ay, panel (b) for
1/a;4=0 and panel (c) for a,=0.1qay,. Interestingly, the pair
distribution functions for N=3 and 4 show a similar overall
behavior. In the BCS regime [Fig. 12(a)], the quantity
P5(r)r* shows a minimum at small r [for very small r,
P1,(r)r? goes smoothly but steeply to zero; this rapid change
of Py,(r)r? is hardly visible on the scale shown in Fig. 12].
At unitarity [Fig. 12(b)], P,,(r)r* shows a maximum at small
r and a second peak at larger r. In the BEC regime [Fig.
12(c)], the two-peak structure is notably more pronounced.
The peak at small r indicates the formation of weakly bound
dimers (one dimer for N=3 and two dimers for N=4), while
the peak between lay, and 24y, is related to the presence of
larger atom-atom distances set approximately by the atom-
dimer distance for the three-body system and the dimer-
dimer distance for the four-body system. This interpretation
suggests that the three-particle system has one small and one
large interspecies distance, and the four-particle system has
two small and two large interspecies distances. Indeed, inte-
grating P ,(r) for N=3 and 4 from 0 to the r value at which
P1,(r)7? exhibits the minimum, we find that the likelihood of
being at small distances (forming a molecule) and being at
large distances is the same.

We now analyze the pair distribution function P,(r) for
N=4 more quantitatively. Dashed-dotted lines in Figs. 13(a)
and 13(b) show the pair distribution function P;,(r), multi-
plied by 72, for two trapped atoms with a,=0.1a;,, (normal-
ized to 1/2). This dimer curve is essentially indistinguishable
from the small r part of the four-particle pair distribution
function (circles). To describe the large r part of the four-
particle pair distribution function, we consider two bosonic
molecules of mass 2m, which interact through an effective
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FIG. 13. (Color online) (a) Circles show the pair distribution
function P,(r), multiplied by 72, for a,=0.1ay, (BEC regime) cal-
culated by the CG approach for N=4 and k=1 [note, this quantity is
also shown by a solid line in Fig. 12(c)]. For comparison, the
dashed-dotted line shows P,(r)r? for two atoms of mass m with the
same scattering length but normalized to 1/2, the dashed line shows
P1,(r)r? for two trapped bosonic molecules of mass 2m interacting
through a repulsive effective potential with a,,=0.6a,, and the dot-
ted line shows Py,(r)r? for two trapped noninteracting bosonic mol-
ecules of mass 2m. Panel (b) shows a blow-up of the small r region.

repulsive potential with dimer-dimer scattering length a,,
~0.6a, [21,23]. The dashed line in Fig. 13(a) shows the pair
distribution function for this system under external confine-
ment. This dashed curve is essentially indistinguishable from
the large r part of the pair distribution function for the four-
particle system. For comparison, a dotted line shows the pair
distribution function for two noninteracting trapped bosons
of mass 2m. Figure 13 indicates that the effective repulsive
interaction between the two dimers is crucial for reproducing
the structural properties of the four-body system accurately.
Our analysis shows that the entire pair distribution function
P,(r) of the four-body system in the weakly interacting mo-
lecular BEC regime can be described quantitatively in terms
of a “dimer picture.”

We now return to Fig. 12 and discuss how the symmetry-
inversion of the N=3 system along the crossover (see Sec.
IV A) is reflected in P,(r). In the BCS regime and at uni-
tarity [Figs. 12(a) and 12(b)], P;,(r) shows less structure for
L=1 than for L=0. In the weakly interacting molecular BEC
regime [Fig. 12(c)], the pair distribution function for L=0
nearly coincides with that for L=1 at small » but is more
compact than that for L=1 at large r.

