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We study the three-body problem for three atomic fermions, in the same spin state, experiencing a resonant
interaction in the p-wave channel via a Feshbach resonance represented by a two-channel model. The rate of
inelastic processes due to recombination to deeply bound dimers is then estimated from the three-body solution
using a simple prescription. We obtain numerical and analytical predictions for most of the experimentally
relevant quantities that can be extracted from the three-body solution: the existence of weakly bound trimers
and their lifetime, the low-energy elastic and inelastic scattering properties of an atom on a weakly bound
dimer �including the atom-dimer scattering length and scattering volume�, and the recombination rates for three
colliding atoms towards weakly bound and deeply bound dimers. The effect of ‘‘background’’ nonresonant
interactions in the open channel of the two-channel model is also calculated and allows one to determine which
three-body quantities are “universal” and which on the contrary depend on the details of the model.
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I. INTRODUCTION

Fermionic superfluidity with p-wave pairing is related to
a large class of subjects in very different areas of physics
including condensed matter, astrophysics, and particle
physics �1,2�. As already observed in 3He experiments, the
phase diagram in these systems can be very rich �3�. More-
over, the possible observation of quantum phase transitions
together with the existence of exotic topological defects in
p-wave superfluids bring a lot of interest in their study.

Presently, there is some hope that p-wave superfluidity
and its intriguing properties can be observed with ultracold
atoms �4�. Indeed, thanks to the concept of Feshbach reso-
nance �5�, it is possible to tune the interatomic interaction
and to achieve strongly correlated regimes in ultracold dilute
atomic gases. First realized in the s-wave channel with
bosonic species �6,7�, the Feshbach resonance is currently
used for achieving BEC-BCS crossover experiments for the
two-component Fermi gas in a regime of temperatures where
the system can be superfluid �8–23�. In one-spin component
Fermi gases, as a consequence of the Pauli exclusion prin-
ciple, two-body scattering processes are forbidden in the
s-wave channel and at low temperatures are dominant in the
p-wave channel. The two-body cross section which is usually
negligible in this channel can be greatly enhanced using a
p-wave Feshbach resonance. This resonant regime is now
obtained for 40K �24–27� and 6Li atoms �28–30�. The pro-
duction of p-wave shallow dimers in ultracold 6Li �28� and
40K gases �27� opens very interesting perspectives for the
realization of a superfluid p-wave phase.

In these experiments, an external magnetic field tunes
the energy of a two-body p-wave bound state in a closed
channel and for a small detuning with respect to the open
channel, a resonance occurs in a two-body p-wave scattering
process. Moreover, due to the presence of a magnetic field,
the interaction strength depends on the orbital channels
considered—a major difference with respect to what happens

in superfluid 3He �25�. As a consequence, the question of the
symmetry of the low-temperature ground state in one com-
ponent fermionic species is nontrivial. Studies of this many-
body problem are essentially mean-field and depending on
the experimental realizations, they predict the occurrence of
px+ ipy �axial�, px �polar�, or intermediate phases �31–36�.
These predictions lead to possible studies of quantum phase
transitions in such systems. However, the main issue in the
achievement of a p-wave superfluid concerns atom losses
which are large in present experiments �24–30�. The question
of whether or not it is possible that the system thermalizes is
then a crucial point.

Concerning s-wave resonant Fermi systems, few-body
studies have proven to be very successful in understanding
properties of the superfluid gas in the BEC-BCS crossover
�37–41�. These studies explain the large lifetime of the sys-
tem observed at resonance and also predict the dimer-dimer
scattering length which is involved in the equation of state
for the dilute BEC phase. Surprisingly, although general
many-body properties are rather well known in p-wave
superfluids—thanks to contributions from the condensed
matter community, few-body properties in these systems
have been less studied �42,43�. However, following the ex-
ample of the works done in the s-wave channel, few-body
problems for p-wave pairwise potential are valuable for a
determination of properties in the strongly interacting dilute
gas beyond a mean-field analysis. As an example, we note
that consequences of the existence of trimers first found in
the present work have already been taken into account for an
estimation of the lifetime of p-wave shallow dimers �44�.

In this paper, we consider three identical fermions close to
a p-wave Feshbach resonance. We determine their low-
energy scattering properties together with the possible exis-
tence of trimers. Our study is also a first step toward an
understanding of the atom losses observed in present experi-
ments �24,26–29�. The paper is organized as follows. In Sec.
II, we recall basic properties, for an isotropic short-range
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interaction, of resonant two-body p-wave scattering pro-
cesses �45�. In the resonant regime, two parameters are
needed for a description of the low-energy two-body proper-
ties: the scattering volume Vs and also the p-wave equivalent
of the effective range parameter hereafter denoted by �. For
large and positive values of Vs there exists a shallow p-wave
dimer of internal angular momentum 1, that is, with threefold
degeneracy. For a potential with a compact support of radius
b, we show that at resonance �Vs=�� the effective range
parameter cannot reach arbitrarily small values and �b�1.
Consequently, unlike what happens in s-wave resonances,
there is no scale invariance at low energy and a unitary re-
gime cannot be obtained via a p-wave resonance �46�. In
Sec. III, we introduce the main model Hamiltonian that we
use in this work. It is a two channel model of the p-wave
Feshbach resonance �30� where free atoms in the open chan-
nel interact with a molecular p-wave state in the closed chan-
nel, of threefold degeneracy provided that one neglects the
effect of the dipole-dipole interaction in presence of the Fes-
hbach magnetic field. The interchannel coupling amplitude,
as a function of the relative distance of the two atoms, is a
Gaussian of range b which mimics the van der Waals range
of a more realistic two-body potential. We first briefly deter-
mine the two-body collisional properties of this model. At
large coupling the resonance is broad �b�1 and for Vs large
and positive the shallow dimer is essentially in the open
channel. In the opposite regime for a weak coupling, the
resonance is narrow, �b�1 and the shallow dimer is almost
entirely in the closed channel. In Sec. IV, we derive an inte-
gral equation for the three-body problem. We consider solu-
tions of total angular momentum J=1 and by using the rota-
tional symmetry of the Hamiltonian, we reduce the problem
in each involved symmetry sector �odd or even� to a one-
dimensional integral equation. In both sectors, we predict the
existence of one trimer for sufficiently broad resonances.
These trimers can exist in a regime where there is no shallow
dimer �for large and negative values of the scattering vol-
ume� and are interesting examples of Borromean states �47�,
since we find that they are not linked to an Efimov effect,
contrarily to Ref. �43�. We also determine the atom-dimer
scattering length aad as a function of the effective range pa-
rameter � and the potential range b, for different values of
the scattering volume. At resonance �Vs=��, aad takes large
values �that is significantly larger than the potential range b�
only in the vicinity of the threshold of existence of a trimer.
The recombination rate of three incoming atoms into a shal-
low dimer and one outgoing atom is computed; it is shown
analytically to vary as Vs

5/2 for large values of the scattering
volume, away from the trimer formation threshold; this dif-
fers from the Vs

8/3 law put forward in Ref. �42� on the basis of
a dimensional analysis ignoring a possible contribution of
the effective range parameter �, but is still compatible with
the numerics of Ref. �42�; finally, the recombination rate is
shown analytically to present a Fano profile as a function of
� close to this trimer threshold. In Sec. V, we calculate the
losses due to the recombination into deeply bound dimers.
Since these losses are not present in our model Hamiltonian,
we estimate them from the probability that three atoms are
within a volume of the order of b3 and we obtain the lifetime
of trimer states, the losses due to atom-dimer inelastic scat-

tering and the three-body recombination rate toward deep
molecular states from asymptotically free atoms. Finally we
make the model more realistic by including an attractive in-
teraction in the open channel, in addition to the coupling
with the closed channel, in Sec. VI: we recalculate the trimer
energies, the atom-dimer scattering length, and the recombi-
nation rate to weakly bound dimers, and we physically ex-
plain the impact on these quantities of a nonresonant inter-
action in the open channel. We conclude in Sec. VII.

II. BASIC PROPERTIES OF THE TWO-BODY
p-WAVE SCATTERING

A. The scattering amplitude

We consider in this section two particles of mass m in the
same spin state and in the center-of-mass frame, scattering in
free space via a rotationally invariant short-range interaction
potential. We assume for simplicity that the interaction po-
tential scatters only in the p-wave channel, so that at large
distances, where the effect of the potential is negligible, the
scattering wave function of energy E=�2k2 /m, k�0, takes
the form

�k�r� � eik·r + 3f�k�k̂ · r̂
d

dr
� eikr

ikr
� , �1�

where r is the relative position of the two particles, �k are
their incoming wave vectors, and we have introduced the

unit vectors r̂=r /r and k̂=k /k. The function f�k� is the so-
called reduced scattering amplitude since the angular depen-
dence of the scattered wave has been pulled out. We note that
Eq. �1� becomes exact �that is, one can replace � by =� for a
compact support interaction potential, when r is out of the
support of the potential.

In this subsection, we briefly review some basic proper-
ties of this p-wave scattering amplitude f�k�. As a conse-
quence of the unitarity of the S-matrix of scattering theory, it
obeys the optical theorem

Im f�k� = k	f�k�	2, �2�

which implies

f�k� = −
1

u�k� + ik
, �3�

where u�k� is a real function. For cold atoms, the low-energy
scattering properties are crucial and we assume that u�k� has
the following low-k series expansion:

u�k� =
1

k2Vs
+ � + O�k2� . �4�

The so-called scattering volume Vs plays a role similar to the
scattering length in the s-wave channel: the resonant situa-
tion corresponds to the limit 	Vs	→�.

Another crucial property of the reduced scattering ampli-
tude is that its analytic continuation to negative energies, that
is to imaginary values of k, gives information on possible
bound states in the two-body problem, in the form of poles
of f�k�. More precisely, setting k= iq, where q�0, the solu-
tions qdim�0 of the equation
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1

f�iq�
= 0, �5�

correspond to bound states of the scattering potential, that is
here to dimers of rotational quantum number S=1, with a
binding energy

Edim = �2qdim
2 /m . �6�

The wave function of such a dimer, “out” of the potential
�again, this has an exact meaning for a compact support po-
tential�, is a solution of the free Schrödinger’s equation in the
p-wave channel, so that we may take it of the form

	�r� = N� 3

4

�1/2r�

r

d

dr
� e−qdimr

r
� , �7�

where N is a normalization factor and r� is the component of
r along direction �=x, y or z �48�.

The knowledge of the dimer wave function “inside” the
potential requires a full solution of Schrödinger’s equation.
However, it is possible to access the normalization factor N
directly from the knowledge of the scattering amplitude. Us-
ing the closure relation


 d3k

�2
�3�k�r��k
��r�� = ��r − r�� − �

i

	i�r�	i
��r�� , �8�

in the limit of large r and r�, we obtain

	N	2 = −
2

qdim�1 − iu��iqdim��
, �9�

assuming that u�k� has a series expansion with even powers
of k only and using contour integration in the complex plane
to single out the contribution of the poles of f�k�. As we shall
see, this relation �9� may be used to put constraints on the
parameter �.

B. Constraint on the parameter � close to resonance

Whereas the scattering volume can be adjusted at will by
a Feshbach resonance driven by a magnetic field, the value
of � on resonance cannot be adjusted the same way so it is
important to determine what are its possible values on reso-
nance. We assume that �res�0, where �res is the value of �
on resonance �49�. In the resonant limit, we see from the
low-k expansion of u�k� that there exists a weakly bound
dimer on the side �resVs�0 of the resonance �50�

qdim �
1

��resVs

. �10�

From Eqs. �4� and �9� we obtain

	N	2 �
1

�res
. �11�

This imposes �res�0. This is in sharp contrast with the case
of s-wave scattering, where the effective range re can take
any sign on resonance.

For a compact support potential, vanishing outside a
sphere of radius b, that is for r�b, the normalization of the
dimer wave function to unity imposes



r�b

d3r		�r�	2 
 1. �12�

Calculating the resulting integral with the expression Eq. �7�
leads to �51�

	N	2qdim
1

2
+

1

qdimb
�e−2qdimb 
 1. �13�

In the limit 	Vs	→� this leads to �52�

�res �
1

b
, �14�

where, again, �res is the value of � on resonance 	Vs	=�. In
the zero-range limit b→0, we see that �res cannot tend to
zero, but on the contrary has to diverge. This is in sharp
contrast with the s-wave case, where one can find models for
the interaction potential where re→0 in the zero-range limit
b→0.

To illustrate these properties on a simple example, we
give in Fig. 1 the values of � and Vs for a square well
interaction potential, as functions of the well depth. We see
on the figure that Eq. �14� is satisfied at resonance, and that
� is no longer constrained by this condition away from reso-
nance, and may even vanish and become negative.

III. MODELING OF THE RESONANT
p-WAVE INTERACTION

In this section, we introduce the main model used in this
paper to describe the p-wave interaction between same spin
state fermions close to a resonance. It is simply a two-
channel model of a Feshbach resonance, that is a direct gen-
eralization of the s-wave two-channel model �53� to the
p-wave case, in the spirit of Ref. �30�. It is extended in Sec.
VI to include direct interactions among atoms in the open
channel.
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FIG. 1. For a square well interaction potential V�r�=−
�2k0

2

m
���b−r�, where � is the Heaviside function, values of � in units of
1 /b �dashed line� and Vs in units of b3 �solid line� as functions of
k0b. Note the divergence of � when Vs=0.
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A. Model Hamiltonian

As is standard in a two-channel model, the atoms may
populate either the open channel, where they are treated ex-
plicitly as fermionic particles, or the closed channel, where
they exist only under the form of specific tight two-body
bound states, here referred to as molecules; these molecules
are treated as bosons, and have an internal rotational state of
spin Smol=1 since they are p-wave two-body bound states.
We assume that the three rotational sublevels of a molecule
are degenerate: even if this is not exactly true in practice
because of the effect of the dipole-dipole interaction in pres-
ence of the magnetic field used to produce the Feshbach
resonance �25�, this will make our model rotationally invari-
ant and greatly simplify the algebra for the three-body prob-
lem. For simplicity, we also assume that there is no direct
interaction among the fermionic particles, the resonant
p-wave atomic interaction being taken into account through
the coupling between fermions and molecules. As already
mentioned, this simplifying assumption is removed in Sec.
VI.

The situation is represented schematically in Fig. 2. Math-
ematically, it corresponds to the following free space Hamil-
tonian written in second quantized form

H =
 d3k

�2
�3
�2k2

2m
ak

†ak + �Emol +
�2k2

4m ��
�

b�,k
† b�,k�

+ �
 d3kd3k�

�2
�6 
�
�

��
��k − k�

2 �b�,k+k�
† akak� + H.c.� .

�15�

The annihilation and creation operators for fermions �that is
for the atoms in the open channel� in plane waves of wave
vectors k and k� obey the anticommutation relation

�ak,ak�
† � = �2
�3��k − k�� �16�

which corresponds to the convention �r	k�=eik·r for the
plane wave. The operator b�,k annihilates a molecule �in the
closed channel�, with a center-of-mass momentum �k, in one
of the three degenerate internal states � in the Smol=1 mo-
lecular rotational manifold; we take here for � one of the
directions x, y, or z, which amounts to using the chemistry
basis �	���, where 	�� is an eigenstate of zero angular mo-
mentum along direction �, rather than the standard basis
�	m=0, �1��. As we mentioned, molecules are treated as
bosons so that the b’s obey commutation relations

�b�,k,b��,k�
† � = �����2
�3��k − k�� . �17�

Also, the a ,a† fermionic operators commute with the
bosonic ones b and b†. In addition to its center of mass
kinetic energy, each molecule has an internal energy Emol,
defined in the absence of coupling between the open and the
closed channels, and counted with respect to the dissociation
energy of the open channel.

