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We study the steady state of a zero-temperature Bose gas near a Feshbach or photoassociation resonance
using a two-channel mean-field model that incorporates atomic and molecular condensates, as well as corre-
lated atom pairs originating from dissociation of molecules into pairs of atoms. We start from a many-body
Hamiltonian for atom-molecule conversion, and derive the time-dependent version of the mean-field theory.
The stationary solution of the time-dependent model is rendered unique with an approximation that entails that
all noncondensate atoms are correlated, as if emerging from dissociation of molecules. The steady state is
solved numerically, but limiting cases are also found analytically. The system has a phase transition in which
the atomic condensate emerges in a nonanalytic fashion. We quantify the scaling of the observable quantities,
such as fractions of atomic and molecular condensates, with the detuning and the atom-molecule conversion
strength. Qualitatively, the dependence on detuning rounds out with increasing coupling strength. A study of
the thermodynamics shows that the pressure of the atom-molecule system is negative, even on the molecule
side of the resonance. This indicates the possibility of mechanical instability.
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I. INTRODUCTION

Photoassociation �1,2� and especially the mathematically
equivalent Feshbach resonance �3,4� have been main themes
in the physics of quantum degenerate Bose and Fermi gases
for a while. The earliest experimental work was carried out
on bosons. The widest-known examples are probably
Feshbach resonance in a Bose-Einstein condensate �BEC�
�5�, two-photon photoassociation �6� in a BEC, purported �7�
mechanical collapse of a BEC when the atom-atom interac-
tion is made attractive by using a Feshbach resonance �8�,
and Ramsey fringes in the conversion between atomic and
molecular condensates �9�.

In an aspect that is often concealed by phrases to the
effect that the Feshbach resonance is used to tune atom-atom
interactions, at least in principle photoassociation and
Feshbach resonance always involve conversion of atom pairs
to the corresponding diatomic molecules. These molecules
are in a highly excited vibrational state and are prone to
collisional quenching. In a Bose gas the molecules tend to be
short-lived ��10 ms�. However, it turns out �10,11� that the
diatomic molecules created at the 834 G Feshbach resonance
from fermionic 6Li atoms may persist for seconds. Thermal-
equilibrium experiments are feasible, which has spurred
enormous experimental and theoretical interest. Molecular
condensates are now prepared routinely �12,13�. Of particu-
lar interest to our theme of atom-molecule conversion is a
measurement of the equilibrium fraction of molecules as a
function of the magnetic field �14�, while a comparison of
the thermodynamical properties between experiments �15�
and quantum Monte Carlo simulations �16� serves as an il-
lustration of the present state of the art in the modeling of
fermion systems.

Given that the initial Feshbach resonance experiments
were time dependent in an essential way, the corresponding
theories were time dependent as well. Our approach is based
on field-theoretical modeling of atom-molecule systems
�17–19�, but there are methods springing, e.g., from theory

of molecular structure, as reviewed recently in Ref. �20�. For
instance, a good agreement with the atom-molecule Ramsey
fringe experiments in a BEC �9� has been reported by several
groups �21–25�. Our time-dependent method has produced
�26� a passable theoretical description of atom-molecule con-
version in an experiment �27� and yielded valid �28� predic-
tions about the temperature dependence and the maximum
value of the conversion efficiency also for fermionic atoms.

With the emergence of thermal-equilibrium experiments
in Fermi systems, the equilibrium-oriented theoretical ma-
chinery of condensed matter physics has been brought to
bear �16,29,30�. On the other hand, we have noticed �31� that
the stationary solution of our time-dependent formalism for
fermions �26� may also serve as a zero-temperature thermal
equilibrium theory. The stationary solution is not unique, but
it may be made so by assuming that all fermions appear in
correlated pairs, as if from the dissociation of molecules. The
result turns out to be a variant of the atom-molecule version
of the BCS theory �32–35� for Fermi gases. We �31� and
others �30,36� have reported favorable theoretical compari-
sons with the equilibrium fraction of molecules in the experi-
ments �14� in which the magnetic field was varied in the
neighborhood of the broad 6Li Feshbach resonance.

The immediate purpose of the present paper is to intro-
duce a similar “BCS” theory for bosonic atoms at zero-
temperature thermal equilibrium. Basically, we take our
time-dependent theory �22,25,37� and find the time-
independent solution. As with fermions, the stationary solu-
tion may be rendered unique with a pairing approximation,
which, however, turns out to be more subtle for bosons than
for fermions. As the secondary goal, we discuss the techni-
calities of our work on both bosons �22,25,37� and fermions
�26,31� that were not detailed in the original publications.

The main qualitative finding is that the atom-molecule
system exhibits a phase transition in which the atomic BEC
emerges in a nonanalytic fashion when the detuning, the
atom-molecule energy difference, is varied. What we now
call a two-mode model including only atomic and molecular
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condensates, no atom pairs at all, exhibits this same feature
�38�, and it survives, even at finite temperature, if atom pairs
are taken into account more or less like in the standard BCS
theory �39–41�. In the limit of weak atom-molecule conver-
sion, for instance, in the limit of a very dilute gas, the phase
transition is at the position of the two-body Feshbach reso-
nance, but for increasing atom-molecule conversion strength
it moves to the molecule side of the Feshbach resonance or
photoassociation. We characterize the phase transition and
the variation of quantities such as the molecule fraction with
both the detuning and the atom-molecule conversion
strength. Broadly speaking, the dependence on detuning
rounds out with increasing interaction strength. Finally, we
investigate the thermodynamics of the atom-molecule sys-
tem. The two-mode model is known to be dynamically un-
stable if there is an atomic condensate present �42�, but the
present model produces another puzzling surprise: The cal-
culated pressure of the gas is negative for all parameter val-
ues, which indicates mechanical instability.

II. FORMULATION OF THE PROBLEM

A. Hamiltonian

We model conversion of bosonic atoms into bosonic di-
atomic molecules using the momentum �wave-vector� repre-
sentation Hamiltonian �19,38�

H

�
= �

k
��kak

†ak + �� +
1

2
�k	bk

†bk

−

1

2�
p,q

��p,qbp+q
† apaq + �p,q

� aq
†ap

†bp+q� , �1�

as appropriate for a free �nontrapped� gas. Here ak and bk are
boson annihilation operators for atoms and molecules with
momentum �k, and ��k��2k2 /2m is the kinetic energy for
an atom with wave vector k. For a molecule with twice the
mass of an atom, the kinetic energy for a given momentum is
half of the energy of an atom. The detuning � gives the
energy difference between a stationary molecule �k=0� and
two stationary atoms in the form ��. This parameter is varied
in a Feshbach resonance by varying the magnetic field, and
in photoassociation by tuning the frequency �frequencies� of
the laser�s�.

Atom-molecule conversion entails that a pair of atoms is
either converted to a molecule or a molecule is dissociated to
a pair of atoms, all the while conserving the momentum.
The governing matrix elements are denoted by �p,q.
Ordinarily we deal with s-wave processes that dominate at
low temperature. By virtue of translational and rotational in-
variance, the corresponding coupling matrix element is then
of the form �p,q=���p−q��. Furthermore, we mostly write
the coupling matrix element as a once-and-for-all constant
�p,q=�. This means that atom-molecule conversion is
a zero-range contact interaction; in the position representa-

tion for the atomic and molecular fields �̂ and �̂, the corre-
sponding term in the Hamiltonian density would be

����̂†�r��̂�r��̂�r�+ �̂†�r��̂†�r��̂�r��. The contact interaction
model is convenient for our aims for two reasons: it reduces

the number of parameters to consider, and endowing the cou-
pling coefficients with a realistic momentum dependence
would much complicate the solution of the model. The
downside is an ultraviolet divergence �37�, which will re-
quire a renormalization.

