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We study the macroscopic quantum tunneling of two weakly linked superfluids made of interacting fermi-
onic atoms. We derive atomic Josephson junction equations and find that zero-mode and �-mode frequencies
of coherent atomic oscillations depend on the tunneling coefficient and the sound velocity of the superfluid. By
considering a superfluid of 40K atoms, we calculate these oscillation frequencies in the crossover from the
Bardeen-Cooper-Schrieffer state of weakly bound Cooper pairs to the Bose-Einstein condensate of strongly
bound molecular dimers.

DOI: 10.1103/PhysRevA.77.043609 PACS number�s�: 03.75.Lm, 03.75.Ss, 05.30.Jp, 74.50.�r

I. INTRODUCTION

The crossover from the Bardeen-Cooper-Schrieffer �BCS�
state of Cooper fermion pairs to the Bose-Einstein conden-
sate �BEC� of molecular dimers with ultracold two-
hyperfine-component Fermi vapors of 40K atoms �1–3� and
6Li atoms �4–6� has been observed in the last years by sev-
eral experimental groups with the use of Fano-Feshbach
resonances �7�. From the theoretical side, extended BCS
�EBCS� equations �8–10�. have been used to reproduce den-
sity profiles �11� and collective oscillations �12,13� of these
Fermi gases. In addition, more recent calculations based on
Monte Carlo �MC� fitting and superfluid dynamics �14� have
shown that the mean-field EBCS theory is quite accurate.

Recently, Spuntarelli et al. �15� studied the stationary Jo-
sephson effect �16� across the BCS-BEC crossover with neu-
tral fermions by using the EBCS equations: in detail, they
computed the current-phase relation throughout the BCS-
BEC crossover at zero temperature for a two-spin component
Fermi gas in the presence of a barrier. The Josephson effect
of atomic superfluids, i.e., coherent oscillations between two
weakly linked bosonic clouds, was predicted �17� and ob-
served �18� with BECs. Josephson oscillations in superfluid
atomic Fermi gases have been theoretically considered by
Paraoanu et al. �19�, Wouters et al. �20�, and Adhikari �21�.
The macroscopic oscillations of tunneling neutral atoms is
closely related to the familiar Josephson effect of charged
electrons in superconductor junctions �22� and its investiga-
tion can help a deeper understanding of these exotic states of
matter.

In this work we present an investigation of the dynamical
Josephson effect in the BCS-BEC crossover based on a time-
dependent local density approximation for the dynamics of
the Ginzburg-Landau �GL� order parameter of the atomic
Cooper pairs �23�, starting from a reliable parameterization
of the bulk chemical potential �14� in the crossover. From
our zero-temperature GL equation we obtain the atomic Jo-
sephson junction equations for two weakly linked fermionic
superfluids. The main result provides zero-mode and �-mode
Josephson frequencies of periodic quantum tunneling as a
function of the sound velocity. Our investigation of the Jo-
sephson effect with neutral Fermi atoms, a direct manifesta-

tion of macroscopic quantum phase coherence, is of interest
not only conceptually but also for future applications in
quantum computing �24,25�.

II. GINZBURG-LANDAU EQUATION
AT ZERO TEMPERATURE

In a dilute Fermi gas of N atoms with two equally popu-
lated spin components and attractive interatomic strength at
zero temperature, superfluidity, and coherence are strongly
related to the properties of the two-particle density matrix.

Let �̂��r , t� be the field operator that destroys a fermion of
spin ���= ↑ ,↓� in the position r at time t. The two-particle
density matrix can be written as

��̂�1

+ �r1,t��̂�2

+ �r2,t��̂�1�
�r2�,t��̂�2�

�r2�,t��

= �
j

Nj�t�� j
��r1�1,r2�2,t�� j�r1��1�,r2��2�,t� , �1�

where �¯� is the ground-state average, � j and Nj are, respec-
tively, normalized eigenfunctions and eigenvalues of the
two-particle density matrix, and the maximum eigenvalue
cannot exceed N /2 �9,26�. If one eigenvalue, say N0, is of
order N /2, off-diagonal long-range order is present.

