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In a previous paper �Schleif and Delos, Phys. Rev. A 76, 013404 �2007�� we described the spectrum of
hydrogen atoms in near-perpendicular electric and magnetic fields. We displayed a number of previously
unrecognized structures in the spectrum, most of which are connected with a classical phenomenon called
“nontrivial monodromy of action and angle variables in a Hamiltonian system,” or simply “monodromy.” In
that paper, we presented only the results, giving predictions of what to look for in various ranges of electric and
magnetic fields. Here we present the underlying theory. Starting from Kepler action and angle variables, we
give a derivation of a classical Hamiltonian to second order in perturbation theory; the derivation is different
from, but the final result agrees with, previous work. We focus especially on the topological structure of the
reduced phase space and on the resulting topological structure of the trajectories. We show that construction of
action variables by the obvious methods leads to variables that have discontinuous derivatives. Smooth con-
tinuation of these “primitive” action variables leads to action variables that are multivalued. We show how
these multivalued actions lead to lattice defects in the quantum spectrum. Finally we present a few correlation
diagrams which show how quantum eigenvalues evolve from one region of near-perpendicular parameter space
to another.
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I. INTRODUCTION

The hydrogen atom in applied fields has long been a
model system for the study of order and chaos in classical
and quantum mechanics, because it has just two or three
degrees of freedom and a collection of controllable param-
eters, and because it is accessible to both theory and experi-
ment �1�. The first-order spectrum in combined electric and
magnetic fields was examined roughly 80 years ago by Pauli
�2� and relatively recently explored in experiments �3�. Re-
cently, much attention has been given to the spectrum at
higher order �4�, with work closely related to the present
work appearing in publications by Uzer, Gourlay, Farrelly,
and Milczewski �5–7� and Solov’ev, Herrick, and Braun
�8–10�. Publications by Sadovskií and Cushman �11–13�
have pointed out that, for exactly perpendicular fields and a
certain interval of field strength ratio, the spectrum displays
effects of action-angle monodromy.

In a previous paper �14�, we showed that, if the fields are
tilted slightly away from perpendicular, then the phenomena
predicted by Sadovskií and Cushman are modified, and ad-
ditional phenomena are present at other field ratios. We also
indicated how such phenomena are connected with quantized
classical actions. Here we present the analysis on which our
conclusions were based. Since this analysis is long, and in-
volves concepts that might be unfamiliar, we recommend
that the reader first review the results and especially the pic-
tures presented in Ref. �14�. A comparison of the present
work with other work appears at the end of Sec. I C. Further
perspective on monodromy is given in Refs. �16,17�.

A. Quantum spectrum

When the fields are weak and nearly perpendicular, the n2

degenerate states at each principal quantum number n are
split into 2n−1 equally spaced clusters of closely spaced
levels �Fig. 1�a��. The clusters are displaced symmetrically
about Eo=− 1

2n2 , and may be labeled by an integer q which
ranges from −�n−1� to n−1 such that the energy of each
state in a cluster is located near

Ecluster = −
1

2n2 +
1

2
�B2 + �3nF�2q �1�

and the cluster contains exactly n− �q� quantum states. The
second-order energy E−Ecluster�n ,q�=h2 is the focus of this
paper.

The spectra can be arranged in a lattice if for each state in
a given n-manifold one plots the second-order energy h2 vs
q. �A more rigorous lattice construction using expectation
values of quantum operators is explained in Sec. VII.� For
some parameter regimes the resulting lattices may have lat-
tice defects �Fig. 1�b��, double degeneracy, or contain re-
gions which display anticrossings between states of the same
q as the fields are varied. Such features can be understood by
semiclassical analysis. In this paper the structure of spectral
lattices is predicted for the entire near-perpendicular param-
eter space using Einstein-Brillouin-Keller-Maslov �EBKM�
quantization of approximate action variables.

