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We study dynamics of a nonlinear three-level � system describing Bose-Einstein condensates of atoms and
diatomic molecules coupled by a two-color laser field. The system has a nonlinear dark state which is a
generalization of the usual atomic dark state. In the recent paper �A. P. Itin and S. Watanabe, Phys. Rev. Lett.
99, 223903 �2007��, nonlinear instabilities of the dark state due to 1:1 and 1:2 resonances were discussed in the
model without mean-field collisional interactions. Here we investigate the dark state of a model with collisional
interactions. We show that nonlinear instabilities can be used, in particular, for precise determination of the
scattering lengths.
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I. INTRODUCTION

In the last decade there has been explosive growth of
interest in quantum properties of Bose-Einstein condensates
�BECs� and in their mean-field dynamics �1�. The nonlinear-
ity results in a variety of exciting phenomena, among which
we mention instabilities of matter waves, bright and dark
solitons �see, e.g., �2� for the recent reviews of these issues,
and �3–5�, respectively, for some particular examples�, col-
lapse �see, e.g., the review �6� and references therein�, vortex
dynamics �7�, shock waves �8�, etc. However, numerous the-
oretical studies mostly deal with effectively linear dynamics
of small excitations of ground states of the respective non-
linear systems �employing, say, Bogolyubov-de-Gennes
equations, or other schemes of linearizations�. While even
the linear dynamics is nontrivial and often provides one with
useful information it sometimes appears to be insufficient to
reproduce the authentic nonlinear dynamics which goes be-
yond the standard linearization.

On the other hand a BEC represents a remarkable object
for testing the ideas of the nonlinear science and in particular
for theoretical and experimental study of the linear and non-
linear instabilities. In the present work we address one of
such systems and present some counterintuitive and intrinsi-
cally nonlinear phenomena appearing in atomic-molecular
BECs.

More specifically we consider a mixture of atomic, ex-
cited molecular, and ground-state molecular condensates
coupled by two-color Raman photoassociation. The related
three-level � system is depicted schematically in Fig. 1�a�.
The state �a� corresponds to the atomic BEC which is
coupled to the excited diatomic molecular condensate �the
state �e�� via a Raman laser pulse �p �“pump”�. Without the
BEC �with thermal atoms�, the free-bound transition would
be very weak. However, since all atoms in �a� are in the same
state and transferred to �e� coherently, the efficiency of the
process is greatly enhanced �see, e.g., �9–12��. The state �e�
is coupled to the ground state of the molecular BEC by a
“dump” pulse �d. The system has already received a consid-
erable amount of attention, in particular due to prospects of

superchemistry with molecular condensates �13� and precise
determination of s-wave scattering lengths �14�. Its linear
counterpart is widely used in quantum manipulations, in par-
ticular in the STIRAP �stimulated Raman adiabatic passage
�15�� process.

The STIRAP process in � systems is based on the exis-
tence of the dark state which is a superposition of only �a�
and �g� states. The dark state is determined by instantaneous
values of �p,d; ideally, population transfer happens via the
dark state as �p,d are slowly changed, with the �e� state re-

FIG. 1. �Color online�. �a� A three-level � system. �a�, �e�, and
�g� correspond to the atomic, the excited molecular, and the ground
state molecular condensates. A pair of atoms from �a� is photoasso-
ciated in a diatomic molecule in �e� and is drawn into the ground
state �g�. This process in fulfilled via the counterintuitive sequence
of pulses �p,d shown in panel �b�; � and � indicate one-photon and
two-photon detunings, respectively.
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maining almost unpopulated. Therefore questions of stability
and adiabaticity of the system in the dark state is essential for
efficiency of population transfer. In the nonlinear �atom-
molecular� STIRAP process these questions have been chal-
lenged only very recently �16,17�. Some approximate adia-
batic conditions were derived, and it was also established
that without mean-field collisional interactions, a system lin-
earized about the dark state does not possess complex fre-
quencies �17�.

We are interested in nonlinear instabilities. In a recent
paper �18�, an improved �as compared with pioneering works
of �16,17�� adiabatic condition for the nonlinear STIRAP
process was derived; the instability of the system in the exact
1:1 resonance was demonstrated, and preliminary analysis of
possible instabilities at 2:1 resonance between frequencies of
the linearized system was performed. Both resonances turned
out to be degenerate, i.e., certain conditions of generality
�19� are not fulfilled.