Whereas the first contribution in the right-hand side of Eq.
�15� simply corresponds to noninteracting gases of atoms
and molecules, the second contribution describes the cou-
pling between the two species, that is between the open and
closed channels, responsible for the p-wave resonance. This
interchannel coupling depends on the relative momentum be-
tween two atoms through the functions ��; here, we are in
the case of a p-wave coupling so we take

��k� = ke−k2b2/2, �18�

where b is the range in real space of the interchannel cou-
pling, of the order of the radius of the closed channel mol-
ecule. The overall amplitude of the interchannel coupling is
measured by the coupling constant �, taken here to be real; it
has not the dimension of an energy, but rather has the same
dimension as �2b1/2 /m. As we already mentioned, the model
is summarized in Fig. 2. It holds at low kinetic energies,
below the dissociation limit V� of the closed channel.

B. Two-body aspects

Before solving the three-body problem, it is important to
understand the two-body aspects of the model, in the form of
the reduced scattering amplitude f�k� and the related proper-
ties of possible dimers, according to the general discussion
of Sec. II. We thus calculate the scattering state of two atoms
in the center-of-mass frame, that is, for a zero total momen-
tum. The most general state vector is thus a coherent super-
position of two atoms �in the open channel� and one mol-
ecule �in the closed channel�:

	�� = �
�

��b�,0
† 	0� +
 d3k

�2
�3A�k�ak
†a−k

† 	0� . �19�

Since the molecule has a zero total momentum, its state is
characterized by the three complex amplitudes �� in each of
the internal rotational states �=x, y and z. On the contrary,
the two atoms can have opposite but arbitrary momenta k
and −k, hence the a priori unknown function A�k�.
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FIG. 2. Schematic view of a Feshbach resonance configuration:
the atoms interact via two potential curves, plotted as a function of
the interatomic distance. Solid line: open channel potential curve.
Dashed line: closed channel potential curve. When one neglects the
coupling � between the two curves, the closed channel has a mo-
lecular state of energy Emol with respect to the dissociation limit of
the open channel. Note that the energy dependence of the two
curves is purely indicative, and the spacing between the solid curve
and the dashed curve was greatly exaggerated for clarity.
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Injecting this ansatz in Schrödinger’s equation �E
−H�	��=0, and projecting onto the molecular subspace and
the atomic subspace, respectively, one finds that
Schrödinger’s equation is satisfied when A and � satisfy

�E − Emol�� + 2�
 d3k

�2
�3A�k����k� = 0, �20�

�E −
�2k2

m
�A�k� + �� · ��k� = 0. �21�

Equation �21� does not specify A�k� in a unique way, for a
positive energy E, since E−�2k2 /m vanishes for some values
of k. To obtain the scattering state of two atoms, one takes a
more specific form of the ansatz, corresponding to the super-
position in the open channel of an incoming wave of wave
vector k0 and a purely outgoing scattered wave

A�k� = �2
�3��k − k0� − �
� · ��k�

E + i0+ −
�2k2

m

. �22�

Here E=�2k0
2 /m�0 is the total energy of the scattering state.

The general scattering theory �54� relates the scattering
state to the incoming state Kdim by 	��= �1+G0T�	�0� where
T is the T matrix and G0 the resolvent of the noninteracting
Hamiltonian. From this identity it is then apparent that the
matrix element of the T matrix in Fourier space is related to
the numerator of the last term of Eq. �22�:

�k	T�E + i0+�	k0� = − �� · ��k� . �23�

From the known relation between the scattering amplitude
and the T matrix �54�, we get the reduced scattering ampli-
tude

f�k0� =
− mk0

2e−k0
2b2

/�4
�2�
3�E − Emol�

2�2 −
 d3k

�2
�3
k2e−k2b2

E+i0+−�2k2

m

. �24�

The choice of the Gaussian envelope in ��k� allows an ex-
plicit expression for the scattering amplitude. After com-
plexification of k0 by analytic continuation, setting k0= iq0,
q0�0, we obtain

1

f�iq0�
=

4


q0
2eq0

2b2
−
3�4

2m2�2 �q0
2 + mEmol/�2�

+
 d3k

�2
�3

k2e−k2b2

q0
2 + k2 � , �25�

=e−q0
2b2
1 + q0

2b2

q0
2Vs

− �� + q0 erfc�q0b� , �26�

where erfc is the complementary error function that tends to
unity in zero. With this complexification technique, it is
straightforward to identify the parameters Vs and � appearing
in the low-k expansion �4� and to get the explicit expressions

1

Vs
=

1

2
1/2b3 −
6
�2

m�2 Emol, �27�

� =
b2

Vs
+ �res, �28�

�res =
1


1/2b
+

6
�4

m2�2 . �29�

This illustrates the fact that one can tune Vs to −� or +� by
shifting the molecular energy Emol �in practice with a mag-
netic field B� around the value Emol

0 such that the right-hand
side of Eq. �27� vanishes, Emol−Emol

0 ���B−B0�.
We have introduced the convenient quantity �res, which is

the value of � exactly on the Feshbach resonance. We see
that �res depends on the interchannel coupling �, and is
bounded from below by the inverse of the potential range,
within a numerical factor depending on the details of the
model, here 1 /
1/2. In principle, �res can take any possible
value above this limit, depending on the value of the inter-
channel coupling �; in practice, of course, � is not easily
tunable so �res is fixed for a given experimental configura-
tion.

By a direct generalization of a well established s-wave
terminology, we may classify the p-wave Feshbach reso-
nances as a broad resonance ����2b1/2 /m�: �res�1 /b and
a narrow resonance ����2b1/2 /m�: �res�1 /b. We recall
that this terminology can be motivated as follows: If one
assumes that Emol is an affine function of the magnetic field
B with a slope �, and that Vs=Vs

bg�1−�B / �B−B0�� in a more
complete theory including the fact that Vs takes a finite value
Vs

bg far from the resonance �due to the direct interaction in
the open channel, neglected here� and presumably of the or-
der of b3, one finds a resonance width

��B =
m�2

6
�2Vs
bg . �30�

It remains to compare this resonance width to the “natural”
energy scale �2 /mb2 to obtain the abovementioned terminol-
ogy.

The last point to discuss for the two-body problem is the
existence or not of a two-body bound state in the open chan-
nel. We shall refer to such a bound state as a dimer, in order
not to confuse it with the molecular state in the closed chan-
nel. Mathematically, such a dimer is a zero of 1 / f�iq0� with
q0�0. The expression in between square brackets in the
right-hand side Eq. �25� is a decreasing function of q0 that
tends to −� for q0→ +�. Hence there exists at most one
dimer in our model Hamiltonian. There exists one if and only
if the expression between square brackets is positive in q0
=0, that is if and only if Vs�0 �55�.

When a dimer is present, one can express analytically its
wave function 	�r� in the open channel, in terms of expo-
nential and erfc functions, and one can calculate the occupa-
tion probability of the closed channel, pclosed= 	�	2 after
proper normalization of 	�� in the center-of-mass frame �56�

	�	2 + 2
 d3k

�2
�3 	A�k�	2 = 1. �31�

An equivalent way to obtain 	�	2 is to calculate the large r
behavior of 	�r�, which is proportional to � and which is
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related to the normalization factor N in Eq. �7�, and then to
use the general relation Eq. �9� �57�. Both ways lead to the
expression

1

pclosed
=

m2�2

6
�4

eqdim
2 b2

	N	2
. �32�

The value of pclosed for an infinite scattering volume can be
cast in the very simple forms

pclosed
res =

6
�4

m2�2�res
−1 , �33�

=1 −
1


1/2�resb
. �34�

The expression �33� is quite remarkable since it is “univer-
sal:” It does not involve the interaction range b and, as we
have checked, it is not specific to the choice of a Gaussian
cutoff function in ��k�. It was already derived in Ref. �30�,
see the unnumbered equation following Eq. �9� of that refer-
ence. In the vicinity of the resonance, we see on the expres-
sion �34� that, in the dimer wave function, the closed channel
is strongly occupied for a narrow resonance and is weakly
occupied for a broad resonance; pclosed tends to zero in the
broad resonance limit.

To conclude this review of the two-body aspects, we point
out a striking property of the dimer, very different from the
usual s-wave case: In the limit Vs /b3→ +�, we find that the
dimer wave function 	�r� has a well defined, nonzero limit,
tending to zero as O�1 /r2� at large r. This can be directly
seen in momentum space: for qdim=0+, the function A�k� is
O�1 /k� at low k, which is indeed square integrable around
the origin k=0. In other words, at the threshold for the for-
mation of the dimer, the dimer wave function is a well-
defined nonzero and square integrable function.

IV. SOLUTION OF THE THREE-BODY PROBLEM

This is the central section, where we solve the three-body
problem within the two-channel model close to a p-wave
resonance. The mathematical structure of the model, with a
single molecular state occupied in the closed channel and no
interaction potential in the open channel, is such that the
three-body problem is amenable to an integral equation for a
one-body “wave function.” This integral equation becomes
easily solvable numerically if one further uses the rotational
symmetry of the Hamiltonian. We then obtain predictions for
three physical situations, �i� the existence of three-body
bound states, that is, of trimers, �ii� the scattering of an atom
on a dimer, and �iii� the scattering of three atoms, leading to
recombination processes, that is to the formation of a weakly
bound dimer and a free atom.

A. Derivation of an integral equation

We start with the most general ansatz for the three-body
problem in the center-of-mass frame, that is, for a zero total
momentum. Because of the conversion of pairs of atoms into
molecules and vice versa, the three-body ansatz is a coherent

superposition of three fermions �all three atoms in the open
channel� and of one molecule plus one fermion �one atom in
the open channel and two atoms tightly bound in a molecule
in the closed channel�:

	�� =
 d3K

�2
�3�
�

���K�b�,K
† a−K

† 	0�

+
 d3kd3K

�2
�6 A�K,k�a1/2K+k
† a1/2K−k

† a−K
† 	0� . �35�

The one molecule plus one fermion part is parametrized by
three one-body wave functions ��, here in Fourier space; we
shall derive an integral equation for them. The three fermion
part A can be parametrized by two Jacobi-like coordinates in
momentum space since the total momentum is zero. For pure
convenience, we impose that A�K ,k� is an odd function of k,
to reduce the number of terms involving A in the integral
equation for �.

We inject the general ansatz for 	�� in Schrödinger’s
equation �E−H�	��=0, where the total energy E is at this
stage of arbitrary sign. Projecting Schrödinger’s equation on
the subspace with one molecule and one fermion gives an
equation for � with the function A appearing in a source
term:


E − Emol −
3�2K2

4m
���K� + 2�
 d3k

�2
�3���k�
A�K,k�

+ 2A�−
1

2
K + k,−

3

4
K −

1

2
k�� = 0. �36�

Projecting Schrödinger’s equation on the subspace with three
fermions leads to


 d3Kd3k

�2
�6 �
E −
�2

m
�3

4
K2 + k2��A�K,k�

+ ���K� · ��k��a1/2K+k
† a1/2K−k

† a−K
† 	0� = 0. �37�

This equation is satisfied for the choice

A�K,k� = A0�K,k� −
���K� · ��k�

E + i0+ −
�2

m
�3

4
K2 + k2� . �38�

For a positive total energy E�0: A0 represents a possible
incoming wave of three free atoms, and it is an eigenstate of
the kinetic energy operator in the center-of-mass frame with
energy E; in presence of such an incoming free wave, the
second term in A represents the scattered wave in the open
channel, which is guaranteed to be outgoing by the standard
substitution E→E+ i0+. As we have imposed the convention
that A�K ,k� should be an odd function of k, one has to apply
the same convention to A0�K ,k�; note that the last term of
Eq. �38� is automatically an odd function of k, since ��k� is.
For a negative total energy E�0, the expression between
square brackets in Eq. �37� cannot vanish, A0�0 and the
+i0+ in the denominator can be omitted.

Injecting Eq. �38� in Eq. �36�, we obtain an integral equa-
tion for �. The term A�K ,k� of Eq. �36� gives a contribution
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simply proportional to ��K�, with a K-dependent factor; col-
lecting it with the factor in between square brackets in the
first term of Eq. �36� gives a K-dependent expression that can
be recognized as being proportional �with a K-dependent fac-
tor� to the inverse of the scattering amplitude of two atoms at
the energy

Erel = E −
3�2K2

4m
�

�2krel
2

m
, �39�

with the determination krel�0 for Erel�0 and krel / i�0 for
Erel�0. This relation can be seen as a consequence of the
Jacobi-like parametrization of the momenta of the three fer-
mions that we have used in Eq. �35�: if three free fermions of
total energy E have momenta �krel+K /2 and −K, then the
modulus krel will obey Eq. �39�.

We finally obtain the general integral equation for ���K�:

krel
2 e−krel

2 b2

3f�krel�
��K� + 8

 d3k

�2
�3���1

2
K + k�

�
��k� · ��K + 1

2k�
K2 + k2 + K · k − m�E + i0+�/�2

=
4
�2

m�

 d3k

�2
�3���k�

�
A0�K,k� + 2A0�−
1

2
K + k,−

3

4
K −

1

2
k�� .

�40�

In what follows we shall solve this integral equation for vari-
ous physical situations. �i� In the search for trimers, one as-
sumes an energy E below zero and below the dimer energy
�if there exits a dimer�; then A0�0 and ��K� is not subjected
to any specific boundary condition. �ii� In the low-energy
scattering of an atom on a dimer, the energy is above the
dimer energy but still negative; then A0�0 and one has to
introduce a specific ansatz for ��K� to enforce the boundary
conditions corresponding to such a scattering experiment.
�iii� In the scattering of three incoming atoms, the total en-
ergy is now non-negative so that A0�0; we shall assume that
this scattering experiment is performed for Vs�0 so that
there exists a dimer in the two-body problem, which can be
formed by a recombination event in the three-body scatter-
ing; then one introduces an ansatz for ��K� describing the
presence of a purely outgoing wave of such a dimer �with an
opposite momentum atom�.

B. Symmetry sectors from rotational and parity invariance

Formally Eq. �40� is an equation for a spinor ��K�, with
an internal spin Smol=1; here this internal spin corresponds
to the rotational degrees of freedom of the molecule �in
the closed channel�; the orbital variable K here corresponds
to the relative atom-molecule momentum. The homogeneous
part of Eq. �40� is invariant by a simultaneous rotation of the
spin and orbital variables of the spinor. The total momentum
J, obtained by addition of the spin Smol and the orbital angu-
lar momentum L, is therefore a good quantum number. In

this paper, we shall restrict to the manifold J=1, which can
be obtained from L=0 plus Smol=1, or L=1 plus Smol=1, or
L=2 plus Smol=1. In addition, the homogeneous part of Eq.
�40� is invariant by parity �combining the parity on the spin
variables and on the orbital variables�. This decouples the
J=1 manifold in two sectors, the even sector L=1 plus
Smol=1 and the odd sector L=0 plus Smol=1 and L=2 plus
Smol=1

Applying the standard algebra of addition of angular mo-
menta, we obtain the following ansatz in the odd sector:

��K� = BL=0�K�ez − BL=2�K�
K · ez

K2 K , �41�

where ez is the unit vector along z axis. This ansatz corre-
sponds to a total angular momentum J=1 with vanishing
angular momentum component along z, mJ=0. Considering
the other components mJ= �1, or equivalently the states
with vanishing angular momentum component along x and
along y, respectively, would lead to equivalent results, as
guaranteed by the rotational invariance of the Hamiltonian.