Next, we analyze how the behaviors of the pair distribu-
tion functions P,(r) for N=3 and 4 change along the cross-
over if the mass ratio is changed from k=1 to 4. Figure 14
shows the pair distribution functions for k=4. For N=3, we
consider three-particle systems with either a spare light par-
ticle or with a spare heavy particle. The pair distributions for
the three-particle system with two light particles and one
heavy particle are notably broader than those for the three-
particle system with one light particle and two heavy par-
ticles. This behavior can be attributed to the fact that al(fo)
>aﬁ). In addition to this, a comparison of the pair distribu-
tion functions shown in Fig. 14 for k=4 and those shown in
Fig. 12 for k=1 reveals that the overall behavior of the
P 5(r) is similar.
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FIG. 14. (Color online) Pair distribution function P;,(r), multi-
plied by 72, for two-component Fermi gases with k=4 for different
scattering lengths ag: (a) a;=—ay, (BCS regime), (b) 1/a,=0 (uni-
tarity), and (c) a;,=0.1ay, (BEC regime). Dashed and dashed-dotted
lines show Py,(r)r? for N=3 (two heavy particles) with L=0 and 1,
respectively. Circles and squares show P;,(r)r* for N=3 (two light
particles) with L=0 and 1, respectively. Solid lines show P;,(r)r?
for N=4 with L=0.

Figures 15(a) and 15(b) show the one-body densities for
k=1 and 4, respectively. In the noninteracting limit [the solid
lines show p;(r) and the circles show p,(r)], the sizes of
p1(r) and p,(r) are determined by al(lt) and aflzo), respectively.
As is evident in Fig. 15, the density of the light particles
extends to larger r than the density of the heavy particles.
The density mismatch for k=4 between the two one-body
densities decreases as a; is tuned through the strongly inter-
acting regime to the weakly interacting molecular BEC side.
In the weakly interacting molecular BEC regime, two mol-
ecules consisting each of a heavy and a light particle form. In
this regime, the size of the system is determined by the mo-
lecular trap length and the densities p;(r) and p,(r) [triangles
and dashed-dotted line in Fig. 15(b)] nearly coincide. Fur-
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FIG. 15. (Color online) One-body densities p,(r) and p,(r) for
N=4 and (a) k=1 and (b) k=4 for different scattering lengths a
[for k=1, p,(r) and p,(r) coincide and only p,(r) is shown]: Circles
and solid lines show p,(r) and p,(r) for a,=0, squares and dashed
lines show p,(r) and p,(r) for 1/a,=0, and triangles and dashed-
dotted lines show p;(r) and p,(r) for a,=0.1ay,. Note, p,(r) for
=4 and a,=0 [solid line in panel (b)] is multiplied by a factor of 3
to enhance the visibility.
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FIG. 16. (Color online) Pair distribution functions P,(r), mul-
tiplied by 7%, at unitarity for equal mass Fermi systems with (a) N
=3 (L=1) and (b) N=4 (L=0) atoms calculated by the CG method
(solid lines) and by the FN-DMC method (circles). The agreement
is excellent.

thermore, the densities are to a very good approximation
described by the one-body density for two bosonic molecules
of mass m;+m, interacting through an effective repulsive
interaction characterized by the dimer-dimer scattering
length (a,;~0.77a, for k=4 [21,23]).

We have also analyzed the pair distribution functions
P;i(r) for k=1 and 4 (not shown). The small r region of the
P;,(r) is controlled by the Pauli exclusion principle between
identical fermions. In the weakly interacting molecular BEC
regime, the pair distribution functions P;;(r) and Py(r)
nearly coincide even for k=4. In this regime, the pair distri-
bution functions P;;(r) are well approximated by that for two
particles of mass m;+m, interacting with a repulsive poten-
tial characterized by a .

E. Structural properties at unitarity

This section discusses selected structural properties of
two-component equal mass Fermi gases at unitarity with up
to N=20 atoms. For small systems (N=6), we present struc-
tural properties calculated using both the CG and the FN-
DMC methods. For larger systems, however, our interpreta-
tion relies solely on the structural properties calculated by
the FN-DMC method.

To assess the accuracy of the nodal surfaces employed in
our FN-DMC calculations as well as of the accuracy of the
mixed estimator [see Eq. (41) in Sec. III B], Figs. 16(a) and
16(b) compare the pair distribution functions P;,(r) for the
three-particle system with L=1 and the four-particle system
with L=0, respectively, calculated by the CG and the FN-
DMC methods. The agreement between the pair distribution
functions calculated by the CG method (solid lines) and the
FN-DMC method (circles) is very good, validating the con-
struction of the nodal surface of ;. Furthermore, the good
agreement suggests that the mixed estimator results, for the
guiding functions employed, in structural properties very
close to those one would obtain by an exact estimator.