In this paper we study the model with collisional mean-
field interactions, where dynamical instabilities of the dark
state due to 1:1, 2:1, and 3:1 resonances are possible. We
concentrate on instabilities not associated with complex
eigenfrequencies, since they have been rarely discussed in
the BEC-related literature. Following the approach of �18�,
we recast the mean-field model into the form of a two-
degree-of-freedom �2 DOF� classical Hamiltonian system
and use the resonance normal forms theory �19,20�. In this
approach the dark state corresponds to an equilibrium of the
Hamiltonian system. The structure of the paper is as follows.
In Sec. II, we describe the models with and without colli-
sionless interactions, give a brief overview of the resonance
normal form theory and present �for consistency� a brief dis-
cussion of 1:1 resonance in the collisionless model. In Sec.
III, we discuss resonance instabilities of the dark state in the
system with interactions. We show that nonlinear instabili-
ties, besides being interesting as conceptual nonlinear phe-
nomena, might have practical applications. In Sec. IV, we
present other stationary solutions of the collisionless model.
In Sec. V, concluding remarks are given, including a brief
discussion of the adiabatic conditions.

II. MODELS AND METHODS

A. Models

Following �16–18�, consider the three-level � system
shown in Fig. 1�a� and briefly described in the Introduction.
Neglecting collisional interactions and spontaneous emis-
sion, the mean-field equations are �16,17�

i�̇a = �p�
a
*�e,

i�̇e = ��e +
�p

2
�a

2 +
�d

2
�g,

i�̇g =
�d

2
�e, �1�

where an overdot stands for the derivative with respect to
time and the “wave functions” �a,e,g are normalized to �n
where n is the total atomic density, so that

��a�2 + 2���g�2 + ��e�2� = 1. �2�

We neglect spontaneous emission because mostly we are
interested in motion near the dark state, but we keep in mind
that it should be included in case �e� is populated consider-
ably. In Eqs. �1� it is implied that two-photon detuning is
zero ��=0�.

Equations �1� are equivalent to Hamiltonian equations of
motion of the effective classical Hamiltonian

Hcl =
�p

2
�x2�y1

2 − x1
2� − 2x1y2y1� −

�d

2
�x2x3 + y2y3�

−
�

2
�x2

2 + y2
2� . �3�

Here xk are canonical momenta, while yk are the coordinates,
being related to the old “variables” �complex numbers �i� as
�a=x1+ iy1, �e=x2+ iy2, and �g=x3+ iy3.

The system �1� has several stationary points, describing
different physical regimes of the atomic-molecular dynam-
ics. One of them—the dark state �16,17�—is described �up to
a phase factor� by the vector �0= ��a

�0� ,�e
�0� ,�g

�0��T, where
�a

�0�= �
2�d

�d+�e
�1/2 ,�e

�0�=0,�g
�0�=−

2�p

�d+�e
, and �e=��d

2+8�p
2.

This solution is the most important in the context of the
STIRAP process �as it has zero population of the excited
state�. Some other stationary states that might be important
for other applications are given in Sec. IV.

To include two-body interactions in the STIRAP process,
one introduces a two-photon detuning � in the model in order
to “compensate” for nonlinearities and keep the dark state as
a stationary solution of the system �21�. That is, the equa-
tions of motion are

i�̇a = fa�a + �p�
a
*�e,

i�̇e = �fe + ���e +
�p

2
�a

2 +
�d

2
�g,

i�̇g = �fg + ���g +
�d

2
�e, �4�

where fa,e,g are nonlinear terms coming from collisional in-
teractions �f i=�gij�� j�2, gij are proportional to the s-wave
scattering lengths of atom-atom, atom-molecule, and
molecule-molecule collisions �17��. Exactly the same method
that was used in �18� for the system �1� without interactions
can be applied to the system �4� with interactions. This is an
important finding of the present paper, since presently avail-
able methods �17� lead to heavy complications when inter-
actions are taken into account. We take into account atom-
atom collisional interactions and interactions involving
molecules in the ground state, i.e., we neglect only collisions
involving molecules in the excited states. Corresponding co-
efficients are gaa �for atom-atom�, ggg �ground state
molecule-molecule�, and gag �atom-ground state molecule�.
From Eqs. �4� we obtain an equivalent classical Hamiltonian
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Hint = Hcl −
�

2
�x3

2 + y3
2� −

gaa

4
�x1

2 + y1
2�2 −

ggg

4
�x3

2 + y3
2�2

−
gag

2
�x1

2 + y1
2��x3

2 + y3
2� , �5�

where, according to �21�, detuning � should be chosen to
“compensate” for the nonlinearities:

� = �2gaa − gag���a
�0��2 + �2gag − ggg���g

�0��2

=
4�d�2gaa − gag� + �2gag − ggg���e − �d�

2��e + �d�
. �6�

As a result, the absolute values of the components of the
dark state remain unchanged, but the phases of �a and �g
now rotate with the frequencies �=gaa��a

�0��2+gag��g
�0��2 and

2�, correspondingly: �a
�0�= ��a

�0��e−i�t, �e
�0�=0, �g

�0�

= ��g
�0��e−2i�t.