B. Classical trajectories

Classical trajectories of the electron in a hydrogen atom in
sufficiently strong magnetic fields are chaotic. However, if
the fields are sufficiently weak, then the trajectories can be
described as Kepler ellipses with slowly varying orbital pa-
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rameters. Most of the trajectories are then quasiperiodic, and
form three-dimensional tori in the six-dimensional phase
space. Classical perturbation theory replaces the exact
Hamiltonian of the system with a “nearby” integrable Hamil-
tonian that has three constants of the motion, and therefore
allows only regular trajectories. These three constants of the
motion are approximately conserved on the exact trajecto-
ries.

When trajectories form continuous families of tori, then
local action and angle variables can be constructed, and a
semiclassical approximation to the quantum spectrum can be
obtained by identifying those tori �sometimes called eigen-
tori� on which the actions are appropriately quantized �usu-
ally as integers or half integers�. One of the actions is a
variable called Q�r ,p�, whose numerical value we call q,

which is quantized as an integer, and which corresponds to
the cluster number in the first-order spectrum.

Two related facts make the second-order spectrum of hy-
drogen in fields more complex. �1� Not all of the trajectories
form tori. As will be explained later, some of them form
pinched tori �see figures referenced in Sec. V D�, and it is
known that pinched tori are associated with Hamiltonian
monodromy. �Some more complex structures also occur.� �2�
More important from the present perspective, the volume of
the reduced phase space is related to �q�. Therefore it is not
differentiable with respect to q at q=0. It follows that one of
the action variables �being an integral over a certain area in
phase space� is not differentiable at q=0. In our formulation,
this is the source of monodromy in this system. Action vari-
ables by definition are supposed to be smooth functions of
phase-space variables and of constants of the motion. If some
primitive definition of an action variable gives a discontinu-
ous derivative, then that primitive action should be replaced
by a smooth function. In systems having monodromy,
smooth actions can be constructed, but they turn out to be
multivalued functions of the constants of the motion �Fig. 2�.
The multivalued gradients of these smooth actions produce
lattice defects in the semiclassical spectrum.

C. Comparison with other work

The spectrum of hydrogen in fields is an old topic, going
back to the earliest developments in quantum theory, and
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FIG. 1. �Color online� �a� Effects of near-perpendicular fields on
the energy spectrum of a spinless hydrogen atom at principal quan-
tum number n=15 for electric field F=11.14 V /cm and magnetic
field B=1.393 T and F ·B=0.002FB or �=54°, � f =2.963�10−6,
and �=0.2� fn

3 �� f has units of a magnetic field and is reported in
atomic units in all figures�. The quantum basis included n-manifolds
12–18. When the fields are turned on, the n2-degenerate
n-manifolds are split into 2n−1 equally spaced q-manifolds each
containing n− �q� levels. The difference between an energy level and
the energy of its parent q-manifold is denoted h2. �b� Structure in
the second-order energies in an n-manifold is made visible by plot-
ting h2 vs q �in all lattice figures we plot h2 /� f with units of energy/
magnetic field reported in atomic units�. At these field parameters
�region II� the lattice has two defects associated with the values of
q and h2 that are marked by �cyan online� diamonds. For various
field parameters the structure in the second-order energy spectrum
generates various families of spectral lattices. This structure is ex-
plained by examining the properties of the classical actions of a
Hamiltonian system obtained from Poincaré–Von Zeipel perturba-
tion theory.

FIG. 2. �Color online� For some field strength ratios, the Hamil-
tonian system obtained by perturbation theory has an intrinsically
multivalued action variable J�q ,h2� �here, F ·B=0, n=20, and
tan−1�3NF /B�=50°�. The set of all values of the constants of the
motion q and h2 that are classically allowed at fixed n=20 are
contained within the dashed boundary �red online�. Almost all
points inside this boundary are values of q and h2 whose classical
level sets are tori, but there is one isolated value of q and h2 in the
interior whose level set is a pinched torus. Since a full set of actions
may be defined only on the tori, J is not defined at this value �q
=0 and h2�0.01� f�, known as the monodromy center. Away from
this point, J is locally smooth everywhere only if it is multivalued,
with a branch point at the monodromy center. Three branches of the
function are plotted in the figure. To continue the classical action
variable smoothly, we may start at �1� and follow the arrows se-
quentially along the surface all the way to �7�; then we pass onto a
new branch every time we cross q=0 if h2 is greater than the energy
of the monodromy center.
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studied in many recent papers. It follows that any coherent
discussion necessarily contains old results mixed with new
ones. Let us briefly survey some recent work to discuss what
is new in this paper.