At zero temperature, where the superfluid density coin-
cides with the total density, the GL order parameter describ-
ing the motion of Cooper pairs of atoms is defined as

��r,t� =�N

2
�0�r↑,r↓,t� =�n�r,t�

2
exp�i��r,t�� , �2�

where n�r , t� is the local atomic number density �n�r , t� /2 is
the local density of pairs� and ��r , t� is precisely the phase of
the condensate wave function �0 �9,23,27�. Note that ��r , t�
is also the phase of the gap function ��r , t�
= 	��r , t�	exp�i��r , t�� of Cooper pairs �9,23,26,27�. Under an
external potential U�r� acting on individual atoms, the low-
energy collective properties of the Fermi superfluid �14� can
be described by the following highly nonlinear time-
dependent GL equation �TDGLE�:
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i	
�

�t
��r,t� = 
−

	2

4m
�2 + 2U�r� + 2
„n�r�…���r,t� . �3�

Here m is the mass of one atom and


�n� =
�

�n
„nE�n�… �4�

is the atomic bulk chemical potential of a homogeneous fluid
with density n �28�, if E�n� is its energy per particle. The
phase of the order parameter drives the superfluid velocity

v�r,t� =
	

2m
� ��r,t� , �5�

which is irrotational ��∧v=0� by construction �28�. The
equation of superfluid velocity permits us to map Eq. �3� to
the hydrodynamic equations of fermionic superfluids:

�n

�t
+ � · �nv� = 0, �6�

m
�v

�t
+ �
−

	2

8m

�2�n
�n

+
m

2
v2 + U + 
�n�� = 0. �7�

In these zero-temperature hydrodynamical equations, which
are valid in the full BCS-BEC crossover to describe macro-
scopic long-wavelength phenomena of the fermionic super-
fluid �29�, statistics enters through the equation of state 
�n�
and the quantum-pressure term −�	2 / �8m�n���2�n, which is
absent in the classical hydrodynamic equations �28,29�. The
coefficient 1/8 in the quantum pressure holds for pairs of
fermions, as opposed to atomic bosons, where the coefficient
is 1/2, and v= �	 /m���. The bulk chemical potential 
�n� is
the key ingredient of our study; theoretical calculations in
both asymptotic limits of 1 /y and Monte Carlo data �30�
suggest that in the BCS-BEC crossover it can be written as


�n� =
	2

2m
�3�2n�2/3
��y� −

y

5
���y�� , �8�

where ��y� is a dimensionless universal function of the in-
verse interaction parameter y=1 /kFaF, where kF
= �3�2n�−1/3 is the Fermi wave number of the noninteracting
fermions and aF is the fermion-fermion scattering length.
The function ��y� was parametrized across the BCS-BEC
crossover by Manini and Salasnich �14� to fit the MC data of
Astrakharchik et al. �30� and the asymptotic expressions of
the bulk energy per particle

E =
3

5
�F��y� , �9�

with �F= �	2kF
2 /2m� the Fermi energy and kF= �3�2n�1/3 the

Fermi wave number. The parametrization of ��y� chosen in
Ref. �14� is the following:

��y� = �1 − �2 arctan��3y
1 + 	y	
2 + 	y	 , �10�

where the values of the parameters �1 ,�2 ,�3 ,1 ,2 are re-
ported in that work. In the BEC regime �y�1�, where


�n��n, the TDGLE reduces to the time-dependent Gross-
Pitaevskii equation for composite bosons of mass 2m subject
to the effective potential 2U�r�+2
�n�r , t�� �15�. In the BCS
regime �y�−1�, where 
�n���F�1+kFaF / �3���, the TD-
GLE gives the Anderson-Bogoliubov mode �sound velocity�
of neutral superconductors.