Consider two atoms that may combine into a molecule in
the center-of-mass frame. Then a molecular bound state is
coupled to the continuum of the relative motion of the two
atoms. By redefining the global phases of the continuum
wave functions, one may always arrange things so that the
coupling coefficients �p,q and � are real, and � is also non-
negative. This is assumed to be the case below. We write
sums over the wave vectors in Eq. �1�, which presumes box
normalization of the dissociated states. The quantization vol-
ume V therefore enters the matrix element, �p,q�V−1/2

�19,38�.
Conspicuously missing from the model is a background

scattering length that would prevail, say, far away from the
Feshbach resonance. It could, and given the nature of our
results, maybe should be included; but again, since our focus
is on the nature of the system in the vicinity of the resonance
�=0, we keep the model and the attendant technical compli-
cations to the bare minimum.

A breakup of a molecule produces two atoms, and it takes
precisely two atoms to make a molecule. The Hamiltonian
�1� correspondingly has the conserved quantity

N̂ = �
k

�ak
†ak + 2bk

†bk� , �2�

number of atoms plus twice the number of molecules. We

use the value N of the invariant N̂ to characterize the number
of particles in the system, and occasionally, slightly inaccu-
rately, call it the atom number. The total momentum

P̂ = ��
k

k�ak
†ak + bk

†bk� �3�

is likewise a constant of the motion.

B. Dressed molecule

Before proceeding to many-body systems, we investigate
the solvable model with the invariant atom number equal to
two �31,37,43�. Without restricting the generality, we also
assume that the conserved center-of-mass momentum equals
zero. The state space is then spanned by vectors of the form
�31�

��
 = ��
k

A�k�ak
†a−k

† + �b0
†	�0
 , �4�

where A�k� �with A�k�=A�−k�� and � are complex numbers,
and �0
 is the particle vacuum. The time-dependent
Schrödinger equation follows from Hamiltonian �1� in the
form

i�̇ = �� −
�

2 �
k

A�k� , �5�
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iȦ�k� = 2�kA�k� − �� . �6�

If rotational invariance prevails at the initial time so that
A�k� is only a function of �k�, or equivalently, a function of
�k��, the same symmetry holds at all later times. Moreover,
in a two-atom system we may replace the sum over k by a
continuum approximation without running into problems
with the atomic BEC. We write the continuum approximation
as

�
k

f„��k�… →
V

�2	�3� d3kf„��k�… →
3N

2�F
3/2�

0




d���f��� .

�7�

We prefer quantities with the dimension of frequency over �
times the same quantities with the dimension of energy, so
that the integral runs over frequencies. Although it is silly if
not misleading in the present case of only two atoms
�N=2�, for future use we have defined the energy ��F by

�F =
�

2m
�6	N

V
	2/3

. �8�

It equals the Fermi energy for a single-component gas with
the density N /V, but obviously has nothing to do with any
physical Fermi energy. Instead, �F is a measure of the density
of the gas; the essentially unique frequency that can be con-
structed out of density �N /V� for a quantum mechanical ���
gas of atoms �m�. Below we often refer to �F without the � as
Fermi energy, and similarly with other quantities with the
dimension of frequency.

To cap our introduction of the notations, we define the
frequency parameter characterizing the atom-molecule cou-
pling

� = �N� . �9�

It is essential to keep in mind that in this bound-continuum
problem the analogy of the Rabi frequency � is proportional
to the square root of density, �� �N /V�1/2. In line with what
was said before of the coefficient �, we also take ��0. The
time dependent Schrödinger equation for the coefficients �
and A(��k�) finally reads

i�̇�t� = ���t� −
3�

2�2�F
3/2�

0




d���A��,t� , �10�

iȦ��,t� = 2�A��,t� −
�

�2
��t� . �11�

The essence of the two-channel theory is to regard atoms
and molecules as distinct though coupled degrees of free-
dom. The boson operators in Hamiltonian �1� create and an-
nihilate bare atoms and molecules that would be observed if
there were no atom-molecule coupling. As such, they would
represent the observable atoms and molecules immediately
after the atom-molecule coupling was switched off. In the
case of photoassociation this could be achieved literally by
switching off the lasers. For the Feshbach resonance an
equivalent decomposition could be effected �in principle� by
suddenly switching the magnetic field so far off the reso-

nance that the atoms and the molecules effectively decouple.
There are also experimental probes that directly see the bare
molecules, for instance, by making use of optical transitions
in the bare molecules �14�.

However, standard radio frequency spectroscopy at a
Feshbach resonance �27,44� probes transitions between
energy eigenstates of the system in the presence of the atom-
molecule coupling, i.e., stationary states of Eqs. �10� and
�11�. These are superpositions of a bare molecule and pairs
of bare atoms, and so we refer to the coupled system as the
dressed molecule �18�.

Renormalization

The energy eigenstates are obtained by inserting an ansatz
of the form ��t�=e−i
t�, A�� , t�=e−i
tA��� into Eqs. �10� and
�11�, which gives

�
 − ��� = −
3�

2�2�F
3/2�

0




d���A��� , �12�

�
 − 2��A��� = −
�

�2
� . �13�

Simple elimination of A��� from Eq. �12� using Eq. �13�
gives a relation to determine the eigenfrequency 
,


 − � =
3�2

4�F
3/2�

0




d�
��


 − i� − 2�
. �14�

Here −�, with �=0+, is the usual imaginary part in the en-
ergy that needs to be added to handle the divergence of the
integrand at 2�=
. This practice is the same as if we took
Fourier transformations of the time-dependent equations and
used them to study the evolution of the system forward in
time. Such an asymmetry in the direction of time is not de-
sirable if we are looking for true stationary states of the
atom-molecule system. We outline in the Appendix a
method, following Ref. �45�, to find the proper stationary
states, but here the main issue is the ultraviolet divergence of
the integral in Eq. �14�.

Physically, Eqs. �10� and �11� describe the coupling of the
bare-molecule state to many �actually, a continuum of� atom-
pair states. One obvious consequence is that, if there still is a
bound state in the system, it is shifted in energy from the
original bare molecular state. In the contact-interaction
model the shift simply is infinite.

We renormalize as follows �31,37�. We adopt an upper
limit of the integral M, write Eq. �14� as


 − �� −
3�2

4�F
3/2�

0

M ��

2�
	 =

3�2

4�F
3/2�

0

M

d�� ��


 − i� − 2�
+

��

2�
	 ,

�15�

and let M→
 at the end of the calculation. The right-hand
side then converges nicely, but ostensibly not so the left-hand
side; the detuning � gets modified by the infinite level shift.
The idea of the renormalization is to incorporate the level
shift into the definition of the energies, and take the renor-
malized detuning
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lim
M→


� −
3�2

8�F
3/2�

0

M 1
��

= �̄ �16�

to have a finite value.
In this way Eq. �14� turns into a well-behaved equation,


 − �̄ =
3�2

4�F
3/2�

0




d�
1
��





 + i� − 2�
. �17�

The salient point is that for �̄�0 Eq. �17� has precisely one

real solution �with 
�0�, and no real solution if �̄�0. The
system has a true stationary state that does not evolve in time

only for �̄�0. In the Appendix we replace this statement
with the more precise observation that the dressed molecule

has a normalizable stationary state if and only if �̄�0. A

bound state is found for the dressed molecule for �̄�0, oth-
erwise the dressed molecule only exists in a dissociated form
as a pair of bare atoms with a component of the bare mol-
ecule mixed in. We take this to mean that the renormalized

detuning �̄=0 denotes the position of the Feshbach reso-
nance in the two-atom system.