B. Stability of Hamiltonian systems and resonance normal
form theory

The eigenfrequencies of the system linearized about the
dark state are given by �17�: �0=0 and ��= 1

2 ��� ��2

+�d�e�1/2�. They are real which, however, does not guaran-
tee yet that the state is dynamically stable: there may occur
nonlinear instabilities. The study of such instabilities is per-
formed using the theory of normal forms �see, e.g., �19��,
which for the sake of convenience we outline below for the
case of a system with two degrees of freedom, i.e., for the
case we are dealing with in this paper.

The first step consists in reduction of the original system
to the 2 DOF Hamiltonian system, whose equilibrium point
located at the origin corresponds to the dark state. Next, in
the vicinity of the equilibrium, one considers in the first ap-
proximation only the quadratic terms of the Hamiltonian
function:

H 	 H2 =
1

2
�Az,z� , �7�

where z designates a vector of canonical coordinates and
momenta and A is a 2	2 square matrix, so that the equa-
tions of motion have the form

ż = I
�H2

�z
= Az , �8�

where I= �
0 −E2

E2 0 �, and hereafter Em stands for the m	m unity
matrix. Eigenvalues of the Hamiltonian H2 are the roots of
the equation det�IA−
E4�=0. In the complex plain the roots
are located symmetrically about the coordinate cross, i.e., if


 is an eigenvalue then 
̄ ,−
 ,−
̄ are the eigenvalues of H2,
too. As a result, the stability of a Hamiltonian system is
always neutral: if an equilibrium is stable, then real parts of
all the eigenvalues are equal to zero.

Instabilities in Hamiltonian systems is not a trivial issue,
as they do not necessarily arise from complex eigenfrequen-
cies, which correspond to complex eigenvalues. Eigenvalues
of H2 can be of four different types �19�: real pairs �a ,−a�,

purely imaginary pairs �ib ,−ib�, complex double pairs
��a� ib�, and zero eigenvalues. By means of a linear ca-
nonical transformation, the quadratic Hamiltonian can be re-
duced to a sum of partial Hamiltonians �i.e., functions of
nonintersecting sets of canonically conjugated variables�,
where every partial Hamiltonian corresponds to one of the
above-mentioned four types of eigenvalues.

Suppose that all eigenvalues are purely imaginary and dif-
ferent, then the Hamiltonian H2 can be reduced to a normal
form H2=�1�p1

2+q1
2� /2+�2�p2

2+q2
2� /2 and the full Hamil-

tonian H in the vicinity of the equilibrium can be represented
as H=H2+H3+H4+¯, where Hj �j=3,4 , . . . � is a homoge-
neous polynomial of the jth order.

Now, recalling that we are dealing with two degrees of
freedom, the equilibrium will be stable if there are no reso-
nances up to the fourth order between the frequencies �1,2
�the order of a resonance relation k1�1+k2�2=0 is defined as
k
�k1�+ �k2��, and the so-called isoenergetic nondegeneracy
condition �19� is fulfilled. Thus in a vicinity of a low-order
resonance, careful examination of the Hamiltonian is needed,
including analysis of higher-order terms �i.e., H3 and H4�. In
the next paragraph we briefly analyze 1:1 resonance in the
collisionless model.

C. 1:1 resonance in the collisionless model

The collisionless model is very useful for demonstrating
nonlinear instability: there is only one type of nonlinearity,
and linear instabilities are absent. The system determined by
classical Hamiltonian �3� has two degrees of freedom only
because of the integral �2� which can be rewritten as x1

2+y1
2

+2�x2
2+y2

2+x3
2+y3

2�=1. There is a set of stationary points fill-
ing a circumference x1

2+y1
2=2�d / ��e+�d�=A2. This cir-

cumference corresponds to the dark state: its radius corre-
sponds to the normalized population of �a�, and position on
the circumference to the phase of �a. Introducing polar co-
ordinates xk=�2�k cos �k and yk=�2�k sin �k �k=1,2 ,3� and
subsequently defining pm=�2�m+1 cos��m+1−2�1� and qm

=�2�m+1 sin��m+1−2�1� �m=1,2� �i.e., �p2,3 ,q2,3� are the
Cartesian coordinates �x2,3 ,y2,3� rotated by the angle 2�1
=2 arctan�x1 /y1��, we reduce Hcl �Eq. �3�� to the following 2
DOF Hamiltonian �22�:

Hpq = �p��q1
2 + p1

2 + q2
2 + p2

2� −
1

2
�p1 −

�d

2
�q1q2 + p1p2�

−
�

2
�q1

2 + p1
2� . �9�

The stationary point of Hpq that corresponds to the dark
state circumference is p1=q1=q2=0 , p2=