Similarly, we take as ansatz in the even sector

��K� =
BL=1�K�

K
K ∧ ex =

BL=1�K�
K

��K · ez�ey − �K · ey�ez� ,

�42�

which corresponds to the even state with J=1 and vanishing
angular momentum component along x axis. After some cal-
culations Eq. �40� can be turned into an integral equation for
BL=1 �in the even sector� or into coupled integral equations
for BL=0 and BL=2 �in the odd sector�, as detailed in Appendix
A. The remaining unknown functions depend on a single real
variable K so that a numerical solution is reasonable.

C. Existence of weakly bound trimers

We investigate here the existence of three-body bound
states, that is of trimers, in our model Hamiltonian. These
trimers have, of course, a negative total energy E. If one is
on the Vs�0 side of the resonance, where a dimer of energy
−Edim exists, one further has E�−Edim to have stability of
the trimers with respect to dissociation into an atom and a
dimer; if this condition was not satisfied, the trimers would
not exist as true stationary states but would rather be reso-
nances in the atom-dimer scattering process.

These constraints on the energy have the following math-
ematical consequences. Since E�0, the source term A0 in
Eq. �38� is identically zero, so that Eq. �40� becomes homo-
geneous. Since E�−Edim, on the side Vs�0 of the reso-
nance, the scattering amplitude f�krel� in the denominator of
the first term of Eq. �40� is nonzero for all K and the linear
operator L�E� representing the integral equation has a
smooth action over the class of regular ��K� functions. Nu-
merically, one can then discretize the variable K with no
particular care, and approximate L�E� by a matrix. The exis-
tence of a trimer corresponds to a non-zero-dimensional ker-
nel of the operator L�E�; in practice, we look for the values
of E such that the approximating matrix has a vanishing
eigenvalue. The explicit form of L�E� for the ansatz in the
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even and odd sector can be deduced from Appendix A. In the
same appendix, it is also explained how to normalize the
state vector of the trimer.

For values of 	Vs	�b3, we have found either zero or one
trimer in each symmetry sector �with threefold rotational de-
generacy when the trimer exists�. The energy of the trimer is
written as −�2qtrim

2 /m. Then qtrim as a function of �b is given
in Fig. 3, for the even and the odd sectors. We found no
evidence of Efimov effect: in each symmetry sector, we
found at most one trimer, and there is no oscillation of the
��K� with K as a function of K, see Fig. 4.

We note that, in real experiments with atoms, these trim-
ers may acquire a finite lifetime, due to the formation of
deeply bound dimers by three-body collisions. This process
is not contained in our Hamiltonian, since H does not support
deeply bound dimers for 	Vs	�b3; its rate is estimated by a
simple recipe in Sec. V A.

D. Atom-dimer scattering

We consider here the scattering problem of an atom on a
dimer, which corresponds to the positive Vs side of the reso-
nance and to a total energy E�−Edim. For simplicity, we
restrict to the low-energy limit of this scattering, with a rela-
tive kinetic energy of the incoming atom and the dimer much
smaller than the binding energy of the dimer

E + Edim � Edim. �43�

As a consequence, the total energy is negative, so that energy
conservation prevents the dimer from being dissociated by
the interaction with the incoming atom and the scattering is
elastic. Furthermore, a multipolar expansion can be per-
formed in terms of the atom-dimer relative orbital momen-
tum. In the mathematical limit of a vanishing kinetic energy,
the atom-dimer incoming wave is a s wave and the scattering
is characterized by the atom-dimer scattering length aad that
we shall calculate. To next order of the multipolar expansion
the atom-dimer incoming wave is a p wave and we shall
calculate a corresponding atom-dimer scattering volume Vs

ad.
The property of elastic scattering at E�0 rigorously holds

for the model Hamiltonian �15�, since we have shown that it
admits at most one dimer state �with rotational degeneracy�.
Reality with atoms goes beyond this model Hamiltonian:
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FIG. 3. �Color online� For fixed values of the scattering volume
Vs, parameter qtrim of the trimer �when it exists� as a function of �b;
qtrim is related to the negative energy −Etrim of the trimer by Etrim

=�2qtrim
2 /m. �a� Even sector, �b� odd sector, as defined in Sec. III B.

Solid line �black�: 	Vs	 /b3=�. Above the solid line, positive values
of Vs: short dashed line �blue�: Vs=104b3; dashed line �red�: Vs

=103b3; dashed-dotted �green�: Vs=100b3. Below the solid line,
negative values of Vs: short dashed line �light blue�: Vs=−104b3;
dashed line �orange�: Vs=−103b3; dashed-dotted �dark green�: Vs

=−100b3. At the threshold for the existence of the trimer as a true
bound state, on the Vs�0 side of the resonance, where a dimer
exists, the trimer binding energy vanishes, so that the energy of the
trimer coincides with the one of the dimer, and qtrim=qdim �see text�.
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FIG. 4. For Vs=�, and �res=�th �right on the thresholds for the
existence of a trimer, see Eqs. �54� and �92��, K dependence of the
functions �a� BL=1 �even sector�, �b� BL=0 �solid line�, BL=2 �dashed
line� �odd sector�, for the trimers. To avoid diverging functions,
these functions were multiplied by K in �a� and by K2 in �b�. The
normalization is arbitrary.
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there exist in general deeply bound dimers, which can make
the atom-dimer scattering inelastic even at arbitrarily low
relative kinetic energy. The corresponding three-body loss
rate is estimated in Sec. V B.

S-wave atom-dimer scattering. Since we have assumed a
negative total energy E�0, there cannot be a free incoming
three-atom state so that A0�0 in Eq. �38�. In the center-of-
mass frame, the incoming state is an atom impinging on a
dimer with vanishing kinetic energy; in the subspace with
one atom and one molecule in the closed channel, this cor-
responds to a relative orbital angular momentum L=0, that is
to a total momentum J=1 since the molecule is of spin unity.
According to Sec. IV B, the incoming state is in the odd
sector. Mathematically, this scattering experiment corre-
sponds to the following splitting for �, into the sum of an
incoming wave of zero momentum �a � distribution in K
space� and a scattered wave which is a regular function of K:

��K� = �2
�3��K�pclosed
1/2 ez + �out�K� . �44�

This is of the form Eq. �41�, the � being in the L=0 sector.
Note that the incoming dimer has a probability pclosed to be in
the closed channel, so that the amplitude of the incoming
wave for �, that is in the subspace of one atom and one
molecule, includes a factor pclosed

1/2 .
In practice, one injects the form of Eq. �44� into Eq. �40�.

The ��K� term gives a zero contribution in the first term of
the left-hand side, since K=0 and E=−Edim leads to krel
= iqdim and 1 / f�krel�=0. The ��k� inserted in the second term
of the left-hand side of Eq. �40�, that is the integral term,
produces a smooth source term in the left-hand side

T�K� = 4
pclosed
1/2 �ez · K�K

e−5b2K2/8

K2 + mEdim/�2 . �45�

One is left with a linear and inhomogeneous system for the
vectorial function �out�K�, which is then taken of the form
�41�, with coefficients BL=0

out �K� and BL=2
out �K�. The explicit

form of the resulting system is derived in Appendix A, and
we obtain

D�K��BL=0
out �K�

BL=2
out �K�

� +
4






0

+�

dkk2e−5�K2+k2�b2/8

�M�K,k��BL=0
out �k�

BL=2
out �k�

�
= 4
pclosed

1/2 K2e−5b2K2/8

K2 + qdim
2 �0

1
� , �46�

where we have introduced the diagonal part

D�K� =
krel

2 e−krel
2 b2

3f�krel�
�47�

and the two by two matrix M�K ,k� is given in Appendix A.
Let us start with an intuitive presentation of the results.

We expect that, at low K, the scattered wave in the L=0
channel diverges as 1 /K2, so that we set

BL=0
out �K� � − pclosed

1/2 4


K2 aad. �48�

In position space this indeed corresponds to the large r be-
havior 1−aad /r, where r is the distance between the mol-
ecule and the atom, so that aad is indeed the atom-dimer
scattering length. In the channel L=2, the outgoing wave is
expected to scale as 1 /r3 at large r, because of the centrifugal
barrier; this corresponds to BL=2�K� having a finite limit in
K=0.

What typical values of aad can we expect? For Vs�0 and
much larger than b3, the scattering amplitude of two atoms
has a modulus 
1 /�res, which is a small value at most of the
order of b. For k�qdim��res, one finds that 	f�k�	�1 /�res.
One may then expect intuitively that aad weakly depends on
Vs, and is at most of the order of 1 /�res, that is at most �b.
This expectation is correct, see Fig. 5, except close to the
threshold for the existence of a trimer in the odd sector,
where aad diverges.

We now turn to a more rigorous analysis of the integral
�46�. The key ingredient is the low-K behavior of the various
coefficients for qdim�0. Consider the diagonal term D�K�.
As we have already mentioned, D�K� vanishes in K=0; since
here krel= i�qdim

2 +3K2 /4�1/2, we see that krel is an expandable
function of K which varies to second order in K. The same
conclusion holds for D�K�, which therefore vanishes qua-
dratically in K=0; in the limit qdimb�1 we find the simple
result

lim
K→0

D�K�
K2 �

�res

4
. �49�

Consider next the coefficients of the matrix M�K ,k�. From
the explicit expressions given in Appendix A, we obtain for a
fixed k:

lim
K→0

M�K,k� =
k2/6

k2 + qdim
2 �1 − 1

0 0
� . �50�
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FIG. 5. �Color online� Atom-dimer scattering length aad as a
function of �res for fixed values of the scattering volume Vs, Vs

=106b3 �black solid line�, Vs=103b3 �red dashed line�, Vs=10b3

�green dotted-dashed line�. The divergence of aad coincides with the
threshold of existence of a trimer in the odd sector. In the limit of a
broad Feshbach resonance �resb→1 /
1/2, aad tends to �0.2b.
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Assuming that the functions k2BL
out�k� are bounded, we find

that D�K�BL=0
out �K� has a finite limit in K=0, obeying the ex-

act relation

lim
K→0

D�K�BL=0
out �K� = −

2

3




0

+�

dk
k4e−5/8b2k2

k2 + qdim
2 �BL=0

out − BL=2
out ��k� .

�51�

On the contrary, we find that the second line of the matrix
M�K ,k� vanishes quadratically for K→0, and the source
term also vanishes quadratically in K, so that BL=2

out �K� has
indeed a finite limit in K=0.

The existence of a well defined limit for aad in the large
scattering volume can also be argued in simple terms. All the
coefficients in the integral equation �46� have a well-defined
limit for qdim→0. In particular, the diagonal term in this
limit assumes the simple form

lim
Vs/b

3→+�

D�K� =
K2

4
��res − h�K�� , �52�

where h�K�=qeq2b2
erfc�qb�, with q=�3K /2, varies mono-

tonically from zero to 1 / �
1/2b�; since �res�1 / �
1/2b�, the
expression in between square brackets cannot vanish. Taking
as new functions G0�K�=K2BL=0

out �K� and G2�K�=K2BL=2
out �K�,

one faces for Vs→ +� an integral equation of the form

�res

4
G�K� − O�G� = S�K� , �53�

where the source term is the infinite Vs limit of the right hand
side of Eq. �46�, and O is a bounded operator depending on
b but not on �res. The value G0�0� is finite for Vs= +�, so is
the atom-dimer scattering length. As shown in Appendix A, a
simple transformation can make the operator O Hermitian;
numerically, one finds that the positive part of the spectrum
of O consists of a continuum extending from zero to
1 / �4
1/2b�, and of a discrete state of energy above the con-
tinuum. We see that �res /4 cannot match an eigenvalue of the
continuum, but can indeed match the discrete eigenvalue, for

�th
odd � 0.69208/b . �54�

This particular value of �res corresponds to the threshold for
the formation of an odd trimer at Vs=�, and the correspond-
ing eigenvector was plotted in Fig. 4�a�. For �res close to the
threshold value, the solution of Eq. �53� acquires a diverging
component on this eigenvector; since the eigenvector has a
value G0�0��0 in K=0, this leads to an atom-dimer scatter-
ing length aad diverging as 1 / ��res−�th

odd�.
The writing of Eq. �53� also makes it clear that asympto-

tic expressions can be obtained in the narrow resonance
limit �resb�1: in this limit, the term proportional to �res
dominates over the bounded operator O, which can thus be

treated as a perturbation. To leading order, (G0�K� ,G2�K�)
=4S�K� /�res, which, injected into Eq. �51�, gives the
asymptotic equivalent

aad �
�resb�1

−
32

3�5
�1/2�res
2 b

�55�

valid in the limit of large Vs /b3 and large �resb. We have
checked that this relation is obeyed by the numerical results.
It is important physically to point out that, as we shall see in
Sec. VI, this asymptotic result no longer holds in the pres-
ence of direct interaction between atoms in the open channel.
Anyway, it clearly shows that aad depends not only on the
effective range parameter �res but also on the range b, which
is sensitive to the microscopic details of the model interac-
tion. In this sense, the large scattering volume limit of aad is
not a “universal” quantity.

This differs from the bosonic case on a narrow Feshbach
resonance, where the atom-dimer scattering length is a func-
tion of the scattering length a and the effective range re only,
as soon as a greatly exceeds the range of the potential; fur-
thermore, this function is not bounded in the large a limit,
but rather exhibits, on top of an overall linear growth with a,
a series of divergences for values of a /re corresponding to a
threshold for the formation of an Efimov trimer �58�.

P-wave atom-dimer scattering. We now assume that the
incoming atom-dimer relative wave is a p wave, that is it has
a unit orbital momentum L=1. In the subspace with one
atom and one closed-channel molecule, the corresponding
orbital wave function is obtained in momentum space from
the low-K0 expansion of the Dirac distribution corresponding
to a molecule of wave vector K0 impinging on an atom of
wave vector −K0:

�2
�3��K − K0� = �2
�3���K� − K0 · �grad���K� + ¯� ,

�56�

and one may take exactly E=−Edim at this order. Since the
molecule has a spin Smol=1 this may correspond to a total
spin J=0, 1, or 2. The present work is restricted to a total
spin J=1, and the corresponding ansatz turns out to be in the
even sector

��K� = �2
�3�− K0�pclosed
1/2 ��ez · �grad���K��ey

− �ey · �grad���K��ez� +
BL=1

out �K�
K

���K · ez�ey − �K · ey�ez� . �57�

We insert this ansatz in the integral equation �40�, keeping in
mind that here A0�0. The part of the ansatz involving the
gradient of the Dirac distribution gives a vanishing contribu-
tion in the diagonal term of the equation �since 1 / f�krel� van-
ishes quadratically in K=0 for the total energy E=−Edim�,
but gives a nonzero, smooth contribution in the integral term,
serving as a source term for the scattered wave BL=1

out . Per-
forming the angular average as detailed in Appendix A we
obtain
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D�K�BL=1
out �K� −

2






0

+�

dkk2�C0�K,k� − C2�K,k��

�BL=1
out �k�e−5�K2+k2�b2/8

= �− K0�pclosed
1/2 �− 8
K�

K2 + qdim
2 , �58�

where the functions C0 and C2 are defined in Appendix A
taking q=qdim, and D�K� is given by Eq. �47�.