C. Mean-field approximation

We make the many-particle system solvable by a mean-
field approximation, the idea of which is to treat possible
atomic and molecular condensates as classical fields not
quantum fields anymore �17,19,26�. Although it is not essen-
tial for the structure of the mean-field theory but rather a
technical assumption to facilitate the analysis, we also as-
sume that all molecules present in the system belong to a
condensate of zero-momentum molecules. Hence only the
molecule operator b0�b is kept in the Hamiltonian. More-
over, to accommodate the corresponding atomic BEC, we
already at this point track separately the zero-momentum at-
oms with a0�a. Using Hamiltonian �1� we then find the
Heisenberg picture equations of motion for the atomic and
molecular operators

iȧ = − �ba†, �18�

iḃ = �b −
1

2
�aa −

1

2
��

k
aka−k, �19�

iȧk = �kak − �ba−k
† . �20�

Out of these primary equations one may form equations of
motion for quadratic operator products, e.g.,

i
d

dt
�ak

†ak� = ��b†aka−k − a−k
† ak

†b� , �21�

i
d

dt
�aka−k� = 2�kaka−k − ��1 + ak

†ak + a−k
† a−k�b . �22�

We implement the mean-field approximation at this juncture
by stating that in the equations of motion a and b are c
numbers not operators anymore �26,37�. The quantum me-

chanical expectation values for the products then factorize as
in this example,

�ak
†akb
 = �ak

†ak
b � �ak
†ak
�b
 . �23�

Applying the factorization to Eqs. �18�–�22� gives a closed
set of equations of motion involving the expectation values
of the form �a
, �b
, �ak

†ak
, and �aka−k
.
For the convenience of the formulation we assume that

the problem is effectively rotationally symmetric, so that,
e.g., the expectation value �aka−k
 only depends on the en-
ergy ���k. We write

P��� = �ak
†ak
 ,

A��� = �aka−k
 . �24�

It should be noted that P��� stands for the expectation value
of the number of atoms in a one-particle state with the en-
ergy ��, not for a quantity such as the number of atoms per
unit energy interval. We also define the amplitudes for
atomic and molecular condensates

� =� 1

N
a , � =� 2

N
b �25�

so that ���2 and ���2 stand for the fractions of the atoms that
are in the system as part of either the atomic or the molecular
condensate. Finally, as the atomic BEC has already been
taken into account separately, the continuum approximation
�7� should work as before.

We finally have the equations of motion of our mean-field
theory for atom-molecule conversion in a boson system,

i�̇�t� = −
�

�2
��t����t� , �26�

i�̇�t� = ���t� −
�

�2
�2�t� −

3�

2�2�F
3/2� d���A��,t� , �27�

iȦ��,t� = 2�A��,t� −
�

�2
�1 + 2P��,t����t� , �28�

iṖ��,t� =
�

�2
����t�A��,t� − ��t�A���,t�� . �29�

The similarity to the notation we employed in the discussion
of the two-atom problem in Sec. II B is no accident. In fact,
in the absence of a BEC of atoms, and assuming that the
occupation numbers of the atomic states P�� , t� are negli-
gible compared to unity, Eqs. �26� and �27� coincide with the
two-atom theory Eqs. �10� and �11�. We view the mean-field
theory as the two-atom theory amended with the possibility
of a BEC and Bose enhancement for the atoms. An analo-
gous interpretation applies to the corresponding mean-field
theory for fermions �31�.

Writing the expectation value of the invariant atom num-
ber �2� in terms of the mean-field variables gives the equa-
tion
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���2 + ���2 +
3

2�F
3/2� d���P��� = 1. �30�

The left-hand side is indeed a constant of the motion under
Eqs. �26�–�29�, so that the present mean-field approximation
successfully reflects a basic property of the Hamiltonian. Fi-
nally, one may write the expectation value of the Hamil-
tonian in the mean-field approximation as

e =
�H

�N

=
1

2
����2 +

3

2�F
3/2� d��3/2P���

−
�

2�2
��2� +

3�

2�F
3/2� d���A��� + c.c.	 . �31�

Using Eqs. �26�–�29� it may be shown straightforwardly that,
provided one is willing to subtract certain formally equal
divergent integrals to obtain zero, the energy per particle �e
from Eq. �31� is also a constant of the motion. The divergent
integrals are part of the issue of renormalization, which was
already discussed above and will be revisited again shortly.

We have made use of Eqs. �26�–�30� in different varia-
tions, notations, and approximations many a time in the past
in our boson theories �19,22,25,37�. Similarly, we have re-
peatedly resorted to basically the same approach in the
theory of the conversion between a two-species Fermi gas
and the corresponding diatomic molecules �26,31�. Besides
the obvious absence of the fermionic condensate, the differ-
ence is that where the boson problem shows the factor 1
+2P��� for Bose enhancement in Eq. �28�, the corresponding
fermion equation has the factor 1−2P��� reflecting the ex-
clusion principle.

D. Pairing approximation for steady state

Barring circumstances such as interference of the atomic
BEC component of the atom-molecule system with another
reference BEC, a multiplicative complex phase factor in the
quantities �, �, and A��� is not observable. Besides, it is
obvious from the equations of motion �26�–�29� that a certain
combination of exponentially evolving phases is self-
sustained. Specifically, we search for a stationary solution in
the form �31�

��t� � e−i�t�, ��t� � e−2i�t� ,

A��,t� � A���e−2i�t, P��,t� � P��� , �32�

where � is a real frequency. It will turn out that �� is the
chemical potential for the atoms in this system �and half of
the chemical potential for the molecules�, but such an inter-
pretation is not a given at this stage. In the rest of the paper
we will again ignore the �, and call � the chemical potential.

Now, by a suitable choice of the zero of time we may
always make the coefficient � in Eqs. �32� real and non-
negative, ��0; let us assume so from now on. To keep Eq.
�29� valid with an ansatz of the form �32� at all times is then
only possible if ��=0 or if� A��� is real. Likewise, by Eq.
�26�, the amplitude � must be real. With these restrictions,
the time independent coefficients must satisfy

��� +
��

�2
	 = 0, �33�

�2� − ��� = −
�

�2
��2 +

3

2�F
3/2� d���A���
 , �34�

�� − ��A��� = −
�

2�2
�1 + 2P����� , �35�

and, of course, the norm condition �30�.
The unknowns in the steady state are �, �, �, A���, and

P���. Thinking about a numerical solution with a discrete set
of values for �, it is clear that there are many more unknowns
than equations. The problem is the original Eq. �29�, which
will not lead to any useful relation between A��� and P��� in
the steady state. Additional conditions are needed to con-
strain the solution.