Figure 17 shows the pair distribution functions P,(r) cal-
culated by the FN-DMC method for equal mass Fermi sys-
tems with N=3-20 at unitarity. To simplify the comparison,
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FIG. 17. (Color online) Dashed and solid lines show the pair
distribution functions P,(r), multiplied by erpair (Npair denotes the
number of interspecies distances), for equal mass Fermi systems at
unitarity with even N (N=4,6,...,20) and odd N (N
=3,5,...,19), respectively, calculated by the FN-DMC. Beyond r
= Qo P1o(r)r* Ny, is smallest for N=3 and largest for N=20.

Fig. 17 shows the even-N results as a dashed line and the
odd-N results as a solid line. Furthermore, P,(r)r? is multi-
plied by the number N,,;. of interspecies distances so that the
N=3 distribution function has the smallest and the N=20
distribution function the largest amplitude for r=a;,. The
pair distribution functions for even N show a similar behav-
ior for all N considered; both the small r and the large r
peaks grow monotonically and smoothly with increasing N.
For odd N, in contrast, the small r peak changes somewhat
discontinuously at N~ 11. This behavior can be attributed to
the guiding functions employed. For even N, the guiding
function ¢, whose nodal surface is constructed from the
two-body solution, gives the lowest energy for all N (except
for N=4). For odd N, however, ¢, results in a lower energy
for N=9, 5 for N=11, and ¢/ for N=13. Thus, the pair
distribution functions clearly reveal how the structural prop-
erties depend on the nodal surface employed in the FN-DMC
calculations and provide much deeper insights into the dif-
ferent ¢y employed than a mere comparison of the energies.

For N=13, Fig. 17 indicates that the amplitudes of the
scaled interspecies pair distribution functions are nearly the
same for neighboring systems. For example, the quantities
P15(r)r* Ny, for N=18 and 19 agree to a good approxima-
tion, suggesting that one can think of the N=18 system as
consisting of nine pairs, and of the N=19 system as consist-
ing of nine pairs plus a spare atom. Note that this interpre-
tation hinges critically on the nodal surface employed in our
FN-DMC calculations; a small change in the nodal structure
of the guiding function may change the small r behavior of
the pair distribution functions non-negligibly.

We next investigate in Fig. 18 where the spare particle is
located in the odd-N systems at unitarity. This figure shows
the one-body densities p;(r) (solid lines) and p,(r) (dashed
lines) for N=3, 9, and 15. For N=3, the difference between
p1(r) and p,(r) is roughly constant across the trap. The be-
havior is similar for N=9. Interestingly, the densities for N
=9 show a minimum at r=0, reflecting the fact that the FN-
DMC calculations employ the nodal surface of the ideal
Fermi gas, i.e., use » [Eq. (40)]. For N=15, the nodal
surface employed is constructed from the two-body solution
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FIG. 18. (Color online) The one-body density p;(r) (solid lines)
is shown for N=3, 9, and 15 (for r>0.5a;,, from bottom to top),
together with the one-body density p,(r) (dashed line) for N=3, 9,
and 15 (for r>0.5ay,, from bottom to top) for equal mass two-
component Fermi gases at unitarity calculated by the FN-DMC
method.

[see Eq. (35)], and consequently, the behavior of the density
profiles differs from that for the smaller N. The densities
p1(r) and p,(r) nearly coincide at small r. At large r, how-
ever, the density p;(r) has a larger amplitude than p,(r) (re-
call Ny=N,+1). Our data for N=15 indicate that the spare
particle is not distributed uniformly throughout the trap but
has an increased probability to be found near the edge of the
cloud. Possible consequences of this finding for the excita-
tion gap have already been discussed in Refs. [20,81].