The most important issues that have been treated inad-
equately �or not at all� in most of the earlier work are the
topological aspects of the problem. Some had understood
that Kepler averaging reduces the phase space from ℝ6 to
S2�S2. However, only recently was it realized that further
reduction arising from averaging over the Pauli precession
leads to a complex topological structure that contains ordi-
nary tori, but may also contain doubly pinched tori in per-
pendicular fields �11–13�, or singly pinched tori as well as
other structures that are connected with monodromy in near-
perpendicular fields �14,15� �see figures in Sec. V�.

Such phenomena occur at second order in perturbations of
combined electric and magnetic fields. To our knowledge,
Pauli never went beyond first order. Solov’ev, Uzer, and col-
laborators and others carried out calculations for crossed
fields to second order, but did not make the connection with
monodromy, which was not widely understood when they
did their work.

There are also several other less important differences be-
tween the present work and previous work. �1� Where previ-
ous classical perturbation theory made use of the four-
dimensional Kustaanheimo-Stiefel regularization �18� and a
normal form method �19�, we carry out the perturbation in
the three-dimensional Delaunay variables. We obtain a
second-order Hamiltonian that is different from that obtained
by the normal form method until we carry out the Pauli
averaging, at which point our result agrees with previous
work. To be specific, the resulting intermediate system, de-
scribing a small coupling between two independent angular
momenta �Pauli’s J momenta�, differs from that derived by
Gourlay, Uzer, and Farrelly �6� by terms proportional to FB
and F2 �compare our Eq. �16� with Eq. �38� of Ref. �6��.
However, after averaging over the motion of the Pauli vec-
tors, the resulting system agrees with the previous results of
Milczewski and Uzer �7�. We do not know if there is any
significance to the discrepancy that exists prior to the Pauli
averaging, but it is pleasing to know that the final averaged
Hamiltonians obtained by the two different methods agree.
Most recently the normal form method was used by Ef-
stathiou, Sadovskií, and Zhilinskií �15� to interpret many of
the near-perpendicular spectral structures that we found and
displayed in Ref. �14� as well as structures that might be
found near resonant angles away from perpendicular fields.
We are not able to make an exact comparison between our
formulas and theirs, but the structures appearing in Fig. 8 of
�15� look like the ones we found in Ref. �14� and here.

�2� We present semiclassical calculations of spectra ob-
tained by EBKM quantization of action variables, and we
show that the result agrees with our ab initio quantum cal-
culations, which are based on an expansion of the wave func-
tion in a multi-n-manifold hydrogenic basis. Milczewski and
Uzer �7� did a classical analysis �with less attention to
toplogy and no attention to monodromy� but did not quantize
to obtain a spectrum. Sadovskií and Cushman �11� obtained a
reduced classical Hamiltonian, then converted it to a quan-
tum operator by using a certain quantization postulate, and

then constructed an approximate spectrum �such methods are
sometimes called “semiquantal”�. The connection between
the quantum and classical second-order energies presented
by Solov’ev �8� is quite different, but may also be called
semiquantal and is closely related to works by Herrick �9�
and Braun �10�. In these analyses, the quantum Hamiltonian
matrix is explicitly obtained and converted to a simple form
which may be reexpressed as a recursion relationship. The
semiclassical approximations for this recursion relationship
yield a classical Hamiltonian. The second-order Hamiltonian
obtained by Solov’ev appears in Eqs. �7� and �8� of Ref. �8�,
and is almost the same as our Hamiltonian �Eq. �12�, Sec. II�.
The difference is constant at fixed principal quantum number
n, and can be regarded as a quantum correction to semiclas-
sical theory.