The analysis performed for the atom-dimer s-wave scat-
tering is readily extended to the present p-wave scattering.
Since the inhomogeneous term in the right-hand side of Eq.
�58� vanishes linearly in K=0 and the diagonal part D�K�
vanishes quadratically, BL=1

out �K� diverges as 1 /K. Such a
low-K behavior was expected: From Eq. �1� expanded to first
order in the incoming wave vector, here called K0 rather than
k, one obtains for the wave function at large distances

�K0
�r� � iK0 · r
1 −

3Vs
ad

r3 � . �59�

Taking the Fourier transform with respect to the relative
atom-molecule coordinates r=rmol−rat leads to the low-K
behavior

�̃K0
�K� � − �2
�3�K0 · grad���K� − 12
Vs

adK · K0

K2 .

�60�

So we conclude that

BL=1
out � pclosed

1/2 �− K0�
12
Vs

ad

K
. �61�

From the numerical solution of Eq. �58�, the atom-dimer
scattering volume Vs

ad seems to scale as the atom-atom scat-
tering volume Vs itself close to the Feshbach resonance. So

we plot in Fig. 6 the ratio Vs
ad /Vs as a function of �res for

increasing values of Vs. Another interesting feature is the
divergence of Vs

ad at the threshold for a trimer formation in
the even sector.

The same analytical techniques as in the case of s-wave
atom-dimer scattering may be used to predict the scaling of
Vs

ad with Vs. First we divide Eq. �58� by K and we take the
limit K→0. As discussed in the s-wave atom-dimer scatter-
ing case, D�K� /K2 has a finite limit, so does D�K�BL=1

out �K� /K.
Furthermore one can show from Eq. �A9� �with q=qdim� that

lim
K→0

C0�K,k� − C2�K,k�
K

=
2

3

k

k2 + qdim
2 . �62�

We thus obtain the exact relation

lim
K→0

D�K�
K2 3Vs

ad −
4

3




0

+�

dk
k3e−5k2b2/8

k2 + qdim
2

BL=1
out �k�

4
�− K0�pclosed
1/2

= −
2

qdim
2 . �63�

Next we take the limit of an infinite scattering volume in Eq.
�58�, that is, we take qdim→0. The source term now diverges
as 1 /K in K=0; since D�K� vanishes as K2, we expect that
the function

B��K� � lim
Vs→+�

BL=1
out �K� �64�

diverges as 1 /K3 in K=0. To check the existence of B� as a
limit, one thus has to check that the integral in Eq. �58� does
not have a divergence in k=0 for such a 1 /k3 behavior of the
B�k� function: the factor k2 of three-dimensional integration
and the fact that C0�K ,k�−C2�K ,k� vanishes linearly with k
indeed bring an overall k3 factor that compensates the diver-
gence. As a consequence it is reasonable to assume that there
exists a constant C such that

	BL=1
out �K�	 


C

K3 �65�

uniformly in K and Vs. This allows to show that the integral
term in Eq. �63� is O�1 /qdim� and is thus negligible as com-
pared to 1 /qdim

2 . Using Eq. �49� and qdim�1 / ��resVs�1/2 we
obtain

Vs
ad � −

8

3
Vs. �66�

This result corresponds to the dotted line in Fig. 6. Strictly
speaking, it asymptotically holds for all values of �resb ex-
cept right on the threshold for the even trimer formation, for
reasons that are explained in Sec. IV E. Away from this
threshold we thus reach the important conclusion that, very
close to the Feshbach resonance, the atom-dimer scattering
volume for a total angular momentum J=1 is a “universal”
quantity in the sense that it does not depend on the range b of
the interaction, but only on the atom-atom scattering volume.

E. Scattering of three atoms: recombination rate

In this subsection, we consider the case of three incoming
atoms, in the form of plane waves of wave vectors k1

0, k2
0,

0.6 0.8 1 1.2 1.4 1.6 1.8 2
α

res
b

-4

-3

-2

-1

V
sad

/V
s

FIG. 6. �Color online� Atom-dimer scattering volume Vs
ad for a

total spin J=1 �see text� as a function of �resb, for a fixed value of
the atom-atom scattering volume Vs /b3=100 �dashed-dotted green
line�, Vs /b3=103 �dashed red line�, Vs /b3=104 �solid black line�. To
reveal the scaling of Vs

ad with Vs close to the Feshbach resonance,
Vs

ad is expressed in units of Vs. Dotted horizontal line: analytical
prediction �66� in the limit Vs→ +�.
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and k3
0. Without loss of generality we move to the center-of-

mass frame and assume a vanishing total momentum. We
consider the case of a positive scattering volume Vs�0, so
that there exists a dimer state in the two-body problem, that
may be populated by the collision of three atoms. The goal
here is to determine the rate with which such a dimer state is
formed, the so-called recombination rate.

For this physical situation, the total energy is positive so
A0 in Eq. �38� does not vanish, but rather defines the state of
the three incoming fermions

	�0� =
 d3kd3K

�2
�6 A0�K,k�a1/2K+k
† a1/2K−k

† a−K
† 	0� . �67�

Setting K0=k1
0+k2

0 and k0= �k1
0−k2

0� /2, one has

A0�K,k� = �2
�6��K − K0�
1

2
���k − k0� − ��k + k0�� .

�68�

To derive a simplified expression in the low incoming kinetic
energy limit

K0,k0 � qdim,
1

b
, �69�

which implies E�Edim, one expands A0 in powers of k0 and
K0. The expression between square brackets gives k0 times a
gradient of �+O�k0

3�. The expansion in powers of K0 gives

A0�K,k� = �2
�6���K� − K0 · �grad���K� + O�K0
2��

��− k0 · �grad���k� + O�k0
3�� . �70�

One has to keep the leading order in k0�K0 giving a nonzero
value for the incoming state 	�0�. Keeping the first term in
the first factor gives a vanishing contribution so that one has
to keep the second term

A0�K,k� � �2
�6�K0 · �grad���K���k0 · �grad���k�� .

�71�

This choice for A0 corresponds to the limit of a vanishing
total energy, so that we now take E=0.

This expression for A0, when inserted in Eq. �40�, gives in
the right-hand side the source term

−
6
�2

m�
�2
�3��K0 · �grad���K��k0 − �k0 · �grad���K��K0� .

�72�

Since the gradient of � can be seen as the product of K with
an isotropic distribution, one finds that this source term is in
the even sector, of the form �42�, where ez is taken along the
direction of K0 and ey is taken along the direction of k0

�, the
component of k0 in the plane orthogonal to K0. We take for
� the even ansatz with a specific form adapted to the present
physical situation

��K� = G�K���K0 · �grad���K��k0 − �k0 · �grad���K��K0�

+
4
g�K�

K2 − Kdim
2 − i0+

1

K
��K · ez�ey − �K · ey�ez� . �73�

The first term in the right-hand side is motivated by the fact
that the source term contains a gradient of �, so that � has
also to contain a gradient of �. In the second term, we have
pulled out explicitly a singularity with a pole at K=Kdim
+ i0+, where

Kdim =
2
�3

qdim �74�

which is the value of K given by Eq. �39� when krel= iqdim,
keeping in mind that the total energy is here E�0. Physi-
cally Kdim is the value Kout of K corresponding to the motion
in opposite directions of a flying atom and a flying dimer
formed by the three-atom collision, and the term i0+ in the
denominator of the ansatz ensures that this relative motion is
a purely outgoing wave. The conservation of energy indeed
imposes E=3�2Kout

2 /4m−Edim, that is, Kout�Kdim since we
assumed E�Edim.

We now inject the ansatz Eq. �73� in the integral equation
Eq. �40�. The bit in gradient of � in the ansatz, when injected
in the diagonal term of Eq. �40�, gives a contribution which
is a distribution of the same structure as the source term �72�
created by A0; the function G�K� is adjusted to have an exact
cancellation:

G�K� = − �2
�36
�2

m�

3f�krel�

krel
2 e−krel

2 b2 , �75�

where krel is defined in Eq. �39� and is equal here to
i��3 /2�K. When injected in the integral on the left hand side
of Eq. �40�, the bit in gradient of � in the ansatz gives rise to
a smooth function of K �not a distribution�. After lengthy
calculations and angular averages detailed in Appendix A,
one finds an inhomogeneous integral equation for g�K�:

−
K2e3K2b2/4

4f�i
�3

2
K�

g�K�
K2 − Kdim

2 − i0+ −
2






0

+�

dK�K�2�C0�K,K��

− C2�K,K���
g�K��

K�2 − Kdim
2 − i0+e−5b2�K2+K�2�/8

= −
36
�2

m�
K0k0

�Vs
e−5K2b2/8

K
, �76�

where C0 and C2 are given by Eqs. �A10� and �A12� with
k=K� and q=0. It remains to solve this integral equation;
one notes that there is no � distribution arising in the first
term of this equation, since 1 / f�krel�=1 / f�iqdim�=0 for K
=Kdim, so that i0+ may be omitted in the denominator of this
first term �59�.

To obtain the recombination rate from the solution g�K�
of Eq. �76�, we proceed in two steps. First, we calculate the
rate of dimer formation, that is the recombination rate, in
terms of g�Kdim�, after having enclosed the three atoms in a
fictitious cubic box of size L. Second, we construct an op-
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erator Ô such that its expectation value in the unperturbed
incoming state �67� of the three atoms gives the recombina-
tion rate; calculating the expectation value of this operator
for a Fermi sea in the thermodynamic limit then gives the
recombination rate for a macroscopic gas.

Recombination rate for three atoms. Enclosing the three
atoms in a arbitrarily large cubic box with periodic boundary
conditions introduces the following normalization factor in
the state vector

	�box� �
1

L9/2 	�� . �77�

This is directly seen on the incoming state vector �67�: each
of the three atoms is in a plane wave, with a wave function in
the box differing from the free space one by the normaliza-
tion factor 1 /L3/2.

To calculate the probability flux of dimer formation, the
most convenient is to perform the reasoning in the subspace
of Eq. �35� with one atom and one closed-channel molecule,
where the formation of a dimer manifests itself by an outgo-
ing wave of the molecule of momentum Kdim and an outgo-
ing wave of the atom with the same momentum in the oppo-
site direction. In momentum space, this outgoing wave
results from the existence of a pole of ��K� in K=Kdim, as
was made apparent in the ansatz �73�. In position space, tak-
ing the Fourier transform of ��K� and writing g�K�
=g�Kdim�+ �g�K�−g�Kdim��, we isolate the outgoing wave,
and we obtain in the limit of a large atom-molecule separa-
tion

��mol
box�out�rmol;rat� �

g�Kdim�
L9/2

eiKdimr

r
er ∧ ex �78�

with r=rer�rmol−rat is the position of the relative particle.
The associated probability current for the relative particle of
reduced mass 2m /3 is then

jout = �
�

�

2m/3
Im���,out

� �r��,out�

�
3�Kdim

2mr2 	g�Kdim�	2��er · ez�2 + �er · ey�2�er. �79�

One then calculates the total flux of the current through the
4
 Steradian and one integrates over the center of mass po-
sition. Since the flying dimer has a probability amplitude
pclosed

1/2 to be in the form of a molecule in the closed channel,
it remains to divide the total flux by pclosed to get the rate of
dimer formation for three atoms in the box

d

dt
Ndim

box = 4

�Kdim

m

	g�Kdim�	2

pclosed

1

L6 . �80�

Recombination rate for a macroscopic gas. To extend Eq.
�80� to a macroscopic number of atoms, we heuristically
generalize to fermions an operatorial expression derived in
Ref. �60� for bosons. In the bosonic case, the recombination
rate in a macroscopic gas is expressed in terms of

���̂†�R��3��̂�R��3�0, where �̂ is the bosonic field operator
and the expectation value �¯�0 is taken in a mean-field state

for the bosons not including the short-range microscopic cor-
relations induced by the interaction potential �61�. Such a
local formula results from the assumption that the size of a
produced dimer is much smaller than the macroscopic corre-
lation lengths of the gas, such as the healing length and the
thermal de Broglie wavelength �60�.

In the case of fermions, one has to rederive the formula

since �̂3=0. This is done in Appendix B and leads to the
following prescription for the recombination rate:

d

dt
Ndim = Krec
 d3R �

��,�����x,y�,�x,z�,�y,z��

����R�
�̂�†��R�

�̂�†�̂†�̂��R�
�̂���R�

�̂��0, �81�

where the field operator and its derivatives are all evaluated
in R. This expression involves as a factor the recombination
constant Krec, not to be confused with the recombination
rate. In the considered limit of a fermionic kinetic energy
smaller than the dimer binding energy �69� we indeed expect
Krec to be a constant, that is not to depend on the fermionic
kinetic energy. On the contrary, the recombination rate
dNdim /dt will involve a factor proportional to the square of
the kinetic energy of the fermions, as predicted in Ref. �42�
with a different approach.

To illustrate this point, let us consider the case of a spa-
tially homogeneous weakly interacting zero temperature
Fermi gas. The condition of low kinetic energy is then that
the Fermi energy �2kF

2 / �2m� is smaller than the dimer bind-
ing energy Edim. It remains to calculate the expectation value
�¯�0 of Eq. �81� in the Fermi sea of the ideal Fermi gas of
density n=kF

3 / �6
2�, to get

d

dt
Ndim =

3kF
4

25
KrecNn2. �82�

The factor kF
4 reveals the expected kinetic energy dependence

of the recombination rate. The recombination rate will
weakly depend on temperature as long as the gas remains
strongly degenerate, kBT��2kF

2 / �2m�.
Value of the recombination constant. We obtain Krec by

applying Eq. �81� to our solution of the three-body problem.
In this case, the uncorrelated state 	�0� over which to aver-
age in the expectation value �¯�0 is a Slater determinant
with three atoms in plane waves of wave vectors k1

0=k0
+K0 /2, k2

0=−k0+K0 /2, and k3
0=−K0, respectively. Using

Wick’s theorem �62�, we obtain

d

dt
Ndim

box = 9Krec
�k0 ∧ K0�2

L6 . �83�

Equating this expression to Eq. �80� we obtain

Krec =
4


9

�Kdim

m

	g�Kdim�	2

�K0 � k0�2pclosed
. �84�

We find that, as expected, this recombination constant does
not depend on the incoming energy, that is on the norms K0
and k0, in the present limit of vanishing incoming energy:
g�K� is indeed proportional to K0k0

�= �K0�k0�, as the source
term in the linear equation �76� is.
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One solves the integral equation �76� numerically, to ac-
cess g�Kdim�. The corresponding values of the recombination
constant are given as functions of �res in Fig. 7�a�, for three
values of the scattering volume. As expected, a rapid rise of
the recombination constant is observed when one gets closer
to the Feshbach resonance, that is for increasing values of Vs.
For a fixed Vs, one observes a smooth dependence of Krec
with �res, except in the vicinity of �resb=0.8: both a dip and
a peak in Krec are observed; this singular structure becomes
extremely narrow in the large Vs limit, both the distance
between the dip and the peak, and the width of the peak,
apparently tending to zero. These features can be obtained
analytically as follows, by investigating the large Vs limit of
Eq. �76�.

Let us examine first the diagonal term in the left hand side
of the Eq. �76�. At low values of K, much below 1 /b, one
can approximate the inverse scattering amplitude as 1 / f�iq�
�−1 / �q2Vs�+����q2−qdim

2 � /q2, where we used Eq. �10�

since we are close to resonance. Setting q=�3K /2, we then
see that this diagonal term at low energy is close to �g�K� /4,
so it is very smooth. At high values of K, of the order of 1 /b
or larger, one can directly set Vs= +�, and one sees that the
factor of g�K� in this diagonal term decreases smoothly from
�res /4 to the positive quantity ��res−1 / �
1/2b�� /4 when K
increases to infinity.