To quantify the analysis of the one-body densities, we
integrate p,(r) over r,

r

Ni(r) = 477J pi(r ' dr' . (44)
0

For a finite upper integration limit, N;(+) monitors how many
of the N, particles are located between zero and r. Figure 19
shows N(r) for N=3, 9, and 15. As in Fig. 18, the results for
component one are shown by solid lines and those for com-
ponent two by dashed lines; in the large r limit, the N;(r)
equal N;, as expected. One can now read off nicely, in which

FIG. 19. (Color online) Solid and dashed lines show the inte-
grated quantities N,(r) and N,(r) [Eq. (44)], respectively, as a func-
tion of r for a two-component Fermi gas at unitarity. At large r, the
curves correspond from bottom to top to N=3, 9, and 15.
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FIG. 20. (Color online) The hyperradial density F éo(x) is shown
as a function of the dimensionless hyperradius x for N=3-10, cal-
culated using the mixed Monte Carlo estimator (symbols) and the
analytical expression with the FN-DMC energies (lines), respec-
tively. The maximum of F, (Z)O(x) is smallest for N=3 and largest for
N=10; the Monte Carlo results are shown by filled circles for N
=3, open circles for N=4, filled squares for N=5, open squares for
N=06, filled triangles for N=7, open triangles for N=8, filled dia-
monds for N=9, and open diamonds for N=10.

r regions the densities of the two components agree and
where they disagree. For N=3, e.g., the two atoms of com-
ponent one and the one atom of component two are added
over approximately the same r region. For N=15, in contrast,
the first five atoms of the two components are located in the
region with r=<1.5a,,; this core region can be considered
“fully paired.” The last three atoms of component one and
the last two atoms of component two form, loosely speaking,
a “partially paired or unpaired outer shell.” We find similar
behaviors for the odd-N systems with N=13, 17, and 19. It
will be interesting to see if this interpretation holds for larger
N, and if this information can be used to shed light on the
phase diagram of asymmetric Fermi gases [82,83].

To further verify the validity of the special properties of
two-component Fermi gases at unitarity as well as to further
assess the accuracy of our guiding functions employed in the
FN-DMC calculations, we analyze the hyperradial densities

Fgy(x) for various N. Symbols in Fig. 20 show the dimen-

sionless hyperradial density 17(2)0()6) calculated using the
mixed Monte Carlo estimator (41) for N=3 to 10. Here, x is
the dimensionless hyperradius defined just above Eq. (30)

and the normalization of the Fy, is chosen so that

I gl_«* 30(x)dx= 1. The dimensionless hyperradius x is scaled by
Ry;» which we evaluate by approximating Ey; in Eq. (31) by
Expgpr. This is similar to the “smoothing procedure” dis-
cussed in the context of Figs. 7 and 9. The hyperradial den-
sities become more compact as N increases, owing to the
increase of the effective mass u.g entering into the effective
hyperradial Schrodinger equation (30) with increasing N.
Furthermore, the maximum of the hyperradial densities oc-
curs at slightly larger x values for odd-N systems than for
even-N systems, in agreement with the odd-even staggering
discussed in Sec. IV B in the context of the hyperradial po-
tential curves V(R).

In the limit of zero-range interactions, the adiabatic ap-
proximation is expected to be exact (see Sec. I C). In this
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FIG. 21. (Color online) Hyperradial density an(R) for n=1,2,
and 3. Here, we choose uy=m (L=ay,). The solid lines show the
analytical solutions while the circles show the numerical results
obtained by integrating (W2 calculated by the CG method over
all coordinates but the hyperradius R.

case, the functional form of the hyperradial wave functions is
known analytically [see Eq. (28)], and can be compared with
the Monte Carlo results obtained for short-range potentials
by sampling the total wave function and integrating over all
coordinates but the hyperradius. Solid lines in Fig. 20 show

the hyperradial densities Fj,(x) for N=3 to 10 predicted ana-
lytically for zero-range interactions, using the FN-DMC en-
ergies Ey listed in Table III of this paper and Table II of Ref.
[21]. The agreement between the analytical results and the
Monte Carlo results obtained for finite range potentials is
quite good. On the one hand, this agreement lends numerical
support for the separability or near separability of the total
wave function into a hyperradial and a hyperangular part. On
the other hand, the good agreement suggests that the nodal
surface employed in our MC calculations is appropriate.