�3� The quantum operators � fQ̂ and � fŴ defined in Sec.
VII B are generalizations of previously defined operators to
multiple n-manifolds �constructed by replacing the quantum

number n2 with the operator − 1
2Ĥ0

−1�. In Sec. IX A we also

show that the quantum operator Ŵ �Eq. �62�� has expectation
values that correspond to average values of a corresponding
classical variable W. Where Solov’ev interpreted some of his
results in terms of a “quasibarrier,” we have a concrete rep-
resentation of a boundary between different types of states in
the form of a classical separatrix in the reduced phase space.

�4� Finally, there have been a number of papers on the
relationship between the quantum spectrum and closed orbits
of the electron �20�. The topological aspects �including
monodromy� that are discussed here must have an impact on
closed-orbit theory, but the implications have not yet been
studied.

II. DEGENERATE PERTURBATION OF THE KEPLER
MOTION

Consider a nonrelativistic, spinless hydrogen atom in
static electric and magnetic fields F and B. Let the B field
vector define the z axis and let the F and B field vectors
together define the x-z plane. Then for weak, nearly perpen-
dicular fields �21� the Hamiltonian may be written in the
following ordering �atomic units�:

H = H0 + H1 + H2 =
p2

2
−

1

r

H0

+
B

2
Lz + xFx

H1

+ zFz +
B2

8
�x2 + y2�

H2

.

�2�

For vanishing field strengths, H→H0, every bound phase-
space orbit with finite energy is periodic. In the Delaunay
action-angle coordinates ��22–24� and Table I�, the coordi-
nate along this periodic orbit is the principal angle �N, con-
jugate to the principal action N. We use Poincaré–Von Zeipel
degenerate canonical perturbation theory ��22,23�� to con-
struct an approximate Hamiltonian which is independent of
the new principal angle �̄N through terms of second order in
field strengths.
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A. Canonical perturbation theory

We first transform the Hamiltonian Eq. �2� from the Car-
tesian coordinates to the Delaunay action-angle variables.
We then enact a time-independent canonical transformation
via a generating function f with the following properties: �i�
f is expanded in orders of the field strengths about the iden-
tity transformation; �ii� f is periodic in both the old and new
angles. The canonical transformation relates old and new
variables:

�N,L,Lz,�N,�p,��old ↔ �N̄,L̄,L̄z,�̄N,�̄p,�̄�new �3�

through the generating function

f�q, P̄� = qP̄ + f1�q, P̄� + f2�q, P̄� + ¯ . �4�

We refer to the new variables as perturbed Delaunay coordi-
nates. Equating the old and the new Hamiltonians in the

space of mixed coordinates �N̄ , L̄ , L̄z ,�N ,�p ,��, we have to
second order

H̄0 = H0, �5a�

H̄1 = H1 +
�H0

�N

� f1

��N
, �5b�

H̄2 = H2 + H2�, �5c�

H2� =
�H1

�N

� f1

��N
+

�H1

�L

� f1

��p
+

�H1

�Lz

� f1

��
+

�2H0

�N2 � � f1

��N
	2

+
�H0

�N

� f2

��N
. �5d�

By the imposed �N periodicity on the functions f1 and f2 one
obtains

H̄0 = H0, �6a�

H̄1 = 
H1��N
, �6b�

H̄2 = 
H2��N
+ 
H2���N

, �6c�

where


g��N
=

1

2	
� g d�N. �6d�

The perturbed Delaunay coordinates are related to a new
Cartesian space through the same transformation that con-

nected the original Delaunay variables and the original Car-
tesian space. In this new Cartesian space we can consider the
Kepler orbits and their associated angular momentum and

energy-scaled Laplace-Runge-Lenz eccentricity vectors L̄
and M̄. When a small perturbation is applied to the Kepler
system, one may describe the perturbed trajectory as a Ke-

pler ellipse of fixed N̄, with slowly varying orbital elements

L̄ and M̄. For the remainder of this section we will work
exclusively in the new coordinates, and for notational con-
venience, we now drop the overbars from the new Delaunay
variables.