�d−�e

4�p
=B. Shifting

the origin to that point, we get the Hamiltonian

H = �p�q1
2 + p1

2 + q2
2 + p2

2�p1 −
�d

2

q1q2 +

�e

�d
p1p2�

−
�

2
�q1

2 + p1
2� , �10�

where now p2 is the deviation from the stationary point.
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Eigenfrequencies of the system linearized about the origin
are equal to ��, therefore at �=0 1:1 resonance happens:
�++�−=0 �18�. After a series of transformations described
in �18�, one obtains an effective Hamiltonian

F =
1

2
J −

J
2

8
�1

2

P2 +

J2

R2�AP + R2AR� , �11�

where AP= �10 cos2 �+10 cos �+4� /3 and AR=5 cos �−1,
the parameter � is defined as parameter � as �d=�e cos �.

The idea behind the transformations is to represent the
Hamiltonian in the vicinity of the origin as H=H2+H3+H4,
get rid of the cubic terms H3 by means of a nonlinear ca-
nonical transformation, and then average the resulting
Hamiltonian over a variable which is “fast” due to 1:1 reso-
nance �this variable is canonically conjugated to J in Eq.
�11�, as a result J=const after the averaging� �18�.

The Hamiltonian �11� is an integrable system for a pair of
canonically conjugated variables P ,R. It is not difficult to
understand its dynamics: Eq. �11� is merely a Hamiltonian of

a particle in the effective potential U�R�=
J2AP

2R2 +ARR2 �in-
deed, only the expression in the square brackets in Eq. �11� is
important for dynamics�. For cos ��

1
5 �i.e., for �p��3�d�,

the system �11� has a single fixed point, while for cos ��
1
5

there are no fixed points �see Fig. 2�a��. In the latter case, a
phase point initially placed close to R=0 will slowly move
from the origin to large values of R. The dark state corre-
sponds to R=0, so that such an effective potential implies
instability of the dark state due to 1:1 resonance. Numerical
examples are presented in Fig. 2�b�. Physically, cos ��1 /5
means that most of the population is in the �g state. Thus we
have an interesting counterintuitive phenomenon: the dark
state becomes unstable provided �p��3�d: deviations from
it slowly grow with time.

Let us now briefly recall the generic behavior of a Hamil-
tonian system near the 1:1 resonance. The 1:1 resonance
means that eigenvalues of a linearized Hamiltonian collide.
Usually, in the vicinity of the resonance one brings a qua-
dratic part of the Hamiltonian to the normal form H=a�p1

2

+ p2
2�+b�p2q1− p1q2�+ �̃�q1

2+q2
2�, where �̃ is a deviation from

the resonance. In the nondegenerate case �a�0�, an expo-
nential instability can arise due to the quadratic part: at one

side of the resonance ��̃�0�, instability is exponential in

time, because the eigenvalues 
i= � �ib�2i�a�̃� leave the

imaginary axis �“split”� after the collision at �̃=0. At the
other side of the resonance, the eigenvalues are imaginary
�i.e., the eigenfrequencies are purely real�; nevertheless in
the vicinity of the resonance equilibrium may become un-
stable due to higher-order terms �19�. In our case, even when

the detuning from the resonance �̃=� /2 is introduced, the
eigenvalues cannot leave the imaginary axis: they “pass”

each other when �̃ is changed; instead of a nonsemisimple
matrix A �see Eq. �8��, we have a diagonizable matrix. As we
clarified above, the instability comes from the quartic terms
of the Hamiltonian being transformed to the normal form.

Since long time scales are required, for real applications it
may be necessary to take into account spontaneous emission.
In our classical approach, it will enter as a dissipation. We

postpone this investigation to future work. Here we add
some notes on 2:1 resonance. Analysis of �18� showed that
this resonance is also degenerate �the resonance term is
merely absent�. Similar to 1:1 resonance, we need to analyze
the quartic terms here, which is not an easy task �see, for
example, �30��.

III. RESONANCES IN THE MODEL
WITH TWO-BODY INTERACTIONS

A. Mathematical analysis

In �21� it was suggested that the STIRAP process should
be modified in the presence of collisional interactions. In that
case the two-photon detuning � �see Fig. 1� should be intro-
duced to compensate the effect of the nonlinearity, leading to

FIG. 2. �Color online�. �a� The effective potential U�R� of the
Hamiltonian �11� for cos �=0.17 �the solid line� without a local
minimum and for cos �=0.23 �the dashed line� where a stable equi-
librium close to the origin �i.e., to the dark state� exists. �b� The
evolution of the population P2 of the excited state, starting with a
small deviation from the dark state �for which P2 is exactly zero�.
The parameters are �p=2.0	106 s−1 and �d=1.0	106 s−1