Finally, we analyze the hyperradial densities calculated by
the CG approach for the N=6 system. Since the CG ap-
proach allows for the determination of excited states, this
analysis allows us to verify that the 2w spacing reported in
Ref. [20] and discussed in Sec. IT C corresponds indeed to
breathing-mode excitations, i.e., to excitations along the hy-
perradial coordinate. To extract the hyperradial densities, we
integrate the square of the wave function W™ over all the
coordinates but the hyperradius. If the universal behavior is
fulfilled, then the hyperradial densities should coincide with
the square of the analytically determined F,,(R), Eq. (28),
which are shown in Fig. 21 by solid lines. The integration
over the hyperangular coordinates is carried out using Monte
Carlo integration techniques. Symbols in Fig. 21 show the
resulting hyperradial densities F2, (R) for »=0 and n=0, 1,
and 2. The numerically determined hyperradial densities in-
dicate that the excitations are to a good approximation lo-
cated along the R coordinate, supporting the interpretation of
the 27w spacing within the hyperspherical framework. The
agreement between the numerical and analytical results is
excellent for the ground state [see Fig. 21(a)]. For the excited
states with n=1 and 2, the small deviations between the nu-
merical and analytical results may be due to finite range ef-
fects or not fully converged numerical results.
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V. CONCLUSIONS

This paper presents a microscopic picture of the proper-
ties of ultracold two-component fermionic systems in a trap.
Complementing previous studies [20,21], we focus on the
energetics of odd-N systems, and the structural properties of
both odd and even-N systems.

For sufficiently few particles, we solve the Schrodinger
equation for equal and unequal mass systems, starting from a
model Hamiltonian with short-range interspecies s-wave in-
teractions using the CG approach. This basis set expansion
technique allows for the determination of the eigenspectrum
and eigenstates with controlled accuracy throughout the
BEC-BCS crossover. We find that the spectrum and the
structural properties of small trapped two-component Fermi
systems change qualitatively throughout the crossover re-
gime.

An analysis of the energies of the N=3 systems in the
weakly interacting BEC and BCS regimes allows us to de-
termine the validity regime of the analytically determined
perturbative expressions for small |a,|. Furthermore, we find
that the angular momentum of the N=3 ground state changes
from L=1 in the weakly attractive BCS regime to L=0 in the
weakly repulsive BEC regime for all mass ratios considered.
By additionally treating the N=2 and 4 systems, we deter-
mine the excitation gap A(3) throughout the crossover re-
gion: For equal frequencies, the excitation gap decreases for
all scattering lengths with increasing mass ratio. For N=4
systems with k=13, we determine the L=0 excitation spec-
trum at unitarity. The spectrum determines the s, coefficients
of the hyperradial potential curves and also verifies within
our numerical accuracy the 24w spacing prediction, which
was derived analytically assuming universality [54]. We veri-
fied in a number of cases that the 27w spacing corresponds
indeed to breathing-mode excitations.

Our analysis of the energetics is complemented by studies
of the structural properties. For the four-particle system with
equal and unequal masses, e.g., we show how the pair dis-
tribution functions in the a,>0 region (small a,) can be de-
scribed by a system of two molecules interacting through an
effective dimer-dimer potential with positive dimer-dimer
scattering length. A similar analysis was carried out for the
N=3 system and we verified that this system behaves as an
interacting system of an atom and a dimer.

Our small N studies have implications for optical lattice
experiments. Our results can be applied directly if each op-
tical lattice site is approximately harmonic in the nontunnel-
ing regime. In this context, Ref. [31] already pointed out,
including the energies of the two-and three-particle system,
that the occupation of optical lattice sites with three equal-
mass atoms is unfavorable. To start with let us consider a
system with two lattice sites and six atoms (three of each
species). We imagine that the lattice sites are loaded by adia-
batically turning up the barrier height between the two sites.
It follows from our energies calculated for N=2 through 4,
that the system ends up with unequally occupied lattice sites
at the end of the ramp: For both equal and unequal masses,
and for all scattering lengths, the energy of the two-site lat-
tice is minimal if two atoms occupy one site and the other
four atoms occupy the other site. This is simply a conse-
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quence of the fact that A(3) is positive throughout the cross-
over (note, the energy of the unequal mass system might be
further lowered if we consider the formation of pentamers
and sextamers with negative energies; these states are not
included in our analysis). The arguments presented here for
just two lattice sites generalize readily to lattices with mul-
tiple sites.