The eccentricity vector M extends from the nucleus, in
the direction of the instantaneous perigee of the ellipse, with
magnitude M =Ne, where e is the eccentricity of the ellipse
with 0
e
1:

M = N�p� L − r̂� . �7�

The angular momentum vector L extends from the nucleus,
normal to the orbital plane,

L = r� p . �8�

The two vectors are constrained in direction and magnitude
by two conditions,

L · M = 0, �9a�

L2 + M2 = N2, �9b�

and share a closed Poisson algebra ��25,23��,

L,L� = �L , �10a�

M,M� = − �L , �10b�

M,L� = �M , �10c�

L,H0� = M,H0� = 0. �10d�

Equations �5� and �6� are expressed in Delaunay variables.
However, the new Hamiltonian is independent of �N by con-
struction, and therefore can depend only on the fixed value of
N, and on the instantaneous eccentricity and orientation of
the ellipse in space. Therefore, it can be expressed as a func-
tion of the components of L and M. We evaluate the aver-
ages in Eqs. �6� in an orbital frame defined by the basis
vectors

ẑ, x̂, ŷ� = �L

L
,
M

M
,
L�M

LM
� , �11�

and it is shown in Appendix A that the resulting Hamiltonian
is

TABLE I. Delaunay action and angle variables

Canonical angle Classical name Conjugate momentum Classical name

�N Mean anomaly N Principal action

�p Argument of the perihelion L Magnitude of the total angular momentum L

� Longitude of the ascending node Lz Space-fixed z component of L
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H̄�L,M;N� = H̄0 + H̄1 + H̄2 = −
1

2N2 +
1

2
BzLz −

3

2
NFxMx

�H1��N

+
B2N2

16
�N2 + 4M2 − 5Mz

2 + Lz
2� −

3

2
NFzMz

�H2��N

−
Fx

2N4

16
�29N2 − 24M2 − 21Lx

2 + 9Mx
2�

�H2���N

.

�12�

This result differs from Eqs. �7� and �8� of Ref. �8� by
19N4F2 /16.

The Hamiltonian in Eq. �12� governs the motion of L and
M at fixed N, preserving the constraints in Eqs. �9�. That
motion is conveniently described using Pauli’s J vectors,

J1 = 1
2 �L + M� , �13a�

J2 = 1
2 �L − M� . �13b�

By the properties �Eqs. �9�� of L and M and their Poisson
brackets �Eqs. �10�� one may calculate

Ji,Ji� = �Ji, �14a�

Ji,J j�i� = 0, �14b�

and

�J1� = �J2� =
N

2
. �15�

The two Pauli vectors have identical fixed magnitudes and
may be oriented arbitrarily in space. Every Kepler orbit of a
given N-manifold is thus identified with a single point on
S2�S2; i.e., the reduced phase space is the product of two
spheres.

Expressing L and M in terms of the J vectors by inverting
Eqs. �13� and substituting in Eq. �12� yields

H̄�J1,J2;N� = −
1

2N2 +
B

2
�J1,z + J2,z� −

3

2
NFx�J1,x − J2,x�

−
3

2
NFz�J1,z − J2,z� +

B2N2

16
�3N2 + 4J1,zJ2,z

− 8�J1,xJ2,x + J1,yJ2,y� − 4�J1,z
2 + J2,z

2 ��

−
Fx

2N4

16
�17N2 + 48�J1,yJ2,y + J1,zJ2,z�

− 12�J1,x
2 + J2,x

2 + J1,xJ2,x�� . �16�

This result differs from Eq. �38� of Ref. �6� by terms propor-
tional to FxB and Fx

2.

III. FIRST-ORDER DYNAMICS: THE PAULI PRECESSION

The Hamiltonian Eq. �16� governs a reduced two-
dimensional system describing the slow evolution of the

classical orbital elements. Since N is conserved, H̄0 can be
regarded as an additive constant. To first order, the fields are
perpendicular, and the first-order Hamiltonian is

H̄1 = 1
2BzLz − 3

2NFxMx. �17�

All orbits of H̄1 are strictly periodic as will be shown in the
following sections.