�cos �	0.17�. We see that instability develops on long time scales
�10 ms�; deviations from the dark state grow and reach very large
values �notice that the maximum value of P2 is 0.5 due to the
normalization P1+2�P2+ P3�=1�. In the inset the dynamics with
�p=1.5	106 s−1, �d=1.0	106 s−1 �cos �	0.23� is shown. Here,
the effective potential has a minimum, so deviations from the dark
state first grow with time, and then begin to oscillate slowly about
this effective equilibrium. Note that the amplitude of these oscilla-
tions is an order of magnitude smaller than in the unstable case.
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a more complicated system �4� with the constraint �6� on the
value of �. As we have already mentioned above, the model
�4� is equivalent to the classical Hamiltonian Hint in Eq. �5�.
This Hamiltonian is rather complicated, as it contains even
quartic terms. We may fulfill the analysis of resonant insta-
bilities using the same approach as in the previous section.
By making the respective canonical transformations we get
instead of Eq. �9� the following 2 DOF Hamiltonian:

Hpq
int = �p
q1

2 + p1
2 + q2

2 + p2
2 −

1

2
�p1 −

�d

2
�q1q2 + p1p2�

−
�

2
�q1

2 + p1
2� −

�

2
�p2

2 + q2
2�

− gaa
q1
2 + p1

2 + q2
2 + p2

2 −
1

2
�2

−
ggg

4
�p2

2 + q2
2�2

− gag�p2
2 + q2

2�
1

2
− �q1

2 + p1
2 + q2

2 + p2
2�� . �12�

Next, shifting the origin to the fixed point corresponding
to the dark state, we obtain H=H2+H3+H4 where �cf. Eq.
�10��

H2 = −
�d

2
q1q2 −

�e

2
p1p2 −

�̄

2
�q1

2 + p1
2� − gBp2

2, �13�

H3 and H4 designate cubic and quartic polynomials in the
new variables q1,2 , p1,2,

�̄ 
 � − 2gaa��a
0�2 − 2gag��g

0�2 = � − 2� ,

gB = �4gaa − 4gag + ggg���g
0�2 =

16Dg�p
2

��e + �d�2 ,

and Dg=gaa−gag+ggg /4.
Let us consider H2 given by Eq. �13� in more detail. As-

sume its eigenvalues are purely imaginary. Then one can
transform H2 to a sum of two linear oscillators. Skipping the
corresponding sequence of canonical transformations, the re-
sulting Hamiltonian has the form

H2 =
1

2
�̃1�P1

2 + Q1
2� +

1

2
�̃2�P2

2 + Q2
2� , �14�

where

�̃1 = −
1

2
�2�̄2 + �de

2 + 2��̄4 + �̄��̄ + 2G��de
2 ,

�̃2 =
1

2
�2�̄2 + �de

2 − 2��̄4 + �̄��̄ + 2G��de
2 , �15�

G=gB�d /�e, and �de=��d�e. Let us list possible low-
order resonances �k1 :k2 resonance below means k1�̃1+k2�̃2
=0�.

1:1 �̄ = 0,

1:2 64�̄2��̄2 + �de
2 � − �de

2 �9�de
2 − 200�̄G� = 0, �16�

1:3 36�̄2��̄2 + �de
2 � − �de

2 �16�de
2 − 200�̄G� = 0,

1:0 �de
2 = 8G�̄ .

These resonances can lead to loss of stability of the dark
state even if cases �̃1,2 are purely real. Let us consider in
detail the 1:1 resonance in order to have the full picture of
this highly nontrivial degeneracy in both the collisionless
system and the system with interactions.

Assume the exact resonance �̄=0. The quadratic part of
the Hamiltonian acquires the form

H2 = −
�de

2
�q1q2 + p1p2� − Gp2

2. �17�

The matrix A of the corresponding equations of motion
�see Eq. �8�� is nonsemisimple �i.e., not diagonalizable: its
Jordan decomposition has two Jordan blocks of the second
order�. One, however, can use the general approach to the 1:1
resonance �19�. Following this way, we make a sequence of
�rather involved and requiring symbolic computer calcula-
tions� canonical transformations bringing the full Hamil-
tonian to the standard normal form �see also the Appendix�:

H =
1

2
a
P2 +

J2

R2� + J� + R2
DR2 + FJ + C
P2 +
J2

R2�� ,

�18�

where the coefficients F and C depend on �p,d ,gaa ,gag ,ggg
in a complicated way, while the most essential parameters a
and D can be represented by rather simple expressions, with
the help of the angle parameter � defined as cos �=�d /�e:

a = − 2Dg cos � tan2 �

2
,

D =
1

64
�8dg − 35Dg − 6gaa + �48Dg − 10dg�cos �

− 19Dg cos 2�� .