The same dilemma came up in a system of two fermion
species combining into bosonic molecules. We resolved it
�31� by the assumption that the fermions only come in pairs
with opposite momenta and spins, as from dissociation of
molecules. This leads immediately to the relation between
pairing amplitudes and occupation numbers

��ck↑c−k↓
�2 = �ck↑
† ck↑
 − �ck↑

† ck↑
2, �36�

or, in the notation of the mean-field theory in Ref. �31�,

�C����2 − �P��� − P2���� = 0. �37�

C��� is the fermion pairing amplitude analogous to A��� of
the present paper. With Eq. �37�, the number of equations
was sufficient for a �presumably� unique solution. Moreover,
while we have not mentioned this before, the left-hand side
of Eq. �37� is a constant of the motion in our BCS style
mean-field theory for fermions �31�.

To address the corresponding boson case, let us take two
momentum states �, short for �k, with the occupation num-
ber states �n+n−
. The most general completely paired state is
of the form

��
 = �
n

cn�n,n
 , �38�

with �n�cn�2=1. Given the propensity of bosons to Poisso-
nian statistics, we take

cn = e���2/2 �n

�n!
, �39�

where � is a complex number. In the limit ����1 this is a
generic description for a situation when only the states �00

and �11
 are occupied, and the latter with a much smaller
probability. Similarly, in the limit of a real ��x�1 we have
a generic description of the state in which �cn� peaks around
n�x2, and cn vary slowly as a function of n around this
maximum. In fact, we cover the case ����1, too, if we just
use a real and positive x in our argument, so that is how we
proceed. Given the model, we have the expectation values

MEAN-FIELD STATIONARY STATE OF A BOSE GAS AT … PHYSICAL REVIEW A 77, 043616 �2008�

043616-5



P � �a+
†a+
 = x2, �40�

A � �a+a−
 = e−x2
x�

n

x2n�n + 1

n!
. �41�

Mindful of the sign differences between bosons and fer-
mions, on the basis of Eq. �37� we expect a relation for
bosons of the form

�A����2 − �P��� + P2���� = 0. �42�

To find out if it works, we plot in Fig. 1 the ratio A /�P+ P2

from Eqs. �40� and �41� as a function of the variable x. The
maximum deviation of this ratio from unity is about 3%. We
surmise that Eq. �42� is a reasonable approximation between
pairing amplitudes and occupation numbers for boson states
of the form �38�.

The pairing approximation for bosons is further cemented
by the observation that, fully analogously to the fermion
theory, in our mean-field theory for bosons the left-hand side
of Eq. �42� is a constant of the motion. This also gives an
interesting piece of insight into the problem of finding the
steady state: There is a large �infinite� number of constants of
the motion, so that time evolution cannot lead to a unique
steady state without an explicit specification of the values of
the constants. Physically, on the other hand, it is generally up
to the interactions with the environment to force specific
values, such as the zero on the right-hand side of Eq. �42�. In
the corresponding fermion problem the zero would follow
even without the interactions with the environment if the
system started out as a condensate of molecules, and the
same holds for the boson system. As advertised, our station-
ary solution corresponds to the assumption that all noncon-
densate atoms are correlated as if they came from dissocia-
tion of molecules.

Given that A��� is real and that it must be positive in the
limit �→
 by virtue of Eq. �35�, Eqs. �35� and �42� may be
solved for the pairing amplitudes and occupation numbers,

A��� =
��

2�2�� − ��2 − �2�2
, �43�

P��� =
1

2
�� �2�2

2�� − ��2 − �2�2 + 1 − 1	 . �44�

Hence given the chemical potential � and the amplitude of
the molecular condensate �, both the occupation numbers
P��� and the pairing amplitudes A��� are uniquely deter-
mined. The inequality

� � −
��

�2
�45�

must hold, else complex occupation numbers would result.
The equality in Eq. �45� presents no problem, since the en-
suing singularities in the occupation numbers and pairing
amplitudes are sufficiently mild not to hamper the analysis.

E. Renormalization

Equations �33�, �34�, and �30� suffice to determine the
remaining unknowns �, �, and �, although a few issues
remain. Next we discuss renormalization.

Consideration of the form of A��� in Eq. �43� shows right
away that the integral �d���A��� in Eq. �34� diverges. How-
ever, it turns out that the same renormalization that we de-
vised for the two-atom case also resolves this divergence. We
replace A��� with

Ā��� =
��

2�2�� − ��2 − �2�2
−

��

2�2�
, �46�

which makes the integral convergent; but, to keep Eq. �34�
valid, we need to add the the divergent integral �0


d��−1/2

with an appropriate factor to the left-hand side as well. It
turns out that the net effect is precisely to replace the detun-

ing � on the left-hand side with the renormalized detuning �̄.
Here we have played fast and loose with mathematical rigor,
but this could be remedied by introducing the upper limit M
to the integration just as in Eq. �15� and then letting M→
.

Given the occupation numbers �44�, the integral in the
normalization equation �30� converges as written, but not so
the integral involving P��� in the expression for the energy
per particle �31�. However, if one analogously to Eq. �46�
replaces P��� with

P̄��� = P��� −
����2

8�2 , �47�

in the integral involving A���, does the subtraction �46�, and

replaces the detuning with the renormalized value �̄, all di-
vergences in Eq. �31� cancel. We regard this as an impressive
demonstration of the consistency of the mean-field theory.

F. Statement of numerical problem

We now have to deal with the equations

� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

A
(x

)/
[P

(x
)+

P
2 (x

)]
1/

2

3.02.52.01.51.00.50.0

x

FIG. 1. The ratio of the actual pairing amplitude A�x� and the
quantity �P�x�+ P2�x��1/2 derived from the occupation number of
the boson state P�x� for the Poissonian paired state, �38� and �39�,
as a function of the real parameter of the state x=�. If the pairing
approximation �42� were exact, this ratio would identically equal
unity.
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��� +
��

�2
	 = 0,

�2� − �̄�� +
�

�2
��2 +

3����3/2

211/4�F
3/2 A1/2�−

�2�

��
	
 = 0,

�2 + �2 +
3����3/2

211/4�F
3/2 P1/2�−

�2�

��
	 = 1; �48�

e =
�2�̄

2
−

��

�2
��2 +

3����3/2

211/4�F
3/2 �A1/2�−

�2�

��
	

− P3/2�−
�2�

��
	
�; �49�

A1/2�m� = �
0




dx
− m2 − 2xm + 1

�x���m + x�2 − 1��x + ��m + x�2 − 1�
;

�50�

P1/2�m� = �
0




dx
�x

��m + x�2 − 1�m + x + ��m + x�2 − 1�
; �51�

P3/2�m� = �
0




dx
− 8mx3 − 4m2x2 + 3x2 − 2mx − m2 + 1

2�x��m + x�2 − 1�2�x + m�x2 + �2x2 + 1���m + x�2 − 1�
. �52�

Equations �48� are the ones to solve for the unknown quan-
tities �, �, and �, and Eq. �49� gives the resulting mean-field
energy per particle. The integral A1/2�m� is a representation
of the integral �d��1/2Ā��� as a function of the chemical po-
tential �, and similarly for P1/2, P3/2. These integrals are
properly renormalized and dimensionless, and we have gone
so far as to write them in forms that do not involve near-
canceling subtractions of large numbers. They are suitable
for use in numerical computations as written.