Let us now turn to the integral term. The value of K� is
cut to values at most of the order of 1 /b by the Gaussian
factor. For low values of K, below 1 /b, an approximate ex-
pression of the kernel can be obtained �63�,

C0�K,K�� − C2�K,K�� �
2KK�

3�K2 + K�2�
. �85�

This shows that the kernel of the integral part is smooth and
bounded, even in the low K and K� limit. Neglecting Kdim in
the denominator of the integral term gives a diverging factor
1 /K�2 which is, however, exactly compensated by the K�2

Jacobian term of three-dimensional integration.
The only source of singularity in the solution g�K� may

thus be the source term, in the right hand side of Eq. �76�.
The presence of a factor Vs will cause g�K� to diverge at high
Vs, by linearity of the equation, and the 1 /K divergence of
the source will lead to a singular behavior of g�K� in K=0.
These two problems can be eliminated by taking as an un-
known function

F�K� =
Kg�K�

Vs
. �86�

We multiply Eq. �76� by K /Vs. The kernel of the integral
term for F�K� taken in the limit Kdim=0 �thus neglecting Kdim

2

in the denominator� now behaves at low momenta as
�K /K���C0�K ,K�−C2�K ,K�����2K2 /3� / �K2+K�2�, which
remains a bounded quantity. Having eliminated the singular-
ity in the source term, we can suppose that

F��K� = lim
Vs→+�

F�K� �87�

is a regular and bounded function 	F��K�	
 	F	max. Then, if
one uses the approximate expression �85�, one easily sees
that the integral term in the equation for F��K� is bounded by

2






0

+�

dK�
2K2

3�K2 + K�2�
	F	max =

2

3
K	F	max, �88�

so that it tends to zero in K=0. Since the source term for F�

is nonzero for K=0 we conclude that

F��0� = −
144
�2

m��res
K0k0

�. �89�

Using the useful expression �33� for the probability to find
the dimer in the closed channel, we thus obtain analytically
the asymptotic value of the recombination constant for large
Vs /b3 �64�
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FIG. 7. �Color online� Recombination constant Krec appearing in
the expression �81� giving the rate of formation of weakly bound
dimers when three low energy atoms are colliding, as a function of
�res for a fixed value of the scattering volume. �a� Krec in units of
�b8 /m. The scattering volume is, from bottom to top, Vs=100b3

�green line�, Vs=1000b3 �red line�, and Vs=104b3 �black line�. Solid
lines: numerical solution. Dashed lines: asymptotic formula �90�.
�b� Ratio of Krec to the asymptotic formula �90�, for Vs=104b3.
Solid line: numerical solution. Dashed line: analytically predicted
Fano profile �93�. The inset is exactly the same figure but with a log
scale on the vertical axis.
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Krec � Krec
asympt =

�

m
�48
�2� Vs

5

3�res
�1/2

. �90�

We first note that this result, contrarily to the atom-dimer
scattering length, is “universal,” that is it does not depend on
the potential range b but only on the parameters Vs and �
entering in the low-k expansion of the two-body scattering
amplitude. In particular, Eq. �90� is not specific to our choice
of a Gaussian cutoff function in ��k�, as we have checked
for a general cutoff function that is derivable with respect to
k. Second, the exponent governing the dependence in Vs is
the same for a broad or a narrow Feshbach resonance. It may
thus make sense to compare this prediction to the earlier
work of Ref. �42�, where a numerical calculation was per-
formed for a resonant interaction in a single channel model:
the recombination rate was found to increase as a power law
in Vs, with an exponent argued to be equal to 8/3. Since 8/3
and 5/2 differ by about 6% only, it seems difficult to see this
difference from the numerical results of Ref. �42�.

To see how our numerical results approach the asymptotic
prediction �90�, we have plotted in dashed lines in Fig. 7�a�
the asymptotic value Krec

asympt, as a function of �res, for the
considered values of the scattering volume. For increasing
values of Vs, we indeed observe convergence of the ratio
Krec /Krec

asympt to unity, but this convergence is not uniform in
�res: the singular structure already apparent in Fig. 7�a� be-
comes narrower and narrower for increasing Vs but, e.g., the
peak in this singular structure leads to increasing deviation
from unity of the ratio Krec /Krec

asympt.
The existence of this singular structure and the depen-

dence of the recombination rate on �res within this structure
can be obtained analytically as follows. First, we formally
write the integral equation obtained for F��K� in the limit
Vs→ +� for a fixed value of �res:

�res

4
F��K� − I0�F���K� = S�K� , �91�

where the source term S�K� is obtained by multiplication of
the right-hand side of Eq. �76� by K /Vs, and I0 is a linear
operator, given explicitly in Appendix C. We find numeri-
cally that the spectrum of I0 consists of a continuum extend-
ing from 0 to 1 / �4
1/2b�, and of one discrete eigenvalue
above the continuum. If one remembers that, from Eq. �29�,
�res�1 / �
1/2b�, it becomes clear that the homogeneous
equation obtained by replacing S with zero will admit a non-
zero solution u0�K� only for �res=�th

even, where mathemati-
cally �th

even /4 is the discrete eigenvalue of I0, and physically
�th

even is the threshold value of �res for the existence on reso-
nance of an even trimer. The operator appearing in Eq. �91�
is indeed the infinite scattering volume limit and the zero
energy limit of the operator L�E� of Sec. IV C on trimers,
restricted to the even sector. Numerically we find

�th
even � 0.81408/b . �92�

In presence of the source term S, and for a value of �res
slightly deviating from �th

even, one realizes that a component
of F��K�, proportional to u0�K�, may diverge as 1 / ��res
−�th

even�. The appearance of such a small denominator implies

that F��K� is not uniformly bounded in �res in the vicinity of
�th

even, so that the asymptotic law �90� may not hold uniformly
in �res.

This very simply reveals that the singular structure in the
recombination coefficient is a consequence of the existence
of a weakly bound trimer. Quantitatively, as shown in Ap-
pendix C, by going beyond the Vs=� approximation, one
can calculate analytically the contribution to F�K� which be-
comes large for �res close to �th

even. This leads to a Fano
profile �65�

Krec � Krec
asympt ��res − �0�2

��res − �1�2 + ��2 �93�

with the following low-qdim expansions

�0 � �th
even − 3.2qdim

2 b , �94�

�1 � �th
even + 6.294qdim

2 b , �95�

�� � 35.89qdim
3 b2, �96�

��

�1 − �0
�

16

3�3

qdim

�th
even , �97�

where qdim�1 /��th
evenVs. This is in agreement with the nu-

merical results at finite but large Vs, see Fig. 7�b�.
Note that such a Fano profile in the recombination con-

stant as a function of the width of the Feshbach resonance
does not occur in the case of bosons in the large scattering
length limit: In the bosonic case, when the scattering length a
becomes much larger than the range and the effective range
of the interaction potential, the recombination constant, apart
from an asymptotic a4 factor, has only a bounded oscillatory
behavior as a function of a or of the potential range �66,67�.
This is a consequence of the fact that trimers of bosons al-
ways exist for large enough a, whatever the width of the
Feshbach resonance, and they exist in arbitrarily large num-
bers for a arbitrarily large, the so-called Efimov effect; the
oscillatory behavior in the recombination constant then re-
sults from the successive entrances of new Efimov trimers, as
a grows.

Finally, turning back to the fermionic case, we note that,
in reality, there may exist deeply bound dimers even in the
limit 	Vs	�b3, which may be formed by the collision of
three incoming atoms, in competition with the weakly bound
dimer. This effect, beyond our model Hamiltonian, is dis-
cussed in Sec. V C, where the corresponding recombination
constant towards deeply bound dimers is estimated.

V. ESTIMATION OF LOSSES DUE TO DEEPLY
BOUND DIMERS

Very close to the Feshbach resonance, the model Hamil-
tonian that we have considered in this work can support only
a weakly bound dimer in the two-body problem, that is with
an energy much smaller than �2 /mb2. In real experiments,
with alkali atoms, the van der Waals interaction potential is
very deep and support several deeply bound dimers in the
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two-body problem. These deeply bound dimers can be
formed by three-body collisions, and liberation of a huge
binding energy, leading to particle losses. As a consequence,
the trimers will acquire a finite lifetime, the atom-dimer scat-
tering will not be purely elastic, and the scattering of three
atoms will lead to recombination not only to the weakly
bound dimer, but also to the deeply bound dimers.

A first possibility to estimate these inelastic contributions
is to modify the Hamiltonian, so as to have deeply bound
dimers in the model, e.g., by including a separable interac-
tion potential in the open channel �68,69�, or by considering
a true potential and introducing the adiabatic potential curves
in hyperspherical coordinates �70,71�. This, however, modi-
fies the mathematical structure of the problem and is beyond
the scope of the present paper.

Fortunately one may easily estimate the loss rate, that is
the rate of formation of deeply bound dimers, by the follow-
ing recipe, expected to be accurate within an unknown ap-
proximately constant factor �39,72�

�loss =
�

mb2 P�b, �98�

where P�b is essentially the probability that the three atoms
be all within a volume of the order of b3. More precisely,
since we are using a two-channel model, this probability can
be split in two contributions, one coming from the purely
atomic component �all three particles in the open channel�

P�b
at = 


��b

d3r1d3r2d3r3	�at
norm�r1,r2,r3�	2, �99�

where � is the hyper-radius �B2�, and the other contribution
coming from the molecular component �with one open chan-
nel atom and one closed channel molecule�,

P�b
mol = 


	rmol−rat	�b

d3rmold
3rat	�mol

norm�rmol;rat�	2. �100�

The wave functions are here normalized, hence the apex
“norm,” as we shall explain case by case. It remains to apply
a Fourier transform to � and to an antisymmetrized version
of A in Eq. �35� to calculate numerically the corresponding
wave functions �mol

norm and �at
norm. One can also have analytic

estimates, by approximating the wave functions by their
small-radius expansions 	ri−r j	�b, as we shall see.

A. Lifetime of the trimers

In the case of trimers, the state vector can be normalized
in the center-of-mass frame, as detailed in Appendix A. One
may then calculate the probabilities in Eqs. �99� and �100�
numerically; the corresponding rate �loss then represents the
inverse lifetime of the trimer due to spontaneous decay into a
deeply bound dimer and a free atom. We recall that Eq. �98�
contains an unknown numerical factor that depends on the
microscopic details of the interaction, so the values of the
lifetimes that we shall obtain are only indicative.

As a consequence, it seems more interesting physically to
obtain the scaling laws of the trimer lifetime close to the
trimer formation threshold, that is when the trimer binding

energy is ��2 / �mb2�: Does the trimer decay rate tend to
zero on the threshold? Even if this is the case, one cannot
immediately conclude that the weakly bound trimers are long
lived, because their binding energies also tend to zero on the
threshold. One rather has to see if the decay rate tends to
zero faster or not than the binding energy Etrim

bind of the trimer.
To this end, we form what we call the quality factor of the
trimer

Q =
Etrim

bind

��loss
. �101�

This quality factor is shown as a function of qtrim in Fig. 8 for
an infinite scattering volume, that is, in practice for
1 / 	�resVs	�qtrim

2 . One sees that the quality factor Q tends to
zero at the threshold for trimer formation, which is not a
positive result. The odd sector is, however, much more fa-
vorable �keeping in mind that the quality factor in the even
sector was multiplied by a factor 20 for clarity in the figure�:
Values of Q much larger than unity are obtained already for
moderately small values of qtrimb. This is due to the fact that
Q vanishes more slowly in the odd than in the even sector:
on the figure, Qodd seems to vanish linearly whereas Qeven
seems to vanish quadratically. The scaling of the quality fac-
tor with qtrim close to the trimer formation threshold can be
obtained analytically from the low-K dependence of ��K�,
considering again an infinite scattering volume.

In the even sector, we have seen in Fig. 4�a� that the
function BL=1�K� right on the threshold diverges at low K as
1 /K only. This can be shown, as done in Appendix C, using
the fact that the kernel �C0−C2��K ,k� vanishes linearly in K,
whereas the diagonal part of the integral equation vanishes
quadratically as K2�res /4 for qtrim=0. As a consequence, the
function B�K�=KBL=1�K� is bounded, and the un-normalized
state vector 	�� of the trimer is square integrable in the
center-of-mass frame, as is apparent on Eqs. �A25� and
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FIG. 8. For an infinite scattering volume, quality factor of the
trimers, as a function of qtrimb, for the even sector �solid line� and
for the odd sector �dashed line�. For clarity, the quality factor in
the even sector was multiplied by 20. The quality factor is defined
as the ratio of the trimer binding energy, here equal to Etrim

=�2qtrim
2 /m since Vs=�, and of � times the spontaneous decay rate

of the trimer due to the formation of deeply bound dimer and a free
atom as estimated by the simple recipe �98�.
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�A26�. We thus face the same phenomenon as in the two-
body case: at threshold, the normalized trimer wave function
is nonzero. As a consequence, the probability of finding the
particles at relative distances less than b tends to a nonzero
value at threshold, �loss does not vanish,

lim
qtrimb→0

�loss
even � 0, �102�

and the quality factor Qeven tends to zero as �qtrimb�2.
In the odd sector, the situation is more favorable. As we

have seen in Fig. 4�b�, for the arbitrary normalization chosen
in that figure �73�, the function BL=0�K� right on threshold
diverges as 1 /K2 �whereas the BL=2�K� is O�1 /K��. As a
consequence, the functions ��K� and thus �mol are not
square integrable, and ��at	�at� is also infinite, see Eqs.
�A27� and �A28�. This means that the normalization factor
Nt linking the correctly normalized state vector to the un-
normalized one 	��,

	�norm� = Nt	�� , �103�

vanishes for qtrimb tending to zero. As a consequence, P�b
and �loss also vanish.

We now determine the corresponding scaling law. The
functions BL=0 and BL=2 solve a homogeneous integral equa-
tion, corresponding to the homogeneous part of Eq. �46� �that
is, with the source term set to zero in the right-hand side�
written for an energy E=−�2qtrim

2 /m. One can then recycle
the reasoning performed below Eq. �46�. At K�1 /b, the
diagonal term

D�K� � �res�K2 + Ktrim
2 �/4, �104�

where Ktrim=2qtrim /�3. On the other hand, the first line of the
matrix M�K ,k� has a nonzero limit for K→0, see Eq. �50�.
For a choice of normalization of the B’s such that the func-
tions k2	BL=0,2	�k� are uniformly bounded for Ktrim tending to
zero, we reach the form

BL=0�K� =
E�K�

K2 + Ktrim
2 , �105�

where the envelope function E�K� has a finite but nonzero
limit in K=0, and is uniformly bounded as a function of K
and Ktrim �74�. Since the second line of the matrix M�K ,k�
vanishes for K→0, we find that BL=2 is dominated by BL=0 at
low K ,Ktrim and can be neglected �75�. Inserting the form
�105� in the normalization integrals �A27� and �A28� we ob-
tain the asymptotic results in the qtrim→0 limit

��mol	��mol� �
�3

16


E2�0�
qtrim

, �106�

��at	��at� �
1 − pclosed

res

pclosed
res ��mol	�mol� , �107�

where pclosed
res =0.185¯ here at the odd trimer formation

threshold. This shows that 	Nt	2 scales as qtrimb. In calculat-
ing the probability P�b to have the particles “inside” the
interaction potential for a nonzero but small qtrim, we can
take directly the un-normalized wave functions � for qtrim
=0, so that P�b scales as 	Nt	2 and

�loss
odd �

�qtrim

mb
. �108�

The quality factor Qodd thus vanishes linearly in qtrimb.