Some years ago an effective nonlinear Schrödinger equa-
tion �NLSE� for superconductors was derived from the mi-
croscopic BCS Lagrangian in the low-frequency long-
wavelength limit of K /kB=10−9 K by Aitchison et al. and
De Palo et al. �31�. That NLSE and our TDGLE produce the
same Anderson-Bogoliubov mode �14,31�, but TDGLE de-
scribes accurately sound velocity and other collective modes
of the fermionic superfluid in the full BCS-BEC crossover
�14�.

III. DYNAMICS OF TWO WEAKLY-LINKED FERMI
SUPERFLUIDS

Assume that U�r� is a potential with a barrier that splits
the superfluid into two subsystems A and B separated by a
region C, where the modulus of the order parameter is expo-
nentially small �32�. We look for a time-dependent solution
of the TDGLE of the form

��r,t� = �A�t��A�r� + �B�t��B�r� , �11�

where ���r� is the quasistationary solution �real and normal-
ized to unity� of the TDGLE localized in region ���=A ,B�.

By inserting this ansatz for � into Eq. �3�, after integra-
tion over space and neglecting exponentially small �A�B
terms, the system can be described by the following two-
state model �33�:

i	
�

�t
�A = EA�A − K�B, �12�

i	
�

�t
�B = EB�B − K�A �13�

for the two complex coefficients ���t�. Here E�=E�
0 +E�

I is
the energy in region �, with

E�
0 =� ��
−

	2

4m
�2 + 2U���d3r �14�

and

E�
I �� ��2
�2	��	2��

2���d3r . �15�

The coupling energy K phenomenologically describes the
tunneling between the two regions. It is quite common to use
a phenomenological tunneling energy to analyze the Joseph-
son effect in superconductors �9,22,27,33�. In general, ther-
mal �34� and quantum �35� fluctuations will affect the value
of K.

At zero-temperature the single-particle tunneling energy
t0 can be estimated as
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t0 � −
1

2
� �A
−

	2

4m
�2 + 2U��Bd3r , �16�

if the barrier is orthogonal to the x axis and such that
�C� 8m

	2 �U�x�−
�n���1/2dx�1. In the BEC region the quantum
depletion is negligible �26�, the tunneling is fully coherent,
and the coupling energy is simply K�2t0 �17,35�. Instead in
the deep BCS regime, where there is a very large quantum
depletion, only a small fraction of pairs perform coherent
tunneling, and microscopic calculations suggest K
�	�	t0

2 / �8��F
2N� �36�. Unfortunately a microscopic deriva-

tion of K in the full BCS-BEC crossover is not yet available.
Under the assumption that the double-well potential U�r�

has the shape of two weakly linked sharp-edged boxes of
volumes VA and VB, we can write ���t�
=�N��t� /2 exp�i���t��, where N��t� and ���t� are the number
of fermions and the phase in region �. In terms of the phase
difference

��t� = �B�t� − �A�t� �17�

and relative number imbalance

z�t� =
NA�t� − NB�t�

N
, �18�

with N=NA�t�+NB�t� the constant total number of atoms,
Eqs. �12� and �13� give

ż = −
2K

	
�1 − z2 sin � , �19�


̃AB = 0 �20�

These are the atomic Josephson junction �AJJ� equations for
the two dynamical variables z�t� and ��t� describing the os-
cillations of N Fermi atoms tunneling in the superfluid state
between region A of volume VA and region B of volume VB.
These equations, linking the tunneling current I=−żN /2
= �KN /	��1−z2 sin �= I0

�1−z2 sin � to the phase difference
�, reduce to the familiar Josephson’s expression I
= I0 sin���, well established for BCS superconductors, in the
appropriate limit 	z	�1 �22�. Also, in the deep BEC regime,
where 
�n��n, the AJJ equations reduce to the bosonic Jo-
sephson junction �BJJ� equations introduced by Smerzi et al.
�17� and found to describe accurately the density oscillations
of weakly linked condensates �18�.