Here dg=2gaa−gag.
The analysis of the phase portraits of Eq. �18� is available,

e.g., in �19�. In Fig. 3 we present some typical examples for
aD�0 �panels �a� and �b�� and for aD�0 �panel �c��. At
aD�0, there are regions of instability �runaway trajectories�
on the phase portraits.

The origin �i.e., dark state equilibrium� is stable in the
case aD�0 and is unstable in the case aD�0 �19�. The term
with C in Eq. �18� is not so important for dynamics, as it is
much smaller than the first term in Eq. �18� �note that the two
terms differ by the small factor R2�. The term with F may
create a region of stability near equilibrium �at finite J�; how-
ever, at some larger distances from the equilibrium dynamics
is determined by coefficients a and D �see detailed bifurca-
tion diagram in �19��. The key magnitude for stability of the
dark state is therefore
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aD = −
Dg

32
�8dg − 35Dg − 6gaa + �48Dg − 10dg�cos �

− 19Dg cos 2��cos � tan2 �

2
. �19�

This is one of the main analytical results of the paper. In Sec.
III B we discuss its physical implications.

B. Physical discussion

Let us now turn to the discussion of the physical conse-
quences of the obtained results. We start with the observation
of a very important feature of the expression �19�: while
aD�n2 �n is the density of the condensate�, its qualitative
behavior does not depend neither on the density nor on the
absolute values of �p,d: it only depends on the scattering
lengths and on the parameter �, as it will be described below.
This suggests a possible application of the resonances: they
can be employed for precise determination of the scattering
lengths.

For the estimates of the relevant times we use the same
set of experimentally feasible parameters as in Ref. �21�, i.e.,
we consider a 87Rb condensate with the density n=4.3
	1020 m−3, what corresponds to �21�: gaa=21 328 s−1, gag
=−27 692 s−1, and ggg=10 664 s−1. In Fig. 4 we illustrate
typical dependences of aD vs cos � for these values of the
parameters. From the figure one observes that the parameter
aD becomes negative in a narrow range of the parameter �
given by 0.4�cos ��0.5, which implies the existence of
two different types of behavior inside and outside of this
window. This analytical prediction is supported by the direct
numerical simulations shown in Fig. 5. At either cos ��0.4
or cos ��0.5 small deviations from the dark state do not
grow appreciably �see panels �a� and �d��. If, however,
cos �� �0.4,0.5�, initial small deviation may grow up to very
high values. We also notice that initially small population P2
grows even if � is taken slightly outside the window cos �
� �0.4,0.5�. This means that in the effective potential a
stable fixed point is located at a certain �small� distance from
the origin �see Fig. 3�. However, as is expected the dramatic
growth of amplitude of the excited state population is ob-
served when the parameter � is inside the instability window

cos �� �0.4,0.5�. Say, for cos �=0.4 �Fig. 5�c�� the maximal
amplitude of P2 is an order of magnitude higher than for
cos �=0.2 �Fig. 5�d��. For cos �=0.5, we also give a numeri-
cal example �see inset of Fig. 5�b�� where initial conditions
are exactly as in Fig. 5�b�, but a value of � was chosen to be
10% higher �i.e., �̄�0, and we are far from 1:1 resonance�.
With such a detuning from the resonance, we see the dra-
matic decrease of the amplitude of oscillations of the popu-
lation P2: the observed increase is three orders of magnitude.
It can be seen also that the time scale for the development of
the nonlinear instability is of order of milliseconds, i.e., is
feasible experimentally. It is important to emphasize that the
time scales depend not only on the parameters of the system,
but also on the initial population of the excited state. When
initially the system is prepared far enough from the equilib-
rium �i.e., far from the dark state�, the instability develops
much faster—on time scales of hundreds or even tens of
microseconds.

FIG. 3. Typical phase portraits of the normal form �18� in the vicinity of 1:1 resonance. In �a� and �b� aD�0, while in �c� aD�0. The
dark state equilibrium corresponds to the origin of the phase portraits �P=0, R=0�, so the runaway trajectories at aD�0 imply instability
of the equilibrium.

FIG. 4. �Color online�. Dependence of the parameter aD on
cos � as given by Eq. �19�. We consider the same example as in
�21�: 87Rb atoms with density n=4.3	1020 m−3, which gives
the following values of parameters �21�: gaa=21 328 s−1, gag

=−27 692 s−1, and ggg=10 664 s−1. A region of the instability of the
dark state due to 1:1 resonance corresponds to aD�0. Several over
values of density are depicted as well �1.5n ,n /2,n /4�. While mag-
nitude of aD depends on density �aD�n2�, its qualitative behavior
only depends on � and values of the scattering lengths. The resonant
behavior therefore might be used for precise determination of the
scattering lengths.
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IV. OTHER SOLUTIONS OF THE
ATOM-MOLECULE SYSTEM