III. SOLVING THE THEORY

We have solved Eqs. �48�–�52� using MATHEMATICA �46�
in a combination of analytical and numerical calculations.
We double-checked many of the results by independent pro-
gramming on MAPLE �47�. Unlike in the fermion case �31�
where the production of accurate numerical results for arbi-
trary parameter values was a major project in numerical
analysis, with bosons we never had to resort to a general-
purpose programming language such as C++.

In detailed studies we first investigated numerically how
the results behave, and used this knowledge to formulate
ansatz solutions to find analytical results. The discussion pre-
ceding Eqs. �60� below serves as an example. An enormous
amount of detail could be extracted in this way, but our aim
is to demonstrate a few major qualitative features only.

1. Atomic condensate present

One way of satisfying Eq. �33�, or the same equation as
the first member of Eqs. �48�, is to require that the expression
inside the parentheses vanishes. This leads to

� = −
��

�2
, �53�

the integrals become A1/2�1�=−2�2, P1/2�1�=2�2 /3, and
P3/2�1�=−8�2 /5, and the equations to solve for � and � are

��̄ − 2��� =
�2�

�2
−

3�3/2�5/2

27/4�F
3/2 , �54�

�2 + �2 +
����3/2

25/4�F
3/2 = 1. �55�

In principle these have an explicit closed-form solution, but
in practice we have found it useless and proceed numerically.
Given the solution, the energy per particle may be found
from

e =
3�− ��5/2

5�2�F
3/2 + �2� . �56�

Now, by eliminating � from Eqs. �54� and �55� we have a
necessary condition for the solution,

�2 +
�2��2�� + �̄��

�
+

23/4����3/2

�F
3/2 = 1. �57�

It is easy to see numerically that for any real �̄ and ��0 this
has at most one solution with 0���1. Moreover, numeri-

cally one may demonstrate that such a solution ��� , �̄� is a

decreasing function of �̄. Therefore a lower limit on the ex-

istence of a solution as a function of �̄ is a possibility: Once
� has reached a certain value �1, Eq. �55� dictates that �2

=0. Suppose one decreases �̄ further, then � would increase
further and Eq. �55� would require �2�0, which is not al-
lowed for a real �.

The limiting case is found setting �=0 in Eqs. �53�–�55�,
which gives a relation between �̄ and �. We plot in Fig. 2 the

detuning �̄ obtained numerically in this way as a function of
the Rabi frequency �, effectively using the Fermi frequency
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as a scale of frequencies. Given the equations to solve, we
may also attempt power series solutions. For instance, we
may insert the series

− �̄ = K1�1 + K3/2�3/2 + K2�2 + ¯ , �58�

− � = M1�1 + M3/2�3/2 + M2�2 + ¯ , �59�

into Eqs. �53�–�55� and attempt to satisfy the equations
power by power in �. This ansatz works and gives solvable
equations for the coefficients K and L. Following such prin-
ciples, we find the expressions of the curve in Fig. 2 for the
limits of both small and large �,

�̄��� = � − �2� + O��5/2� , � � �F,

−
3

24/3
�2

�F
+ O��0� , � � �F. � �60�

2. Atomic condensate absent

The other way to satisfy Eq. �33� is to set

� = 0, �61�

which corresponds to the up-front statement that there is no
atomic condensate. Equations �48� then turn into

� � −
��

�2
m , �62�

��̄ − 2��� =
3�����3/2A1/2�m�

213/4�F
3/2 , �63�

1 = �2 +
3����3/2P1/2�m�

211/4�F
3/2 , �64�

which are to be solved for � and �; we have expressed the
chemical potential � using the dimensionless variable
m� �1,
�. The integrals �50�–�52� may be written in terms
of elliptic integrals, but this fact appears to be useless and the
practical solutions again proceed numerically. Once the so-
lution is found, the energy per particle is given by Eq. �49� as
written.

Now, consider Eqs. �62�–�64� for a fixed value of the

parameter �, regarding � and �̄ as functions of the variable
m. By plotting the respective functions, it may be seen that,
for m�1, P1/2�m��0, P1/2� �m��0, A1/2�m��0, and
A1/2� �m��0, with the prime denoting the derivative. Equation
�64� then implies that ���m��0, and Eq. �63� consequently

gives �̄��m��0. In other words, when the parameter �̄ is
increased while keeping � fixed, m and � resulting from

Eqs. �62�–�64� decrease; but, by the time the detuning �̄ has
reached the line in Fig. 2 the parameter m has attained the
minimum permissible value m=1, and there cannot be a so-

lution for any larger �̄.

3. Role of atomic condensate

The two classes of solutions we have found, ��0 and
��0 corresponding to the presence and absence of an
atomic condensate, join continuously. On the line drawn in
Fig. 2 �=0 and �=−�� /�2 both hold true, so that all of the
Eqs. �53�–�55� as well as Eqs. �62�–�64� are satisfied simul-
taneously.

Summarizing, we have the following observations about
the structure of the theory. There are two different kinds of

solutions for �, �, and � when the parameters � and �̄ are
varied, characterized by the conditions �=−�� /�2 and
�=0. Only the former �latter� exists in the region of param-

eters � and �̄ labeled ��0 ��=0� in Fig. 2. On the border-
line between the regions both solutions exist and agree, so
that they go continuously from one to the other as the vari-

able �̄ and/or � crosses the line. The solution is unique for

all �̄ and � under the assumptions ��0, ��0, and ��0,
which are a matter of convenience and can always be made.
Finally, our numerical computations demonstrate that the
unique solution always exists.

IV. FEATURES OF THE THEORY

The present boson theory has three parameters with the

dimension of frequency, �, �̄, and �F. In our discussions we
regard Fermi energy, �F, as the scale of frequencies, although
we always write it down explicitly. In present-day dilute
quantum degenerate gases the representative value is
�F�2	�10 kHz. In the classic Feshbach resonance experi-
ments with bosons orders of magnitude of the coupling Rabi
frequencies ��10�F are typical �37�, but a narrower Fesh-
bach resonance could change this comparison significantly.
In photoassociation the ratio � /�F may be varied by varying
the intensity �intensities� of the laser�s�. In a Feshbach reso-

nance the detuning �̄ depends on the product of magnetic
field and the difference of the magnetic dipole moments of
the bound molecular state and of the free-atom state.

Roughly, �̄��F corresponds to a 10 mG change in the mag-

netic field. In photoassociation the parameter �̄ is directly a
matter of tuning of the laser�s�.

For comparison it is useful to recall a few basic facts
about the usual one-channel theory for a BEC �20,48�. In
such modeling there are no explicit molecules at all, but it is

δ/
ε

543210 Ω/εF

α ≠ 0

α = 0—

FIG. 2. The line in the �� , �̄� plane separating the phases of the
system with a BEC of atoms present ���0� and absent ��=0�.
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assumed that the atoms interact among themselves as char-
acterized by a scattering length a that may be tuned by vary-
ing the magnetic field around the Feshbach resonance, i.e.,
by varying the detuning. At positive detunings the scattering
length is negative, which indicates an attractive interaction
between the atoms and collapse of the �untrapped� conden-
sate. At negative detunings, at least close to the resonance,
the scattering length is positive and large. According to the
theory of molecular structure, this means that there must be a
weakly bound molecular state, which, however, is not in-
cluded explicitly in the one-channel theory. By elementary
thermodynamics, at low temperatures these molecules should
make the thermal-equilibrium state. Positive �negative� de-
tunings thus indicate the atom �molecule� side of the reso-
nance.