B. Losses in atom-dimer scattering

We now estimate the loss rate in the collision of an atom
with a weakly bound dimer. We enclose the atom and the
dimer in a fictitious cubic box of volume L3, so that the state
vector in the box can be normalized to unity. The box has a
size L�b , 	aad	 so that this state vector differs from the free
space one by a normalization factor only,

	�norm� �
1

L3 	�� . �109�

One has then indeed, in the subspace with one atom and one
molecule at large distances

�mol
norm�rmol;rat� �

pclosed
1/2

L3 
1 −
aad

	rmol − rat	
�ez, �110�

and in the subspace with three atoms, for the position of the
third atom going to infinity for fixed positions of atoms one
and two �56,76�,

�at
norm�r1,r2,r3� �

1
�3L3

	�r1 − r2�
1 −
aad

	r3 − �r1 + r2�/2	� ,

�111�

so that, after spatial integration of the modulus square of
these two wave functions in the box, using �d3r		�r�	2=1
− pclosed, one finds that 	�norm� is normalized to unity in the
cubic box, to zeroth order in aad /L and b /L.

To link this calculation with an experimentally relevant
quantity, we consider a low density mixture of Nat atoms and
Ndim dimers in a volume L3. The loss rate will be

0.5 1 1.5 2
α

res
b

0.01

0.1

1

10
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K
ad

[h
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m
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FIG. 9. �Color online� Loss constant Kad due to formation of
deeply bound dimers in the atom-dimer collision, as estimated by
the recipe Eq. �98� and the relation Eq. �113�, as a function of �res

for Vs=106b3 �black solid line�, Vs=103b3 �red dashed line�, Vs

=10b3 �green dotted-dashed line�. Kad is in units of �b /m. A diver-
gence of Kad occurs at the threshold of odd trimer formation.
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d

dt
Nat =

d

dt
Ndim = − Kad

NatNdim

L3 . �112�

The loss constant Kad is related to Eq. �98� by setting Nat
=Ndim=1 in the above equation,

Kad = L3�loss, �113�

which can be checked to be independent of L3. The resulting
atom-dimer loss constant is plotted in Fig. 9 as a function of
�res. We see that, for Vs�b3,

Kad �
�b

m
, �114�

except close to the trimer formation threshold where, within
the simple recipe, Kad diverges. We also see a drop of Kad to
a smaller but nonzero value in the limit of broad Feshbach
resonances, equal to �b /m within a numerical factor: this
drop is due to the fact that P�b

mol tends to zero in this limit, so
that P�b reduces to the atomic contribution P�b

at , which is
elsewhere dominated by P�b

mol.
The property �114� can be understood analytically. For

example, to estimate P�b
mol, one can approximate �mol

norm in Eq.
�100� by its value in rmol=rat, which is generically nonzero
for the odd ansatz. Taking Vs=� gives a finite value for the
wave function, since BL=0

out �K� diverges as 1 /K2, see Eq. �48�,
and this is integrable on a vicinity of K=0 in three dimen-
sions. This explains the weak Vs dependence of Kad for large
scattering volumes. For �resb of the order of unity, Eq. �114�
then holds from dimensional analysis, apart from the diver-
gence close to the trimer formation threshold. At large �resb,
we see from Eq. �53� that the scattered wave BL=0,2

out �K� is
O�1 /�res� and is dominated by the contribution of the incom-
ing wave ���K�. We thus find again Eq. �114�, with a domi-
nant contribution P�b

mol from the molecular sector and an
atomic sector contribution which is about 1− pclosed

res

=O�1 / ��resb�� times smaller.
To make the discussion more complete, we also estimate

the rate of formation of deeply bound dimers when the atom
and the dimer scatter in the p wave, each with a momentum
of modulus K0. In this case the wave function for distances
between the particles �1 /K0 is obtained from the ansatz
�57�, containing the overall factor K0. On the contrary, if one
takes a box size L�1 /K0, the normalization factor linking
	�norm� to 	�� remains �1 /L3. As a consequence, the
p-wave loss constant Kad

p =L3�loss will be proportional to K0
2.

Furthermore, to estimate P�b
mol, we can expand the wave func-

tion �mol�rmol;rat�, which is now in the even sector, to lead-
ing order in r=rmol−rat, that is, to first order, which amounts
in the Fourier transform of ��K� to replacing exp�iK ·r� with
iK ·r. Taking directly the limit of an infinite scattering vol-
ume, we see from Eq. �65� that this first order estimate re-
mains finite, because K /K3=1 /K2 is integrable around K
=0 in 3D. As a consequence, we expect Kad

p to be of the order
of �K0

2b3 /m, except close to the even trimer formation
threshold, where it diverges within the present formalism.
This expectation is confirmed by the numerical calculation
�not shown�. Physically, this means that, away from the even

trimer formation threshold, Kad
p will be smaller than Kad by a

factor of the order of �K0b�2, that is, at least by a factor b3 /Vs
since we assume here K0�qdim.

C. Recombination to deeply bound dimers

To complete this section, we now evaluate the rate of
formation of deeply bound dimers in the collision of three
asymptotically free atoms. We again enclose the atoms in a
fictitious cubic box of size L with periodic boundary condi-
tions, so that the normalized state vector in the box is related
to the free space one in the large L limit by Eq. �77�. Repro-
ducing the reasoning of Appendix B leading to the prescrip-
tion �81�, we can now define a recombination constant to-
wards deeply bound dimers, that we call Krec

deep. Applying the
resulting prescription to three atoms in the box, we obtain the
equivalent of Eq. �83� for the rate of formation of deeply
bound dimers, with Krec replaced with Krec

deep. On the other
hand, the rate of formation of deeply bound dimers is �loss
defined by the recipe �98�. Equating the two expressions of
this rate leads to

Krec
deep =

L6�loss

9�K0 ∧ k0�2 . �115�

We consider first the molecular sector. One has to perform
the Fourier transform of ��K� in Eq. �73� to obtain the atom-
molecule wave function. The Fourier transform of the first
term of the ansatz can be calculated exactly: Since it is com-
posed of gradients of � distribution in momentum space, it
gives a wave function varying linearly with the coordinates
of r=rmol−rat. It is found that this wave function is propor-
tional to Vs. In the second term of the ansatz, we take the
large scattering volume limit, away from the trimer forma-
tion threshold, so that we neglect Kdim

2 in the denominator
and we take g�K��VsF��K� /K, as discussed around Eq.
�87�. This gives again a contribution proportional to Vs. The
Fourier transform cannot be calculated analytically, but we
only need the wave function for r�b so that we can restrict
to a small-r expansion of the atom-molecule wave function.
The linear order in r is the first nonzero one, and we obtain
the contribution from the molecular sector

�Krec
deep�mol �

�

m
b3Vs

2�respclosed
res

�
1 +
16

3
�res



0

+�

dKF��K�/F��0��2

.

�116�

The expression in between square brackets is not a slowly
varying function of �resb, because it diverges in the vicinity
of the trimer formation threshold �an artifact of the approxi-
mations performed here on the second term of the ansatz
�73��. We have checked numerically that the expression can
be well approximated by the fitting formula
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�¯� �
1 +

1.239

�resb − 0.538

1 − �th
even/�res

. �117�

The same procedure can be applied in the atomic sector. To
estimate the purely atomic wave function, we expand it to
leading order in the interatomic distances. The zeroth and
first order vanish, and we get to second order

�at�r1,r2,r3� �
�6

2

 d3kd3K

�2
�6 A�K,k��x ∧ y� · �k ∧ K� ,

�118�

where we have introduced the Jacobi-like coordinates x=r1
−r2 and y=r3− �r1+r2� /2. This leads to

�Krec
deep�atom � �Krec

deep�mol
1 − pclosed

res

pclosed
res fslow, �119�

where the factor fslow depends only on �resb, it is of the order
of 0.005 for a broad Feshbach resonance and it increases by
a factor �5 from broad to narrow Feshbach resonances.

As a consequence, our estimate of the recombination con-
stant towards deeply bound dimers, away from the trimer
formation threshold, scales as

Krec
deep �

�

m
b3Vs

2�res, �120�

for a given �res, in the large scattering volume limit. We thus
see from Eq. �90� that the formation of weakly bound dimers
wins over the deeply bound ones in this limit. Note that the
estimate of Krec

deep also holds on the negative scattering vol-
ume side of the resonance, still restricting to the low relative
incoming atomic momenta k�1 / ��res	Vs	�1/2.

VI. EFFECT OF A NONRESONANT INTERACTION
IN THE OPEN CHANNEL

In real life there exists an attractive van der Waals inter-
action between atoms in the open channel, responsible for a
residual interaction in the p wave even very far from the
Feshbach resonance. This residual interaction may be char-
acterized by the so-called background scattering volume Vs

bg.
Usually it is assumed that this residual interaction is weak
	Vs

bg	�b3, where the interaction range b is of the order of the
van der Waals length, so that it is neglected in the vicinity of
the Feshbach resonance as compared to the effect of the cou-
pling to the closed channel �30,36�. However, with the pure
closed channel coupling Hamiltonian �15� used in this paper,
we found that several quantities were depending not only on
the low-k scattering properties parametrized by Vs and �, but
also on the range b of the potential, such as the threshold for
trimer formation, which raises the issue of their dependence
with the microscopic details of the model. Furthermore, we
found that the atom-dimer scattering length assumes values
smaller than b for broad Feshbach resonances, so that it is
not evident that the residual interaction is really negligible.

To address these questions, we model the residual inter-
action by a separable potential of coupling constant g0 with

the same cutoff function ��k� as in the closed channel cou-
pling. This amounts to adding to the Hamiltonian �15� the
open channel interaction

Vopen =
g0

2

 d3Kd3kd3k�

�2
�9 ��k�� · ���k�

� a1/2K−k�
† a1/2K+k�

† a1/2K+ka1/2K−k. �121�

We determine g0 by relating it to Vs
bg from the solution of the

two-body problem. Then we solve the three-body problem
again with the simultaneous inclusion of the closed channel
coupling and the open channel interaction.

A. Modification of the two-body problem

The calculations proceed along the lines of Sec. III B. The
same ansatz �19� for the two-body state vector applies; the
new term emerging from the action of Vopen is simply

Vopen	�� = g0� ·
 d3k

�2
�3��k�ak
†a−k

† 	0� , �122�

where we have set

� =
 d3k

�2
�3A�k����k� . �123�

From Schrödinger’s equation at energy E, we find the re-
markable property

�E − Emol�
�

2�
+ � = 0 , �124�

so that � can be expressed in terms of � and the new reduced
scattering amplitude has a form very similar to the previous
one �24�,

f�k0� =
− mk0

2e−k0
2b2

/�4
�2�
3�E − Emol�

2�2 + g0�E − Emol�
−
 d3k

�2
�3
k2e−k2b2

E+i0+−�2k2

m

,

�125�

where E=�2k0
2 /m is the energy of the two-body scattering

state. This leads to a modified expression for the scattering
volume

1

Vs
=

1

2
1/2b3 −
6
�2

m�2

Emol

1 − g0Emol/�2�2�
. �126�

We first analyze the result very far from the p-wave Fesh-
bach resonance. Taking the limit Emol→� in the above ex-
pression gives the background scattering volume as a func-
tion of the open channel coupling constant

1

Vs
bg =

1

2
1/2b3 +
12
�2

mg0
. �127�

Since the van der Waals interaction is attractive, we take
g0�0 in all what follows. Then one sees that the background
scattering volume has a dependence with 	g0	 similar to the
left part of the Fig. 1 calculated for a square well potential:
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For increasing values of m	g0	 /�2 starting from zero, Vs
bg

decreases from zero to −�, it diverges on the critical value

m	g0
c	

�2 = 24
3/2b3, �128�

then it decreases from +� down to 2
1/2b3. The divergence
is due to the formation of a dimer in the open channel, and
this dimer is deeply bound when g0 is away from the critical
value g0

c. The existence of a deeply bound dimer would
deeply change the physical nature of the three-body problem
with respect to our previous analysis: e.g., it would open a
decay channel to the trimer, which would not exist as a true
stationary state anymore but at most as a resonance. We thus
take from now on 	g0	� 	g0

c	 so that Vs
bg�0. We shall keep in

mind that

Vs
bg � − b3 �129�

for a nonresonant interaction in the open channel. To be com-
plete, we have also calculated the value of the parameter � in
the presence of open-channel interactions only

�bg =
1


1/2b
+

b2

Vs
bg , �130�

which can have any sign since the open-channel interaction
is not resonant.

We now come back to the vicinity of the Feshbach reso-
nance, where the closed channel coupling is no longer neg-
ligible. First we can prove that, under the condition Vs

bg�0,
there is no bound state in the two-body problem for Vs�0
and there is one for Vs�0, as expected; the proof was ob-
tained using the argument of a monotonic variation of an
appropriate function as done in the paragraph below Eq. �30�

We restrict for simplicity to the exactly resonant case Vs
=�. The corresponding values of the closed-channel detun-
ing Emol and of � are then

g0Emol
res

2�2 =
Vs

bg

2
1/2b3 , �131�

�res =
1


1/2b
+

6
�4

m2�2�1 −
Vs

bg

2
1/2b3�2 . �132�

We see that the range of variation of �res remains the same as
in our previous model. The scattering amplitude, analytically
continuated to negative energies E=−�2q2 /m, q�0, can be
put in the simple form

eq2b2

f�iq�
=

Vs→�

qeq2b2
erfc�qb� −

1

b
1/2 −
�res − 1/�b
1/2�

1 + q2/qopen
2 ,

�133�

making it apparent that the main effect of the open channel
interaction is to introduce a new scale qopen for the wave
vectors, such that

qopen
2 =

g0Emol
res − 2�2

g0�2/m
=

− 1/Vs
bg

�res − 1/�
1/2b�
. �134�

This allows us to reach first conclusions on the effect of the
open channel interaction on the properties of the original
model �15�.

For a broad Feshbach resonance ���2b1/2 /m, we find
that qopenb�1, so the open channel interaction should have a
weak effect. In particular, this suggests that the trimer states
in the regime of rather broad resonances should be weakly
affected. Furthermore, if Vs

bg is weak enough to have qopenb
�1 at the threshold for the formation of the trimers in our
previous model,

	Vs
bg	 �

b3

�thb −
1


1/2

, �135�

then the threshold itself should be weakly affected by the
open channel interaction. For a narrow Feshbach resonance,
one has qopenb�1 �except for 	Vs

bg	�b3�; in this case the
effect of the open channel coupling is more difficult to guess:
It may depend on the considered quantity and a more de-
tailed analysis is required.

If qopen was smaller than the estimate qdim�1 / ��resVs�1/2

for the wave vector associated to the dimer binding energy
close to the resonance, then the open channel interaction
would have a dramatic effect. However, one finds
qdim

2 /qopen
2 � 	Vs

bg /Vs	 so that qdim�qopen in the resonant re-
gime.

A last relevant quantity is the probability to find the dimer
in the closed channel. In the limit Vs→ +�, after some cal-
culation, we find

pclosed
res =

6
�4

m2�2�res
−1�1 −

g0Emol
res

2�2 �−2

, �136�

=1 −
1


1/2�resb
. �137�

The relation �33� is therefore affected by the open channel
interaction, whereas Eq. �34� is not.