Instead of ramping up the barrier height adiabatically, we
now imagine a fast nonadiabatic ramp. In this case, the like-
lihood of finding three atoms per lattice site at the end of the
ramp is finite. Since the excitation frequencies for two-,
three-, and four-particle systems are different, a “purification
sweep” [15] can be used to then prepare a system with either
three or no particles per site. These three-particle systems
could be investigated spectroscopically (see, e.g., Sec. IV C
for a discussion of the excitation spectrum of the four-
particle system). Alternatively, one might ask whether it
would be possible to measure the odd-even physics by adia-
batically lowering the lattice barrier and monitoring the point
at which tunneling sets in.

In addition to systems with equal numbers of atoms in the
two species, we consider an optical lattice with twice as
many heavy as light atoms. If the mass ratio is sufficiently
large, trimers consisting of two heavy atoms and one light
atom with negative energy can form at each lattice site, pav-
ing the way for spectroscopic studies of these delicate sys-
tems. Furthermore, by starting with a bound trimer in a deep
lattice and then lowering the lattice height, a gas consisting
of bound trimers can possibly be prepared.

To extend the studies of the energetics and structural
properties to larger systems, we employed the FN-DMC
technique. This approach determines the lowest energy of a
state that has the same symmetry as a so-called guiding func-
tion and thus an upper bound to the exact eigenenergy. De-
tailed comparisons of the energies and the structural proper-
ties calculated by the CG and FN-DMC approaches
benchmark the nodal surfaces employed for systems with
N=6. In the strongly correlated unitary regime, e.g., the FN-
DMC energies for equal-mass two-component Fermi systems
agree with the CG energies to within 2%.

Our even-N energies (N=30) for equal-mass systems at
unitarity show vanishingly small shell structure. Applying
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the local density approximation and approximating the non-
interacting energies by the corresponding extended Thomas-
Fermi expression, we find &,=0.467, which is somewhat
larger than the value of the homogeneous system, &om
=0.42. We note that the expression V&.Ey; grr describes the
equal-mass energies for N=30 at unitary very well; the
small disagreement between &, and &,,,,, is most likely due to
the small number of particles considered in the present work.
Combining the even- and odd-N energies, we find that the
excitation gap A(N) at unitarity increases with N. Also, the
one-body densities and pair distribution functions at unitarity
are studied for up to N=20. For odd N with N=11, we
observe that the extra “unpaired” particle is located predomi-
nantly near the edge of the cloud, in agreement with previous
predictions [20,81]. This suggests that the LDA cannot be
applied to determine the excitation gap. Furthermore, we find
that the hyperradial densities of the lowest gaslike state with
N=10 calculated for short-range interactions by the FN-
DMC method agree with the analytically predicted ones, in-
dicating that the lowest gaslike state does indeed behave uni-
versally. Selected hyperradial densities for larger N were
already presented in Ref. [20].

The energies and structural properties for the equal-mass
two-component Fermi systems at unitarity presented in this
paper may serve as a benchmark for other calculations. Re-
cently, e.g., a DFT treatment determined the energies for
systems with up to N=20 particles [78]. The good agreement
between the FN-DMC energies and the DFT energies sug-
gests that the functional employed in the DFT calculations
captures the key physics. However, close inspection of the
FN-DMC and DFT energies indicates that the agreement be-
tween the even-N and odd-N energies is not equally good.
While this could be a consequence of the nodal surfaces
employed in our FN-DMC calculations, it could alternatively
indicate that the DFT treatment employed in Ref. [78] for
odd N is not optimal. Thus, it is hoped that our results will
proof helpful in assessing the accuracy of the DFT approach
and other approaches.
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