A. Scaling with detuning and coupling strength

In Fig. 3 we plot the fraction of atoms in the atomic BEC,

�2, as a function of the coupling strength � and detuning �̄.
At ���F, the system switches abruptly �compared to �F�
from having all atoms to no atoms in the condensate when

the detuning crosses the two-body resonance position �̄=0.
As the coupling � increases, the transition from �2�1 to
�2�1 rounds out. However, �2=0 is always reached on the
line shown in Fig. 2. Given that on this line the solution of
the system is not analytic, we predict a phase transition.

The analogous plot for the chemical potential � as a func-
tion of coupling strength and detuning is given in Fig. 4. The

function ��� , �̄� is also nonanalytic on the line shown in
Fig. 2, but the kink is not visible in Fig. 4. The rounding-out
with increasing coupling strength is again obvious.

We quantify the rounding-out starting with the numerical
observation that in the regime ��0 the following limits hold
true:

�2��, �̄� = � f�
�� �̄

�

 , � � �F;

f�
��� �̄

�
	2
 , � � �F;� �65�

�2��, �̄� = � f�
�� �̄

�

 , � � �F;

� �F

�
	2

f�
��� �̄

�
	2
 , � � �F.� �66�

Knowing these scalings it is easy to work out analytical ex-
pressions for the functions f�

�, etc., from Eqs. �62�–�64�; sim-
ply put in the scalings and see what becomes of the equations
in the corresponding limit of �. For instance, we have
f�

��x�= �y�x��2, where y is a solution to the polynomial equa-
tion

8y3 − 4�2x2y2 + 8xy − 2�2 = 0 �67�

for the fixed value of x. We have plotted the scaling functions
in Fig. 5. They tend to the proper limits in both ends of the
range of the variable x, and, as is appropriate for useful di-
mensionless scaling functions, their magnitudes and scales of
variation with the argument x are both on the order of unity.

We next turn to the behavior of the chemical potential and
the energy per particle, particularly in the region �=0 in Fig.

2 with both �̄�0 and ��0. To this end we first note the
asymptotic expansions of the functions �50�–�52� for m→
:

1

2

3

4

-10

-5

0

5

10

0.5

1.0

α2

δ/εF
Ω/εF —

FIG. 3. �Color online� Fraction of atoms in the atomic BEC, �2,

as a function of the coupling strength, �, and detuning, �̄.
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-5
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0

δ/εF
Ω/εF

0
µ/εF

—

FIG. 4. �Color online� Chemical potential � as a function of the

coupling strength � and detuning �̄.

� � �

� � �

� � �

� � �

� � �

� � �

� � �

f(
x)

543210-1
x

> β
< β
> α
< α

FIG. 5. Scaling functions f�
��x�, etc., in Eqs. �65� and �66�. The

legend identifies the combination of � or � and � or � for each
curve.
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A1/2�m� � − 	�m +
	

16
m−3/2 + O�m−7/2� , �68�

P1/2�m� �
	

4�m
+

3	

128
m−5/2 + O�m−9/2� , �69�

P3/2�m� � −
3	

4
�m +

3	

128
m−3/2 + O�m−7/2� . �70�

The coefficients were inferred from numerical results as
given by MATHEMATICA’s NIntegrate function. They are
probably exact; the coefficients of the leading terms appear
to be precise to at least 10−8, and the coefficients of the
next-to-leading terms to about 10−3.

Now, inserting power series expansions of the form

− � =
��̄�
2

+ M1/2��̄�1/2 + M0��̄�0 + ¯ , �71�

� = 1 + B−1/2��̄�−1/2 + B−1��̄�−1 + ¯ �72�

into Eqs. �62�–�64� and expanding the result to a power se-

ries in 1 / ��̄� using Eqs. �68�–�70�, we discover that we may
determine the coefficients M and B in Eqs. �71� and �72�
down to and including M−3 and B−4 in terms of the explicit
coefficients in Eqs. �68�–�70�. These, in turn, will give an
expression for the energy per particle �49� in the form

e = −
�̄

2
+ E1/2��̄�1/2 + E0��̄�0 + ¯ , �73�

also down to and including the order ��̄�−3.
We will not write down the expansions �71�–�73� in de-

tail, but a few notes are relevant. The expansions of chemical
potential and energy go with powers of the dimensionless

number z=�4 /�F
3 ��̄� down to and including the order ��̄�−1,

and the expansion of condensate amplitude down to and in-

cluding the order ��̄�−2, although in the expansions of � and e

the coefficients of ��̄�−1 happen to be zero, M−1=E−1=0.
However, since we have ���1/2= �N /V�1/2 and �F��2/3

= �N /V�2/3, the parameter z does not depend on density, or
particle number, or volume, at all. It is a single-molecule
quantity. In fact, with the identification �A9�, down to the

order ��̄�−1 the expansions of � and e coincide with the ex-
pansion of 
b /2, where 
b is the bound-state energy of a
single molecule as given in Eq. �A15� in the Appendix.

Many-body phenomena start at the order ��̄�−3/2, from
which onwards other combinations of � and �F than z also

emerge. For instance, asymptotically, ��̄�→
, the depen-
dence of chemical potential and energy on detuning and den-

sity goes as �� / ��̄�3/2. The analogous mean-field theory for
fermions �31� behaves in this respect in the same way.

The conventional scattering length for atoms behaves as

a�−�̄ −1 near the Feshbach resonance, and for fermions the
scattering length of the molecules near the resonance should
be 0.6 times the scattering length for the atoms �11�. This

means that the density dependence of energy should emerge

in the order �̄ −1. The present mean-field theory does not
conform with the standard expectations. Whether this is a
contradiction or not, we cannot say. First, by their very na-
ture the asymptotic expansions are valid far away from the
resonance, not close where one expects the 0.6a for mol-
ecules made of fermions. Second, as a practical matter, the
frequency �4 /�F

3 is typically quite large for a Feshbach reso-
nance; we estimate �2	�10 GHz for the usual Feshbach
resonance in 85Rb �51�, and indeed THz scale values for the
834 G Feshbach resonance in fermionic 6Li �31�. Our
asymptotic expansions only become useful at extremely
large detunings, when in practice some physics assumption
of our theory such as the contact interaction or the neglect of
the background scattering length has already become invalid.
We do not expect the expansions �71�–�73� to be of much
practical value, which is one reason why we have not listed
the coefficients. We will return to their theoretically interest-
ing properties below, though.

We next turn to the limit of strong coupling, �→
. Let

us first fix �̄=0, so that the argument is within the regime

��0. We set �̄=0 in Eqs. �53�–�55�, attempt a solution of
the form

� = A0 + A−2�−2 + A−4�−4 + ¯ , �74�

− � = M0 + M−2�−2 + M−4�−4 + ¯ , �75�

and find that it works; asymptotically, with �→
, we have
�=− 1

2�F and �2=3 /4. From Eq. �56�, the corresponding ex-
pression for energy per particle is e=− 1

3�F. As expected on
the basis of unitarity �49,50�, in the limit of very strong
interactions the interaction strength vanishes from the result
and the only energy scale that remains, �F, is set by the
density of the gas.