Apart from the dark state, the system �1� has several other
stationary solutions, which might be important in future ex-
perimental techniques. In order to present them we introduce
a positive parameter �0 defined through the relation �0

2

=�2+�d
2. Then the state

�1 = ��a
�1�

�e
�1�

�g
�1� � =

1

4�p�2��0
2 − �0

2e−i��0+��t/4

��0 + ��e−i��0+��t/2

�de−i��0+��t/2 � , �20�

where �0
2��0

2, �0 being a real parameter, is a solution of
Eqs. �1�. The specific value of �0 is found from the normal-
ization condition �2�:

�0 = −
�

3
−

1

3
�4�2 + 3�d

2 + 24�p
2 �21�

and is supplied by the constraint ��
2 ��0, which is equiva-

lent to

�4�2 + 24�p
2 + 3�d

2 − 2� � 3�8�p
2 − �d

2. �22�

As it is evident, the last formula can always be satisfied by
choosing large enough single-photon detuning � and by re-
quiring 8�p

2 ��d
2 which can be achieved, say, by increasing

the atomic density. We leave the stability of this state as well
as the effect of the spontaneous emission on it for further
study.

V. CONCLUDING REMARKS

To summarize the findings of the present paper we have
shown that the method of description of the nonlinear insta-
bilities suggested in �18� can be successfully used for the
atomic molecular condensates with intra- and inter-species
two-body interactions. We found nonlinear instabilities due
to 1:1, 1:0, 2:1, and 3:1 resonances in the � system with
collisional interactions. The instabilities may be important
for manipulations of the conversion processes that occur on
relatively long time scales.

Following the earlier work �18� on 1:1 resonance in the
collisionless model, the present paper provides a detailed dis-
cussion of the nontrivial degeneracy in the model with and
without collisional interactions. In the collisionless model,
the two eigenvalues of the linearized system always remain
on the imaginary axis. By changing the detuning � one
moves the eigenvalues along the axis. In the exact resonance
�=0, the equations of motion are determined by a semi-
simple �diagonizable� matrix A. Analysis of the nonlinear
terms �18� shows that there exists instability in a certain
range of the parameters �cos ��1 /5, i.e., �p��3�d�.

In the model with two-body collisional interactions the
situation is different. The eigenvalues can leave the imagi-
nary axis. On one side of the resonance �with the effective

detuning �̄�0� the eigenvalues become complex, which
lead to the “usual” exponential instability. In the exact reso-
nance the matrix A is nonsemisimple, and the general ap-
proach to 1:1 resonance �19� is to be used. The equilibrium
turns out to be either stable or unstable depending on the
value of the parameter aD. Note that at a certain stage �in the
analysis of quartic terms� we use averaging instead of a stan-
dard normal form approach �19,20,27,28,30�; the two ap-
proaches are mathematically equivalent, but the former is
simpler from the point of view of symbolic calculations.

FIG. 5. �Color online�. Time evolution of the population P2

starting with the initial value P2�t=0�=10−6 /cos � for different �.
�Notice that while we show only P2, deviations of the other com-
ponents from its dark state values are of the same order, i.e., ini-
tially of the order of 10−6.� We illustrate three different types of
behavior: small oscillations in the vicinity of 1:1 resonance, when
parameter � lies outside the instability window shown in Fig. 4
�panels �a� and �d��, huge oscillations in the instability window
�panels �b� and �c��, and tiny oscillations far from the 1:1 resonance
�inset in panel �b��. In all the figures �except the inset of panel �b��
the parameters were chosen to satisfy the resonance condition

�̄=0 exactly: we fixed �p=2.1	106 s−1 and determined �d by the
value of cos �. For the inset in panel �b� all initial conditions are the
same as in �b�, but the detuning � was chosen to be 10% higher
than its value in �b�. As a result, the system is far from 1:1 reso-

nance ��̄�0�, and the amplitude of oscillations is dramatically de-
creased �in three orders of magnitude�. The inset of �d� shows
aD�cos �� from Fig. 4; values of cos � in plots �a�–�d� are marked
by asterisks.
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The analysis developed above implies time-independent
parameters �i.e., Rabi frequencies �p,d and the detunings
� ,��. With time-dependent parameters �corresponding to the
STIRAP process�, at least two important issues arise. The
first one is the adiabatic conditions. In case the system is
sufficiently far away from the low-order resonances men-
tioned above, one can generalize the adiabatic condition of
Ref. �18� straightforwardly. That is, in the vicinity of an in-
stantaneous dark state the system can be approximated by
two linear oscillators with time-dependent frequencies �k,
k=1,2. Change of the frequency during one period of the
unperturbed motion should be much less than the frequency
itself, which provides us with simple adiabatic conditions
�̇k��k

2 /2�. In the vicinity of low-order resonances, how-
ever, the linearized system is not enough even to determine
stability of the system at given parameters �it is determined
by the nonlinear terms�. Therefore, even at perfect adiabatic
conditions, that is at constant parameters, the system may go
far away from the dark state.