B. Modification of the three-body problem

We now solve the three-body problem in presence of both
the closed channel coupling and the open channel interac-
tion. The previous ansatz �35� applies, but a new term arises
in Schrödinger’s equation of eigenenergy E,

Vopen	�� = g0
 d3Kd3k

�2
�6 ��k� · ��K�a1/2K+k
† a1/2K−k

† a−K
† 	0� ,

�138�

where we have set

��K� =
 d3k

�2
�3
A�K,k� + 2A�−
1

2
K + k,−

3

4
K −

1

2
k��

����k� . �139�
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Schrödinger’s equation projected onto the molecular sub-
space is unaffected by the open channel interaction, since
there is only one atom in that subspace. So Eq. �36� still
holds exactly. Then one immediately sees that a simple rela-
tion relates � to �:


E − Emol −
3�2K2

4m
���K�

2�
+ ��K� = 0. �140�

One may then take as unknown any convenient combination
of � and �.

In Schrödinger’s equation projected onto the atomic sub-
space, a new term appears, but of the same structure as the
term involving � in Eq. �37�. Thus the modification to Eq.
�38� is minor,

A�K,k� = A0�K,k� +
�g0��K� − ���K�� · ��k�

E + i0+ −
�2

m
�3

4
K2 + k2� .

�141�

This results immediately suggests which combination of �
and � is convenient: We introduce

�eff�K� = ��K� −
g0

�
��K� , �142�

the overall factor being such that �eff reduces to � in the
absence of open channel interaction. As a consequence, our
unknown field is now

�eff�K� = 
1 +
g0

2�2�E − Emol −
3�2K2

4m
����K� .

�143�

Eliminating � and A in terms of this unknown field in Eq.
�36�, we find after some calculations and using Eq. �125� that
�eff�K� solves the same equation �40� as � in our previous
model, provided that the modified scattering amplitude �125�
is used. As a consequence, all the numerical and most of the

analytical techniques developed for the previous model may
be reused for the new model.

Existence of weakly bound trimers. We reproduce the nu-
merical calculations of Sec. IV C with the scattering ampli-
tude modified by the open channel interaction. We restrict for
simplicity to an infinite scattering volume: See Fig. 10 giving
qtrimb as a function of �resb, where the energy of the trimer is
−�2qtrim

2 /m, for �a� the even sector and �b� the odd one. Then
we see that the trimer state still exists for low �resb. For a
small background scattering volume Vs

bg=−b3, its energy de-
pendence with �resb is only weakly affected by the open
channel interaction, as expected from the qualitative condi-
tion �135�, and the threshold is only slightly shifted. For a
much more negative background scattering volume Vs

bg=
−10b3, there is simply a larger shift in the odd sector, but the
conclusion is radically changed in the even sector, see Fig.
10�a�: the trimer seems to exist now for all values of �resb.
This may be understood as follows: in the large �resb limit,
the coupling � to the closed channel tends to zero, so does
Emol

res , see Eq. �131�, and for a fixed nonzero q, the scattering
amplitude �125� converges to the one of a single channel
model with a scattering volume Vs

bg. If 	Vs
bg	 /b3 is large

enough, then this single channel model can indeed support a
trimer �77�. On the other hand, the fact that the threshold for
trimer formation survives in the odd sector up to higher val-
ues of 	Vs

bg	 /b3 than in the even sector may be understood
from the qualitative argument �135�.

S-wave atom-dimer scattering. We consider for Vs�0 the
scattering of an atom on a dimer in the limit of a vanishing
relative kinetic energy, so that E=−Edim, where Edim is the
dimer binding energy for the new model, and the correspond-
ing s-wave scattering is characterized by the atom-dimer
scattering length aad. Then the field ��K� is given by the
ansatz �44�. As a consequence, the effective field �143� will
have the same structure; the delta distribution ��K� will sim-
ply be multiplied by the factor 1−g0�Edim+Emol� / �2�2�.
Also the part of �eff diverging as 1 /K2 will be related to the
part of ��K� diverging as 1 /K2 by exactly the same factor.
So that one may read the value of the atom-dimer scattering
length directly from the effective field. As a consequence,
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FIG. 10. �Color online� In presence of open channel interactions, characterized by a fixed value of the background scattering volume Vs
bg,

parameter qtrim of the trimer �when it exists� �a� in the even sector and �b� in the odd sector, as a function of �resb. Here the scattering volume
Vs is infinite and �res is the corresponding value of the parameter � for the modified scattering amplitude, see Eq. �132�. Solid line �black�:
Vs

bg=0. Dashed line �red�: Vs
bg=−b3. Dashed-dotted line �green�: Vs

bg=−10b3.
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one has to solve the same integral equation �46�, just chang-
ing the diagonal part D�K� to account for the new scattering
amplitude. The corresponding numerical results for aad are
presented in Fig. 11, as functions of �res, for an infinite scat-
tering volume Vs. For the considered values of 	Vs

bg /b3	, the
open channel interaction does not qualitatively change the
result: There exists a threshold for the formation of a trimer
in the odd sector, see Fig. 10�b�, and we recover the diver-
gence of aad at this threshold already observed in our first
model.

What happens to the atom-dimer scattering length in the
large �resb limit? Is the analytical prediction �55� obtained in
our previous model still valid? In the presence of interactions
in the open channel, it seems surprising that aad can tend to
zero at large �resb, since the scattering amplitude for �→0
for a finite q tends to the one of a single channel model with
a scattering volume Vs

bg. This limit, however, is not reached
uniformly in q: e.g., for q�qdim, q�qopen and the scattering
amplitude remains very close to the one of the two channel
model with no open channel interaction. This nonuniformity
of the �→0 limit is also revealed at Vs=� from the fact that
the parameter �res is very different from Eq. �130� which one
would have in the absence of coupling to the closed channel.
Mathematically, Eq. �51� still applies, if one considers the
effective field �eff�K� rather than ��K�, but in the infinite
scattering volume limit analysis, the function h�K� in Eq.
�52� is changed by the open-channel interaction in

h�K� = qeq2b2
erfc�qb� + ��res −

1

b
1/2� q2

q2 + qopen
2 ,

�144�

with q=�3K /2. Contrarily to our previous model, the func-
tion h�K� increases from 0 to �res when K increases from 0 to
infinity, in practice to values �1 /b. We can no longer as-
sume 1 / ��res−h�K���1 /�res for all K in the large �res limit,

so we have only the weaker result that the right hand side of
Eq. �51� is O�1� in this limit. Since h�K=0�=0, D�K� /K2

still converges to �res /4 in K=0 and we get

aad =
�resb�1

O� 1

�res
� . �145�

We have successfully compared this analytical prediction to
the numerics. For very large values of �resb �not shown�,
we numerically find for Vs

bg�0 that aad tends to zero as
C /�res, where the constant C depends on the background
scattering volume C�−0.69 for Vs

bg=−b3, and C�−4.1 for
Vs

bg=−10b3.
P-wave atom-dimer scattering. Now the incoming atom

and dimer have a relative orbital momentum L=1, so the
vanishing kinetic energy limit of the scattering E→−Edim is
characterized by an atom-dimer scattering volume Vs

ad, with
the ansatz �57� for ��K� in the sector of total spin J=1 �see
Sec. IV D�. Since the factor linking �eff�K� to ��K� varies
only quadratically with K, it may be replaced by its K=0
value in front of the gradient of ��K�, so that �eff and � have
the same low-K behavior, from which Vs

ad is readily ex-
tracted. We numerically solve Eq. �58� updating the values of
the scattering amplitude f�k� and the dimer binding energy
Edim to include the open channel interaction. The dependence
of Vs

ad with �res is shown in Fig. 12, for a fixed and large
scattering volume Vs and for various values of the back-
ground scattering volume. It is apparent that Vs

ad is weakly
affected by the open channel interaction, apart in the vicinity
of the even trimer formation threshold �if it exists�. This can
be understood analytically, realizing that the reasoning lead-
ing to Eq. �66� still applies in presence of the considered
open channel interaction. This confirms the “universality” of
the asymptotic behavior
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FIG. 11. �Color online� Atom-dimer scattering length aad as
a function of �resb for the model including the open channel inter-
action, for an infinite scattering volume Vs. Solid line �black�:
Vs

bg=0. Dashed line �red�: Vs
bg=−b3. Dashed-dotted line �green�:

Vs
bg=−10b3.
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FIG. 12. �Color online� In the model including an open channel
interaction, atom-dimer scattering volume Vs

ad for a total spin J=1
�as detailed in Sec. IV D� as a function of �resb, for a fixed value of
the atom-atom scattering volume Vs=104b3 �solid black line�, but
for various background scattering volumes in the open channel:
Vs

bg=0 �black solid line�, Vs
bg=−b3 �dashed red line�, Vs

bg=−10b3

�dashed-dotted green line�. Vs
ad is expressed in units of Vs. Dotted

horizontal line: analytical prediction Eq. �66� in the limit Vs→ +�.
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Vs
ad � −

8

3
Vs �146�

which was expected in Sec. IV D from the fact that it does
not depend on the potential range b.

Recombination rate to weakly bound dimers. Finally, we
consider the scattering problem of three atoms in the zero
total energy limit, for Vs�0 and in presence of open channel
interactions. We take for the effective field �eff�K� the same
ansatz as in Eq. �73�, putting the subscript “eff” on the vari-
ous functions of the ansatz. The function Geff�K� is still given
by Eq. �75� but the scattering amplitude is now changed. As
Geff is, however, multiplied by the gradient of a delta, only its
first derivatives in K=0 matter, so only the scattering volume
comes out, and geff obeys the integral equation �76� with the
same source term and the updated scattering amplitude. In
the large scattering volume limit, away from the even trimer
formation threshold if it exists, we can thus recycle Eq. �89�,
since it involves only the low-momentum behavior K

Kdim�qopen of the scattering amplitude and properties of
the function C0−C2; this leads to

geff�Kdim� � −
144
�2

m��res

Vs

Kdim
K0k0

�. �147�

On the other hand, the reasoning leading to the recombina-
tion constant Krec in Eq. �84� still holds, with the function
g�K� �and not geff�K�� and the closed channel probability
pclosed modified by the open channel interaction. The func-
tions g and geff differ, because � and �eff differ by a factor
depending on K. Since the factor in between square brackets
in Eq. �143� cannot vanish for our choice Vs

bg�0, ��K�, and
�eff both have a single pole in K=Kdim, with

g�Kdim� =
geff�Kdim�

1 −
g0

2�2 �Emol + �2qdim
2 /m�

. �148�

In the large Vs /b3 limit, one can neglect qdim in the denomi-
nator of this expression, which amounts to neglecting qdim
with respect to qopen. Then we use the expression �136� and
remarkably we recover exactly the same asymptotic behavior
for Krec as in the previous model, under the assumption
Vs

bg�0:

Krec �
Vs�b3

�

m
�48
�2� Vs

5

3�res
�1/2

. �149�

This indicates some ‘universality’ of this result, which could
be hoped from the fact that it does not depend on the inter-
action range b.

VII. CONCLUSION

We have solved the free space three-body problem for
single spin state fermions resonantly interacting in p-wave
via a two-channel Feshbach resonance, in the sector of total
angular momentum one. The central model that we used to
describe the interaction depends on three parameters, the
scattering volume Vs which diverges on resonance, an effec-

tive range parameter � and the spatial range of the interac-
tion b. Whereas b is of the order of the van der Waals length,
the parameter � on resonance can range from a strictly posi-
tive minimal value of the order of 1 /b up to plus infinity, the
minimal value being model dependent and equal to 1 / �b
1/2�
for our Gaussian cutoff function. In present experiments one
estimates �b�3 for 40K �25� and �b�3 for 6Li �30� on
resonance. The two-body scattering amplitude for Vs=� is
fk�−1 /� for low relative momenta k�1 /b, so that 	fk	 right
on resonance is at most of the order of b, which is extremely
small as compared to the usual s-wave unitary limit. As a
consequence, the resonant three-body problem has very dif-
ferent properties from the s-wave one.

First, it does not exhibit the Efimov effect but it admits
two trimers, one with even parity and the other with odd
parity, for low enough values of �b. Since the considered
sector is of angular momentum one, each trimer is threefold
degenerate. For Vs /b3 large and negative, our model Hamil-
tonian does not have a two-body bound state, so that these
trimer states are examples of Borromean states. However, we
estimate that the spontaneous decay rate �loss of the trimers,
due to the formation of deeply bound dimers present in cur-
rent experiments with real atoms, eventually becomes larger
than the binding energy of the trimers �over �� if one gets
very close to their formation threshold: in the limit of a van-
ishing trimer binding energy, �loss tends to a nonzero limit
for the even trimer, and vanishes as the square root of the
trimer binding energy for the odd trimer.

Second, the atom-dimer scattering length aad, characteriz-
ing the low-energy �that is s wave� scattering of an atom on
a dimer, assumes small values, of the order of b �or even
below in absolute value for ultranarrow Feshbach reso-
nances�, except close to the odd dimer formation threshold
where it diverges. The fact that aad depends on the interac-
tion range b shows that it is not a “universal” quantity and it
is sensitive to the microscopic details of the interaction. Fur-
thermore, the loss constant in the inelastic atom-dimer
s-wave scattering �due to the formation of deeply bound
dimers� is proportional to �b /m, away from the trimer
threshold, so that the inelastic rate may dominate over the
elastic one. A similar conclusion was reached for the elastic
vs inelastic scattering of p wave weakly bound dimers �44�.
We have also studied the atom-dimer scattering when the
incoming relative wave is a p wave: in the considered sector
of total angular momentum one, the corresponding atom-
dimer scattering volume Vs

ad is shown analytically to become
proportional to the atom-atom scattering volume Vs away
from the even trimer formation threshold, see Eq. �66�. This
asymptotic result looks “universal,” since it does not involve
the interaction range b.

The recombination rate of three atoms into weakly bound
dimers, calculated in this work in the limit of low relative
atomic wave vectors k� ��Vs�−1/2, has properties more simi-
lar to the s-wave case. What remains specific to the p-wave
case is that the rate is proportional to the square of the mean
kinetic energy per particle, see Eq. �81�, as already pointed
out in Ref. �42�. Apart from that, it includes as a factor the
recombination constant Krec, which is large close to the reso-
nance: it diverges as Vs

5/2 /�1/2 in the large scattering volume
limit, see Eq. �90�, an asymptotic expression valid away
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from the even trimer formation threshold and which is “uni-
versal,” since it does not involve the interaction range b and
it is not sensitive to the choice of the cutoff function ��k� of
the two-channel model. In the large scattering volume limit,
the recombination constant towards weakly bound dimers
dominates over the recombination constant towards deeply
bound dimers, which scales as Vs

2 only �still in the limit of
low relative atomic momenta with respect to 1 / ��	Vs	�1/2�. If
one applies this last result to a degenerate macroscopic gas,
with a Fermi momentum kF�1 / ��	Vs	�1/2, one finds a num-
ber of recombination events to deeply bound dimers per unit
of time and volume scaling as

�rec = O� �

m
b4n3� , �150�

where we used 1 /�=O�b� and n is the gas density.
In the last part of the paper, we have made the modeliza-

tion more realistic by including a fourth parameter, a direct
attractive interaction between atoms in the open channel.
Physically, this interaction is supposed to be not resonant so
that it has a weak background scattering volume Vs

bg, of the
order of b3 and much smaller than Vs. To stay in the regime
where no deeply bound dimers exist in the Hamiltonian on
resonance, one further imposes Vs

bg�0. We then find that the
existence of the trimers is preserved. They remain weakly
bound in the vicinity of some threshold values of �, provided
that 	Vs

bg	 does not exceed a few b3; these threshold values for
�, however, depend on b and are not “universal.” The atom-
dimer scattering length aad is significantly changed by the
open channel interaction in the limit of ultranarrow Feshbach
resonances, where it now tends to zero for large �b as 1 /�,
rather than as 1 / ��2b� in our 3-parameter model; this con-
firms the nonuniversal character of aad. On the contrary, in
presence of open channel interactions, the same asymptotic
expressions �66� for the atom-dimer scattering volume Vs

ad

and Eq. �90� for the recombination constant Krec to weakly
bound dimers are obtained as in our 3-parameter model, in
terms of Vs, and in terms of Vs and � respectively, which
confirms the “universal” character of these results.
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APPENDIX A: INTEGRAL EQUATIONS FOR THE
K-DEPENDENT PART OF THE ANSATZ FOR �

When injecting the ansatz �41� or �42� in the homoge-
neous part of the equation �40� for �, one faces the calcula-
tion of the following angular averages over the direction of
k,

I0�K,k� =
 d�k̂

4

�1

2
K + k� �K · ez� +

1

2
�k · ez�

q2 + K2 + k2 + K · k
e−K·kb2

,

�A1�

I1�K,k� =
 d�k̂

4

�1

2
K + k�

�

K · 
�k · ez

k
�ey − �k · ey

k
�ez�

q2 + K2 + k2 + K · k
e−K·kb2

,

�A2�

I2�K,k� =
 d�k̂

4

�1

2
K + k�

� �k · ez�

1

2
+

K · k

k2

q2 + K2 + k2 + K · k
e−K·kb2

. �A3�

Note that, for the calculations performed in this paper, one
can restrict to the case of a nonpositive total energy E so that
we have set E=−�2q2 /m, q�0, and we have omitted i0+.