Given that the line separating the �=0 and ��0 regions
in Fig. 2 may, perhaps, be thought of as the position of the
Feshbach resonance shifted by many-body effects, it is also
instructive to find the asymptotic limits of chemical potential
and energy as one moves along this line. To find them, we set
�=0 in Eqs. �53�–�55� and put in the ansatz

− �̄ = D2�2 + D0�0 + D−2�−2 + ¯ , �76�

− � = M0 + M−2�−2 + M−4�−4 + ¯ . �77�

Aside from reproducing the second of Eqs. �60�, this analysis
shows that in the limit of large interaction strength we have
�=−�32�F. This, in turn, gives e=−3�32 /5�F.

B. Thermodynamics

The atom-molecule BEC has some interesting thermody-
namical properties, in particular a propensity for negative
pressure. We now discuss these aspects.

It seems natural to identify the mean-field value of the
energy E=�Ne as the thermodynamic internal energy U of
the system. Moreover, the system is at zero temperature,
which indicates an entropy identically equal to zero. In the
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sense of thermodynamics, the chemical potential should then
equal

�T = � �U

�N
	

V

. �78�

There is a subtlety to this definition, in that N is the invariant
atom number that combines both atoms and molecules, yet
we have used it to find the chemical potential for atoms only.
On the other hand, the condition for chemical equilibrium for
atoms and molecules dictates that the thermodynamic chemi-
cal potentials for atoms and molecules satisfy 2�T,a=�T,m.
From this observation it is easy to deduce that the procedure
�78� gives the correct chemical potential for the atoms. There
are related issues elsewhere in our thermodynamics discus-
sions that could be resolved similarly, but henceforth we will
not bring them up.

We have talked of the quantity � as the chemical poten-
tial, which is consistent with our thermodynamics identifica-
tion E↔U if

� = � ��Ne�
�N

	
V

. �79�

As already noted repeatedly, both atom number and volume
are ingredients in our theory because the parameters � and
�F depend on the density; for instance,

� ��

�N
	

V

=
�

2N
, � ��F

�N
	

V

=
2�F

3N
. �80�

However, verifying Eq. �79� by simply taking the analytical
N derivative of Eq. �49� appears cumbersome, since we
should then take into account the implicit dependence on N
of the quantities � and �, and even of � itself. Instead, we
have carried out the verification numerically, by calculating
the derivative of e numerically using Eqs. �80�, and found
that Eq. �79� is indeed satisfied.

We have also found that the analytical asymptotic expan-
sions �73� and �71� satisfy Eq. �79� to all orders, down to and

including ��̄�−3, for which the expansion coefficients are ex-
plicitly known. This is a rather impressive confirmation of
our originally numerical identification of the expansion co-
efficients in Eqs. �68�–�70�.

Finally, there is the question of pressure. The thermody-
namical expression for pressure in the present case with
identically zero entropy is

p = − � �U

�V
	

N

= − �N� �e

�V
	

N

; �81�

but, given the identifications we have already made, the
Gibbs-Duhem relation of thermodynamics reads

�Ne = − pV + �N� �82�

or

p

��
= � − e . �83�

We have calculated the pressure both ways numerically, too,
and found that Eqs. �81� and �83� are consistent.

We have already noted that in the case �̄=0 and �→
,
the limits �→− 1

2�F and e→− 1
3�F hold true, which gives

p / ����→− 1
6�F. The pressure becomes negative. In a way,

this is as expected. Assuming that the transition line between
the regions with �=0 and ��0 denotes the true Feshbach
resonance as shifted by the interactions in the system, this
limiting case is on the atom side of the Feshbach resonance
where, according to the standard one-channel model, the
scattering length is negative and the BEC of the atoms is
liable to collapse. This is also what one would expect for
negative pressure.

The situation becomes more peculiar after a look at Fig. 6,
which plots the negative of the pressure for a range of the

parameters � and �̄. Although the absolute value of the pres-
sure drops sharply toward of the borderline between the re-
gions with �=0 and ��0 when entering from the ��0
side, as far as we can tell, the pressure remains negative for

all values of � and �̄. For instance, the expansions �73� and
�71� give

p

��
= −

3	�4

256�2�F
3/2��̄�3/2

+ O���̄�−2� . �84�

For comparison, we have plotted in Fig. 7 the pressure of a
two-component Fermi gas from Eq. �83� in complete analogy
with Fig. 6. No negative pressure develops for a Fermi gas in
the corresponding mean-field theory �31�. Moreover, there is
no question about the experimental stability of the Fermi gas
in the vicinity of the Feshbach resonance.

As it comes to the Bose gas, the negative pressure is a
mixed blessing. It is an interesting prediction in its own right
but complicates the observation of the other features we have
discussed. We hope that additional atom-atom, atom-
molecule, and molecule-molecule interactions not included
in our model might stabilize the Bose gas sufficiently, espe-
cially on the �=0 side, that the phase transition-like feature
and the many-body shift of the Feshbach resonance could be
seen under favorable circumstances.

V. CONCLUDING REMARKS

So far the molecular lifetimes have not allowed atom-
molecule equilibration in a Bose gas near a Feshbach reso-
nance, so that the kind of systems we have studied are pres-
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FIG. 6. �Color online� Pressure p of the atom-molecule BEC

plotted as a function of the interaction strength � and detuning �̄.
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ently not feasible experimentally. However, progress is
continually made �52� in two-photon �two-color� photoasso-
ciation in a Raman scheme �6�, and in heteronuclear systems
direct one-photon photoassociation �53� from the dissocia-
tion continuum to a low-lying vibrational level is possible in
principle. We are of the opinion that photoassociation to a
stable molecular state will eventually be achieved in a BEC.

There is a semantic issue with the mean-field theory, in
that, for instance, the review �20� regards our approach as
going beyond the mean-field theory. Now, in a usual atomic
BEC “mean-field theory” means Gross-Pitaevskii equation
for the condensate �48�. The analogy in atom-molecule sys-
tems would, indeed, be an analysis in terms of atomic and
molecular condensates only, with no noncondensate atoms or
molecules. This was the case in the early two-mode models
�17,19�.

However, such an analysis ignores an inherent asymmetry
in atom-molecule conversion. According to momentum con-
servation, in a Feshbach resonance in free space two zero-
momentum condensate atoms may only combine into a zero-
momentum condensate molecule, but in the reverse process
the two atoms dissociated from a zero-momentum molecule
may have arbitrary opposite momenta. Taking into account
such “rogue”dissociation �37� was the original aim of our
present modeling that accounts for correlated pairs of atoms.
Initially we regarded this as an extension of mean-field
theory, but after we discovered that the time independent
version for fermions is a variation of the BCS theory, one of
the quintessential mean-field theories, we refer to our ap-
proach simply as mean-field theory.

Mean-field theories, of course, are an interesting case in
their own right. They are typically the first, and occasionally
the last, tool in the analysis of a new phase transition, even
though it is well-known that they cannot be expected to be
quantitatively accurate. In fact, we cannot think of any in-
stance in the area of quantum degenerate dilute gases in
which a properly formulated mean-field theory has given a
qualitatively wrong prediction, and only very recently has it
become possible to distinguish between mean-field theory
and a strongly correlated approach quantitatively in an ex-
periment; cf. Refs. �15,16�.

These observations cast an interesting light on our predic-
tion of negative pressure even on the molecule side of the

Feshbach resonance, where the standard picture is that the
scattering length should be large and positive. Granted, our
calculations are missing the usual background scattering
length and are cursory about the structure and collisions of
the molecules. One may also argue that, as we have no time
scale to offer for the associated instability, it may be unob-
servable even if it really existed. After all, at sub-Kelvin
temperatures, at any pressure, the thermodynamic ground
state of alkali metals is a solid not a gas, which has not
precluded innumerable successful BEC experiments.