IV. AJJ EQUATIONS: LINEAR REGIME

The AJJ equations can be solved across the BCS-BEC
crossover, even taking into account a small but finite imbal-
ance z. To first order in z, Eqs. �19� and �20� read

ż = −
2K

	
sin � , �21�

�̇ =
2�

	
z +

2K

	
z cos� +

2
̃AB

	
, �22�

where

� =
N

2

 1

VA
� �


�n
�

A

+
1

VB
� �


�n
�

B
� �23�

and


̃AB =
1

2
�	
	A − 	
	B� + �EA

0 − EB
0� , �24�

with 	
	� and 	 �

�n 	� the bulk chemical potential and its de-

rivative are calculated at the density N / �2V��, �=A ,B.
In the symmetric case �VA=VB=V /2 and EA

0 =EB
0� � takes

the particularly simple form

� = 2n
�


�n
= 2mcs

2, �25�

where cs is the sound velocity computed at the mean density
n=N /V of the superfluid. From Eq. �8� one has thus

� = 2mvF
2
1

3
��y� −

y

5
���y� +

y2

30
���y�� , �26�

where vF=	kF /m is the Fermi velocity of noninteracting fer-
mions.

In the symmetric case 
̃AB=0, Eqs. �21� and �22� admit a
stable stationary solution �z̄ , �̄� with z̄=0 and �̄=2�j, for
integer j. If � /K�1, also z̄=0 and �̄=��2j+1� is a stable
stationary solution. These stationary solutions remain stable
even if one includes higher-order terms in the z expansion of
Eqs. �19� and �20�. Small oscillations around the stable so-
lutions with �̄=2�j and �̄=��2j+1� have frequencies

�0/� =
K

�	
�1 �

�

K
, �27�

and are called zero mode �with +� and � mode �with −�,
respectively. The zero mode is the analog of the Josephson
plasma frequency in superconducting junctions �22�. The
analogous of this � mode was observed in weakly coupled
reservoirs of 3He-B �37� and discussed in the BJJ equations
�17�.

By using the functional dependence on the inverse inter-
action parameter y=1 / �kFaF� of the sound velocity cs, and
inserting this expression of � in Eq. �27�, we obtain the
oscillation frequencies �0 and ��. As an example, consider a
fermionic superfluid of 40K atoms with total density n
=0.02 atoms /
m3: Fig. 1 reports �0/� as a function of y,
assuming that the tunneling energy can be held fixed to the
value K /kB=10−9 K �where kB is the Boltzmann constant�.
As previously stressed in the deep BCS regime K is propor-
tional to 	�	 and becomes rapidly very small, thus in practice
it would be difficult to keep constant. The zero-mode fre-
quency decreases for increasing y across the crossover, ap-
proaching the asymptotic value K / ��	� �dotted line� in the
BEC limit �y�1�. In contrast, the � mode does not exist
until past the unitarity point y=0, i.e., until the value of �
becomes smaller than K; then �� increases approaching the
same large-y limit as �0.

In limiting cases of the BCS-BEC crossover analytical
expressions are available for �. �i� Deep BCS regime �y�
−1�: the sound velocity cs approaches vF /�3 �14�, and �
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=2mvF
2 =2�	2 /m��3�2n�2/3. �ii� Unitarity point �y=0�: ac-

cording to MC simulations of Astrakharchik et al. �30� the
sound velocity is cs�0.37vF, thus �=0.29mvF

2 . �iii� Deep
BEC regime: all molecular dimers are in the BEC and the
sound velocity is such that mcs

2=�	2aMn /m �14�, where
aM =0.6aF is the dimer-dimer scattering length �30�. In this
limit aF→0+ for noninteracting bosonic dimers, �=0 and
corresponding �0=��=K / ��	�.