The second relevant issue is the passage through a reso-
nance �31,32�. At a static situation, the resonances are not so
impressive. The most interesting phenomena happen when
the parameters are changed in such a way that the system
passes through the region in its phase space where the reso-
nance conditions are approximately fulfilled �the resonance
region�. At passage through the resonance region, scattering
on resonance and capture into a resonance may happen
�31,32�. Passage through the resonance is in some sense a
less complicated issue than passage through the separatrix
�19,23–25� �i.e., “separatrix crossing,” which was already
studied in relation to BEC physics �26��. These topics will be
discussed in detail elsewhere. We emphasize that the present
study, in particular, opens a way to implement in an atomic-
molecular BEC an interesting and unusual technique of con-
trol of nonlinear systems: the capture into a resonance
�19,31,32�.

Subsequent manuscripts �29� study in detail improved
adiabatic conditions of the nonlinear STIRAP process and
passages through the resonances. The approach suggested
here and in �18� can be used for many other nonlinear BEC
systems. For example, BEC tunneling in a three-dimensional
lattice �33� could be mentioned.
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APPENDIX: TRANSFORMATION OF THE HAMILTONIAN
(13) TO THE NORMAL FORM

Consider exact 1:1 resonance �̄=0 for simplicity. For the
sake of convenience, we start with the transformation
�q1 , p1�→ �p̃1 ,−q̃1�, �q2 , p2�→ �q̃2

��e /�d�, �p̃2
��d /�e�.

Then, the explicit expression for the parts of the Hamiltonian
�13� have the following form �omitting tildes over the new
variables�:

H2 = −
�de

2
�p1q2 − p2q1 + Gp2

2� ,

H3 =
4dg�p

��dp1
2p2

��e��d + �e�
+

8Dg�p�d
3/2p2

3

�e
3/2��d + �e�

− �pp1
2q1

−
�d�pp2

2q1

�e
+

4dg�p
��dp2q1

2

��e��d + �e�
− �pq1

3

+
8Dg�p

��ep2q2
2

��d��d + �e�
−

�e�pq1q2
2

��d

,

H4 = − gaap1
4 − 2gaap1

2q1
2 −

Dg�d
2p2

4

�e
2 − 2gaap1

2q1
2 −

dg�dp2
2q1

2

�e

− gaaq1
4 −

dg�ep1
2q2

2

�d
− 2Dgp2

2q2
2 −

dg�eq1
2q2

2

�d
−

Dg�e
2q2

4

�d
2 ,

where Dg=gaa−gag+ggg /4 and dg=2gaa−gag.
We eliminate the cubic terms �i.e., H3� by means of a

canonical transformation

W3 = a1P2
2q2 + a2q1

2q2 + a3P2q2q1 + a4P1P2
2 + a5P1P2q1

+ a6P1
3 + a7q1

2P1 + a8q2
3 + a9P1q2

2 + a10P1
2q2, �A1�

where explicit expressions for the coefficients �a1 , . . . ,a10�
are obtained using MATHEMATICA and are too cumbersome to
be presented explicitly. Up to terms of the second order, the
new and old variables are related by

pk = Pk +
�W̄3

�Qk
, qk = Qk −

�W̄3

�Pk
, k = 1,2, �A2�

where W̄3
W3�Pk ,Qk�, i.e., the function W̄3 is obtained
from W3 by replacing old coordinates qk with the new ones
�Qk�. The transformation generated by W3 kills all cubic
terms, while H2 remains the same. To investigate the quartic
terms, we need to determine the relations between the new
and old variables with the accuracy up to the third order in
Pk ,Qk. It can be done recursively �replacing Qk in the right-
hand side of Eq. �A2� by more accurate expressions, given
by Eq. �A2� itself�.

Then, we bring the quadratic part H2 to the normal form
by means of a linear canonical transformation p1,2= P1� P2,
q1,2= ��GP2+Q1�Q2� /2. The quadratic part takes the form

H2=
a�P1

2+P2
2�

2 +
�de

2 �P2Q1− P1Q2�, while the quartic part can be
further reduced to the form
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H4 = �Q1
2 + Q2

2��D�Q1
2 + Q2

2� + B�P2Q1 − P1Q2�

+ C�P1
2 + P2

2�� . �A3�

We change to polar coordinates in the Q1 ,Q2 plane by
means of a transformation

Q1 = R cos �, Q2 = R sin �, P1 = P cos � −
J

R
sin � ,

P2 = P sin � +
J

R
cos � , �A4�

and then average over the angle �, which finally leads us to
the explicit form �18�.
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