Nonetheless, the negative pressure may be viewed as an
opportunity rather than a nuisance. It either exists, or is a
qualitatively wrong prediction from a mean-field theory.
Speculating further, since we do not have any time scale for
the collapse associated with the negative pressure, we do not
know that it is short either. It is a well-known empirical fact
that in the neighborhood of a Feshbach resonance, on both
sides of the resonance, atoms are lost from a BEC. Perhaps
the negative pressure contributes to, or even dominates, the
loss.

We close with a remark about a rather esoteric original
motivation for this particular piece of work on bosons. Some
time ago we noticed �54� in a simple model for two trapped
ions that the statistics has no effect on the thermodynamic
properties. Our interpretation was that the Coulomb interac-
tion between the ions keeps them sufficiently far apart, so
that they are effectively distinguishable and quantum statis-
tics is moot. Calculations in which strongly interacting
bosons crystallize �55� in a trap just like ions do then led us
to the idea of “superuniversality”: If strong interactions be-
tween the particles keep them apart, the state could not only
not depend on the strength of the interactions, but could also
be independent of atom statistics. Now, within the confines
of mean-field theory, our results for bosons and fermions are
quite different. Technically, superuniversality in mean-field
theories is neither a necessary nor a sufficient condition for
superuniversality in nature, but nonetheless, the notion of
superuniversality did not pass this particular test.
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APPENDIX: STEADY STATE

In this appendix we study the steady state of the two-atom
model as a bound-continuum problem along the lines of the
classic paper by Fano �45�, with due consideration to renor-
malization of the ultraviolet divergence.

We imagine that there is initially a bound molecular state
�b
 and a continuum of states ��
 labeled by frequency and
normalized in such a way that �� ���
=���−���, coupled by a
photoassociative or Feshbach resonance coupling. We write
the Hamiltonian as

H

�
= �b
��b� +� d���
���� +� d�K�����b
��� + ��
�b�� ,

�A1�

with

hρεF
–
p
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FIG. 7. �Color online� Pressure p of two-component Fermi gas

plotted as a function of the interaction strength � and detuning �̄.
The definition of the interaction strength � is as in Ref. �31�, but,
for compatibility with the present paper, the detuning here is the
detuning of Ref. �31� divided by two. For comparison, for an ideal
Fermi gas at zero temperature, p= 2

5���F.
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K��� =�4 4��

	2 . �A2�

The relevant features in Eq. �A2� are the fourth root of fre-
quency �energy� and the constant � with the dimension of
frequency; the rest of the constants are an attempt to simplify
the appearance of a few results below. Similarly, the state
vector is

��
 = b�t��b
 +� d�a��;t���
 . �A3�

The time dependent Schrödinger equation becomes

i
�

�t
b = �b +� d�K���a��� , �A4�

i
�

�t
a��� = �a��� + K���b , �A5�

and the time independent Schrödinger equation for an eigen-
state of the Hamiltonian with the eigenfrequency 
 is

�
 − ��b =� d�K���a��� , �A6�

�
 − ��a��� = K���b . �A7�

The substitution

a��� = −
3�	�4 ��

�2�4 ��F
3/2A� �

2
	 �A8�

converts Eqs. �A6� and �A7� to Eqs. �12� and �13�. Moreover,
let us solve Eqs. �A4� and �A5� in the pole approximation for
a positive detuning �, and likewise solve Eqs. �10� and �11�
in the pole �Wigner-Weisskopf� approximation, then the en-
suing decay rates for the molecules are equal if the param-
eters are related by

� =
9	2�4

512�F
3 . �A9�

The present continuum problem �A1� simply solves the
dilute-gas �single-molecule� limit of our mean-field theory,
but with the advantage that the amplitudes b and a��� also
have the normalization conditions that follow from the ortho-
normality conditions of the states �b
 and ��
 and the manifest
Hermiticity of Eqs. �A4� and �A5�. In the steady state the
amplitudes b and a���, of course, depend on the eigenvalue

, a dependence that we will write down below.

Now, the formal solution for a��� of Eq. �A7�,

a��,
� =
K���b�
�


 − �
, �A10�

contains a singularity at �=
 that renders the meaning of the
right-hand side of Eq. �A6� ambiguous. The substitution

→
− i�, with �=0+, removes the ambiguity, but gives at
most one stationary state. Following Fano �45�, we therefore
attempt a solution in the form

a��,
� = �P 1


 − �
+ f�
���� − 
�
K���b�
� , �A11�

where P denotes the principal value integral and Pf�
� is yet
to be determined; f�
�= i	 would give the forward-in-time
solutions we have discussed earlier. Inserting Eq. �A11� into
Eq. �A6� gives


 − � = ��
�f�
�K2�
� + P� d�
K2���

 − �

, �A12�

with � being the usual unit step function. The integral on the
right-hand side has the same ultraviolet divergence as before,
and the cure is exactly the same; we add the infinity
�d�K2��� /� to both sides of the equation, which renormalizes
the detuning and makes the principal value integral conver-
gent,


 − �̄ = ��
�f�
�K2�
� + P� d�
K2���

��
 − ��

. �A13�

1. Bound state

Suppose first that 
�0. Then the principal value integral
is a usual integral, and we have the equation


 − �̄ = 2�− �
 . �A14�

It turns out that this equation has a real solution if and only

if �̄�0, and the unique solution is then


b = �̄ − 2� + 2��2 − ��̄ . �A15�

There is one, and only one, negative-energy solution if and
only if the detuning is negative.

One might surmise that the negative-energy solution is
bounded, i.e., normalizable to unity. In fact, using Eq. �A10�,
we find

� d��a��,
b��2 =� �

− 
b
�b�
b��2, �A16�

so that the bound and continuum amplitudes in the wave
function normalized to unity are

b�
b� =� �− 
b

�� + �− 
b

, �A17�

a��,
b� =
�4 ��/	2


b − �
b�
b� . �A18�

2. Continuum states

The system also has a bounty of positive-energy eigen-
states. It turns out that for 
�0

P� d�
K2���

��
 − ��

= 0, �A19�

so that Eq. �A13� gives
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f�
� =

 − �̄

K2�
�
. �A20�

For positive energies we are obviously dealing with con-
tinuum states, so that we aim at the normalization

b��
�b�
�� +� d�a���,
�a��,
�� = ��
 − 
�� .

�A21�

Note that while for a unit-normalized bound state the coeffi-
cient b�
g� is dimensionless, here the dimension of b�
� will
be the inverse of the square root of frequency. The calcula-
tion based on Eq. �A11� is straightforward except for the
ensuing product of principal value integrals, which may be
handled as in �45�;

P 1


 − �
P 1


� − �
=

1


� − 

�P 1


 − �
− P 1


� − �
	

+ 	2��
 − 
����� − 
� . �A22�

The principal value integrals arising in this way give zero
just as in Eq. �A19�, so we have

�b�
��2�	2K2�
� +
�
 − �̄�2

K2�
�

 = 1. �A23�

The continuum state vectors for 
�0 are therefore fully
specified by

b�
� =� 2

	

�4 �


��
 − �̄�2 + 4�

;

a��,
� = ��4 4�


	2 P 1


 − �
+ �
 − �̄�2�4 	2

4�

��� − 
�
b�
� .

�A24�
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