V. AJJ EQUATIONS: NONLINEAR EFFECTS

We come now to nonlinear effects in the AJJ Eqs. �19�
and �20� in the symmetric case �VA=VB=V /2 and EA

0 =EB
0�.

The variables � and z are canonically conjugate, with

ż = −
�H

��
, �28�

�̇ =
�H

�z
, �29�

where the Hamiltonian is

H =
2

	
G�z� −

2K

	
�1 − z2 cos � , �30�

with

G��z� = F�z� = 
�N

V
�1 + z� − 
�N

V
�1 − z� . �31�

It is straightforward to show that these nonlinear equations
admit a symmetry-breaking stationary solution �z̄ , �̄�, with
�̄=��2j+1� and with z̄ the solution of the equation F�z�
=Kz /�1−z2. The analysis of stability shows that this
symmetry-breaking solution, where the superfluid displays
macroscopic self-trapping, is stable only if K�F��z̄��1
− z̄2�3/2.

To analyze nonlinear effects we solve numerically the AJJ
equations. Regular zero-mode oscillations of z�t� and ��t�
are displayed in Fig. 2, under the same conditions as for Fig.

1. The oscillation starting from z�0�=0.5 indicates that the
solution �27� of the linearized Eqs. �21� and �22� are fairly
accurate even for finite and not quite small amplitude. Even-
tually, however, for very large amplitude, z�0�=0.999, devia-
tions from the harmonic approximation become quite visible.
These deviations are illustrated, for increasing amplitude, in
Fig. 3: the left panel shows that the frequencies of the zero
and � modes approach each other. The right panel shows the
decay in the fractional leading Fourier component of the os-
cillation ��t�, as the wave shape distorts from a perfect sinu-
soid, and acquires higher �odd� Fourier components. Note
the extremely small deformations from perfect harmonic os-
cillations and the minor deviations of the frequencies from
the linear values �0=53.0 Hz and ��=25.8 Hz of Eq. �27�,
until z�0��0.6. Similar evolutions near the y=0 point on the
BEC side, and on the BCS side, show oscillations of z�t�
around the self-trapping symmetry-breaking stationary solu-
tion z̄, accompanied by monotonously increasing phase ��t�.
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FIG. 2. �Color online�. Nonlinear effects on the zero-mode os-
cillation of N=106 40K atoms between two symmetric regions with
the same conditions of Fig. 1 at fixed interaction aF=1 
m, corre-
sponding to y=1.19. These trajectories result from the integration of
the coupled Eqs. �19� and �20� for z�t� �solid� and ��t� �dashed�,
with initial conditions ��0�=0, and z�0�=0.5 �left� or z�0�=0.999
�right�.
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FIG. 1. �Color online�. Zero-mode frequency �0 �solid� and
�-mode frequency �� �dashed� for a superfluid of N=106 40K at-
oms between two symmetric regions of volume 25�106 
m3

�mean density n=0.02 
m−3� and fixed tunneling parameter K /kB

=10−9 K.
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VI. CONCLUSIONS

We have investigated the macroscopic quantum tunneling
of two weakly linked Fermi superfluids in the BCS-BEC
crossover by using AJJ equations. We remark that the cou-
pling energy K appearing in our Josephson equations is a
phenomenological parameter: from the experimental mea-
surement of the frequencies of periodic quantum tunneling
one can infer the value of K by using Eq. �27�. Analytical
expression of K based on microscopic theory are available
only in the deep BCS regime and in the deep BEC regime.
An important issue is surely the development of a micro-
scopic theory of tunneling in the full BEC-BEC crossover.
We also stress that all Josephson oscillatory frequencies dis-
cussed here cannot exceed the frequency 	�	 / ��	�, associ-

ated to the breaking of Cooper pairs. The AJJ equations can
be extended to investigate Josephson junction arrays for neu-
tral fermionic atoms in optical lattices, potentially of extreme
relevance for quantum information and quantum computing
with ultracold atoms.
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