To perform this angular integration, we use spherical co-
ordinates of polar axis K /K. We need to evaluate first the
integral over the azimuthal angle �,

B1 = 

0

2
 d�

2

k = k cos �

K

K
, �A4�

B2 = 

0

2
 d�

2

�k · e��k = �

i,j
k2Bij�Ei · e��E j , �A5�

where � stands for y or z, �Ei=1,2,3� is an orthonormal basis
with E3=K /K and

Bij = 

0

2
 d�

2

�k · Ei��k · E j� , �A6�

=
1

2
��1 − cos2 ���ij + �3 cos2 � − 1��i3� j3� . �A7�

This leads to

B2 =
k2

2

�1 − cos2 ��e� + �3 cos2 � − 1�

�K · e��K
K2 � .

�A8�

The integration over the polar angle � involves basically the
integral

Cn = 

−1

1 dx

2

xne−tx

v + x
, �A9�

with v�1, t�0 and integer n. The result is

C0 =
evt

2
�E1�vt − t� − E1�vt + t�� , �A10�
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C1 = − vC0 + j0�it� , �A11�

C2 = − vC1 + ij1�it� , �A12�

C3 = − vC2 − j2�it� −
i

t
j1�it� , �A13�

where E1�z� is the exponential integral

E1�z� = 

1

+�

ds
e−sz

s
�A14�

and jn�z� are the usual spherical Bessel functions. A straight-
forward integration over the � angle leads to

I0�K,k� =
u

4
�C0 − C2�ez + 
u

4
�3C2 − C0� +

5

4
C1

+
1

2u
C0� �K · ez�K

K2 , �A15�

I1�K,k� =
1

2
�C2 − C0�
K · ez

K
ey −

K · ey

K
ez� , �A16�

I2�K,k� = 
u

4
�C0 − C2� +

1

2
�C1 − C3��ez + 
u

4
�3C2 − C0�

+
1

2
�3C3 − C1� +

1

4
C1 +

1

2u
C2� �K · ez�K

K2 , �A17�

with

u =
k

K
, v =

q2 + K2 + k2

Kk
, t = b2Kk . �A18�

For the odd sector, E�0 so the source term A0 vanishes.
Projecting Eq. �40� onto the two components ez and
�K ·ez�K /K2, we obtain an integral system of coupled equa-
tions for BL=0�K� and BL=2�K�, given in the main text, see Eq.
�46�, where we have introduced the two by two matrix

M�K,k� =�
k

4K
�C0 − C2� −

k

4K
�C0 − C2� −

1

2
�C1 − C3�

−
k

4K
�3C2 − C0� −

5

4
C1 −

K

2k
C0

k

4K
�3C2 − C0� +

3

2
C3 −

1

4
C1 +

K

2k
C2
� . �A19�

The resulting integral operator can be made Hermitian by the
change of variables

�BL=0�K�
BL=2�K�

� = P−1�b0�K�/K
b2�K�/K � �A20�

with the two by two transformation matrix

P = � 21/4 0

− 2−1/4 2−1/4 � . �A21�

This results in the Hermitian integral equation

0 = D�K��b0�K�
b2�K�

� +
4






0

+�

dkKke−5�K2+k2�b2/8N�K,k��b0�k�
b2�k�

� ,

�A22�

with the two by two matrix N�K ,k�= PM�K ,k�P−1 satisfying
N†�K ,k�=N�k ,K�. For the even sector, the integral equation
for BL=1 is given directly in the main text, see Eq. �76�.

To conclude this appendix, we briefly explain how to
normalize the state vector of the trimer �when it exists�. The
normalization can be done directly in momentum space by
integration over internal variables, that is after having
singled out the total momentum variables Q. In the sector of
Eq. �35� with one molecule, using the fact that the param-
etrization of the molecular and atomic momenta kmol=Q /2
+K, kat=Q /2−K, has a unit Jacobian, we find

��mol		�mol� =
 d3K

�2
�3 	��K�	2. �A23�

In the purely atomic sector of Eq. �35�, using the fact that the
parametrization of the atomic momenta k1=Q /3+K /2+k,
k2=Q /3+K /2−k, k3=Q /3−K, has a unit Jacobian, using
Wick’s theorem and the fact that A�K ,k� is an odd function
of k, we obtain

��at		�at� = 2
 d3Kd3k

�2
�6 A�K,k�
A��K,k�

− 2A��k −
1

2
K,

3

4
K +

1

2
k�� . �A24�

Using the specific form of the ansatz �42� and �41� for �,
with BL=0�K�, BL=1�K� and BL=2�K� real, and the link �38�
between A and � written here for A0�0, one can get inte-
grals of lower dimensions:

��mol
even		�mol

even� = 

0

+� dK

3
2B
2�K� , �A25�
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��at
even		�at

even� =
m2�2

6
4�4

0

+�

dK

0

+�

dk
 2
3k4B2�K�e−k2b2

�qtrim
2 + k2 + 3

4K2�2

+ 2B�K�B�k��D0 − D2��K,k�e−5/8�K2+k2�b2� ,

�A26�

��mol
odd		�mol

odd� = 

0

+� dK

3�2
2
b2�K� , �A27�

��at
odd		�at

odd� =
m2�2

6�2
4�4

0

+�

dK

0

+�

dk
 2
3k4b2�K�e−k2b2

�qtrim
2 + k2 + 3

4K2�2

− 4b�K� · ND�K,k�b�k�e−5/8�K2+k2�b2� . �A28�

We have set E=−�2qtrim
2 /m, B�K�=KBL=1�K� and

Dn = 

−1

1 dx

2

xne−tx

�v + x�2 , �A29�

which is minus the derivative of Cn with respect to v for
fixed t and obeys the recursive relation Dn+1=Cn−vDn. Also,
the vector b�K� has components b0�K� ,b2�K�, and the two by
two matrix ND�K ,k� is obtained in replacing each Cn by Dn
in the matrix N�K ,k�.

APPENDIX B: PRESCRIPTION FOR THE
RECOMBINATION RATE OF FERMIONS

We wish to derive the formula �81� giving the rate of
dimer formation in a gas of fermions at low kinetic energy, in
terms of a recombination constant depending on the interac-
tion and the expectation value �¯�0 of some operator in the
unperturbed state of the gas. We start with the intuitive idea
that a dimer formation can take place by three-body collision
when the mutual distances of the atoms are at most of the
order of the dimer radius �, hence the heuristic formula

d

dt
Ndim �
 d3r1d3r2d3r3e−�2/2�2

� ��̂†�r1��̂†�r2��̂†�r3��̂�r3��̂�r2��̂�r1��0.

�B1�

We have taken for simplicity a Gaussian cutoff function, in
terms of the hyper-radius � defined as

�2 = �
i=1

3

�ri − R�2 =
1

2
�r1 − r2�2 +

2

3
�r3 − �r1 + r2�/2�2,

�B2�

where R=�i=1
3 ri /3 is the center-of-mass position. Under the

assumption that the typical wave vectors populated in the
uncorrelated state of the gas are much smaller than 1 /�,
which is the case here since we assume relative momenta

�qdim, we can expand each field operator �̂�ri� around the

center-of-mass position R of the three ri in powers of ri

−R. Since �̂2=0 one has to go to second order in �r:

�̂�r3��̂�r2��̂�r1� = �
���

A���̂�R���R�
�̂�R����R�

�̂�R��

+ O��r3� , �B3�

where � and � run over the three directions of space x, y and
z, and the matrix A is given by

A�� = �r2,��r1,� − �r3,��r1,� + �r3,��r2,�. �B4�

We restrict to this leading order in �r. It remains to integrate
the Gaussian weighted products A��A�� over the internal
variables for fixed center of mass position R, by using the
Jacobi coordinates. Since A�� for ��� is odd with respect
to the reflection along direction � or along direction �, this
integral vanishes if �� ,��� �� ,��. The invariance of the in-
tegral by permutation of the x, y, and z axis leads to the final
prescription �81�.

APPENDIX C: RECOMBINATION CONSTANT CLOSE
TO THE TRIMER FORMATION THRESHOLD

The goal is to derive the approximate formula �93� giving
the recombination constant Krec for large scattering volumes
and for a value of �res close to the threshold for the even
trimer formation. To this end, we rewrite the integral equa-
tion �76� as a sum of its Vs=� value and a remainder, then
we treat the remainder perturbatively. Taking as unknown
F�K�=Kg�K� /Vs, using Eq. �26� and the identity 1 / �X
− i0+�=P 1

X + i
��X�, where P is the Cauchy principal value,
we obtain the rewriting

�res

4
F�K� − I0�F��K� − I1�F��K� − iA�K�F�K� = S�K� .

�C1�

We have introduced the two functions

A�K� = K�C0 − C2��K,Kdim�e− 5
8

b2�K2+Kdim
2 �, �C2�

S�K� = −
36
�2

m�
K0k0

�e−5b2K2/8, �C3�

and the two operators

I0�F��K� =
h�K�

4
F�K� +

2






0

+�

dK�
K

K�
�C0 − C2��K,K��

�e−5/8b2�K2+K�2�F�K�� , �C4�

I1�F��K� =
Kdim

2

4

h�K� − h�Kdim�
K2 − Kdim

2 F�K� +
2Kdim

2






0

+�

dK�
K

K�

��C0 − C2��K,K��e−5/8b2�K2+K�2�P F�K��
K�2 − Kdim

2 ,

�C5�

where we have set h�K�=q exp�q2b2�erfc�qb� with q=�3
�K /2.
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The operator J such that J�G��K�= I0�F��K� /K where
F�K�=KG�K�, is self-adjoint and thus has real eigenvalues;
we find numerically that it has one and only one discrete
eigenvalue, that we called �th

even /4, with the corresponding
normalized eigenvector K→g0�K�. As a consequence, the
operator I0 admits, with the eigenvalue �th

even /4, a discrete
eigenvector u0�K�=Kg0�K�, with the corresponding adjoint
�left eigenvector� v0�K�=g0�K� /K. We note that the kernel in
I0

† behaves as K�2 / �K2+K�2� at low momenta, which is
bounded, so that v0�K� is bounded, g0�K� vanishes linearly
with K in K=0 and u0�K� vanishes quadratically �78�. Apart
for this discrete eigenvalue, we numerically find that I0 has a
continuous spectrum extending from 0 to 1 / �4�
b�.

For �res close to �th
even, in the large scattering volume limit,

a small denominator �of the order of ���res−�th
even� appears

in the direction of u0 when one solves Eq. �C1�. This small
denominator is weakly perturbed by I1 �which shifts the
value of �res for which the denominator has a minimal modu-
lus� and by the imaginary part involving the function A�K�
�which prevents the denominator from exactly vanishing�.
These effects can be included systematically by using the
ansatz

F�K� = Fbg�K� + c0u0�K� . �C6�

The background part of the solution Fbg�K� and its derivative
Fbg�K� are supposed to be uniformly bounded in Vs and �res,
even in the vicinity of �res=�th

even. From the low K behavior
of C0�K ,K��−C2�K ,K��, one finds that the solution F�K�
satisfies F�0�=4S�0� /�res, this value being reached quadrati-
cally in K. Since 	F�	 is not uniformly bounded in Vs and �res,
this does not give information on the value F�Kdim�. One has
also Fbg�0�=4S�0� /�res, but for a 	Fbg� 	 bounded by cbg,
where the constant cbg does not depend on Vs or �res, one
now has

�Fbg�Kdim� −
4S�0�
�res

� 
 cbgKdim. �C7�

This is the property of Fbg that we shall need.
Injecting the ansatz �C6� into Eq. �C1� and projecting onto

u0 by using the adjoint vector v0, we obtain the exact expres-
sion

��/4 − �v0	I1	u0� − iu0�Kdim��v0	A��c0

= �v0	S� + ��/4��v0	Fbg� + �v0	I1	Fbg� + iFbg�Kdim��v0	A� ,

�C8�

where we used �v0	I0	Fbg�= ��th
even /4��v0	Fbg� �after justifica-

tion�. Here Dirac’s notation means �f 	g�=�0
+�dKf��K�g�K�.

Replacing c0 by its expression in Eq. �C6�, setting K=Kdim
and putting all terms on a common denominator, we see that
the imaginary contribution iu0�Kdim��v0	A� exactly cancels in
the numerator. We finally obtain the still exact expression

F�Kdim�
Fbg�Kdim�

= F��/4 − �v0	I1	u0� − iu0�Kdim��v0	A��−1

���/4 − �v0	I1	u0�/F + u0�Kdim���v0	S�

+ �v0	I1	Fbg��/�Fbg�Kdim�F�� , �C9�

where F�1− �v0	Fbg�u0�Kdim� /Fbg�Kdim�.
The last step is to expand the various terms to leading

order in Kdim. Expanding I1 to leading order in Kdim and
using the fact that u0 is an eigenvector of I0 to simplify the
integral expression appearing in this leading order form of
I1, we obtain

lim
Kdim→0

�v0	I1	u0�
Kdim

2 =
�th

even

4
�v0	v0� � 0, �C10�

and the quantity �v0	v0� is readily evaluated numerically.
This gives a position of the peak in Krec shifted to a value of
�res larger than �th

even by a O�Kdim
2 �, see Eq. �95�. Since u0�K�

vanishes quadratically in K, one has u0�Kdim� of the order of
Kdim

2 ; since A�K� vanishes linearly in Kdim for a fixed K, one
has �v0	A� of the order of Kdim. A numerical calculation of
the corresponding coefficients leads to Eq. �96�. Amusingly,
using the low-K expansion of C0�K ,K��−C2�K ,K��, we find
the mathematical equivalence in the zero Kdim limit

�v0	A� �
2

3
Kdim

�v0	S�
S�0�

, �C11�

which leads to Eq. �97�. Another result is

�v0	I1	Fbg� = O�Kdim
2 ln Kdim� , �C12�

so that this contribution, being multiplied by u0�Kdim� in Eq.
�C9�, may be neglected at this order. Finally, we note that
Fbg�Kdim� and F differ from 4S�0� /�res and 1, respectively,
by terms of order Kdim and Kdim

2 , that we neglect to obtain Eq.
�93�.
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