A. Pauli precession

For arbitrary orientation of electric and magnetic fields, a
calculation of the first-order effects on the hydrogen spec-
trum is due to Pauli �2�. He defined two “effective field vec-
tors”

�1 = 1
2B − 3

2NF , �18a�

�2 = 1
2B + 3

2NF . �18b�

One may define scaled versions of the � vectors such that
for exactly perpendicular fields �F ·B=0� the scaled versions
have unit magnitude:

� j =
� j

� f
�19a�

with

� f = 1
2
�B2 + �3NF�2. �19b�

Using Eqs. �13� and �19�, Pauli wrote the first-order crossed
field Hamiltonian in the form

HPauli = � f��1 · J1 + �2 · J2� . �20a�

The form of the Hamiltonian Eq. �20a� and the Poisson al-
gebra of the J’s Eqs. �14� imply that the equations of motion
describe the precession of J1 about �1 such that its compo-
nent �1 along the �1 axis is conserved, and an analogous
precession of J2 about �2 conserving �2. Then the Hamil-
tonian Eq. �20a� can be rewritten in terms of the components
�i of the Ji vectors in the �i directions:

HPauli = � f��1�1 + �2�2� . �20b�

For exactly perpendicular fields �1 and �2 are unity �Eqs.
�19��. This implies that the first-order Hamiltonian Eq. �17�
can be expressed as

H̄1 = � f��1 + �2� . �20c�

Thus, for perpendicular fields, both vectors precess at the
same rate � f about their respective axes, and the motion is
strictly periodic.

B. Local canonical coordinates on S2ÃS2

We now construct a canonical coordinate system to de-
scribe the Pauli precession motion. For all �1 such that
−N /2�1N /2, there is an angle �1 with 0�1
2	
which describes the position of J1 on the cone of precession.
This angle may be defined in terms of the vector components
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of J1 in a Cartesian coordinate system having the z� axis
parallel to �1 and the y� axis parallel to the y axis in the
space-fixed frame such that J1,z�=�1:

�1 = tan−1� J1,y�

J1,x�
	 . �21�

Similarly, for all �2 such that −N /2�2N /2 there is an
angle �2, describing the precession of J2, which is defined
analogously to �1. Thus, at each ��1 ,�2� with neither ��1�
nor ��2� equal to N /2, the available phase space consists of a
2-torus.

It is clear from Eq. �21� that there are some values of the
�i=Ji,z� for which this coordinate system breaks down.
When ��i�=N /2, Ji,x�=Ji,y�=0 and so �i is undefined. How-
ever, as long as �� j�i��N /2, � j is still defined, and the phase
space is a circle. When both ��1� and ��2� are equal to N /2,
the phase space is a point.

By the properties of the J1 and J2 Poisson algebra Eqs.
�14� and the definitions implied by Eq. �21�, the two angles
�i and the corresponding effective field vector components
�i form a system of local canonical coordinates
��1 ,�2 ,�1 ,�2� on the S2�S2 space of all Kepler orbits at
fixed N. Their Poisson bracket relations follow from Eqs.
�21� and �14�:

�i,� j� = �i,j , �22a�

�i,� j� = 0, �22b�

�i,� j� = 0. �22c�

The local symplectic 2-form associated with Eqs. �22� is �26�

�2 = d�1 ∧ d�1 + d�2 ∧ d�2. �23�

C. Degenerate coordinates on the Pauli 2-torus

The first-order canonical equations of motion are obtained
from Eq. �20c�:

� j�t� = � j�0� , �24a�

� j�t� = � ft + � j�0� , �24b�

for j=1,2. At fixed values of the momenta ��1 ,�2� where
both angles are defined, the phase space is a 2-torus covered
by the coordinates �1 and �2. When the torus is depicted as
a square of length 2	, the motion is along a straight line with
a unit slope, reflecting the one-to-one resonance between the
angles on the Pauli torus at perpendicular fields.

We make a canonical transformation into coordinates such
that one of the new angles �Q is aligned along this periodic
motion. The transformation ��1 ,�2 ,�1 ,�2�→ �Q ,W ,
�Q ,�W� may be enacted with the generating function

G��1,�2,Q,W� =
Q

2
��1 + �2� +

W

2
��1 − �2� , �25�

from which one obtains the coordinates

Q = �1 + �2, �26a�

W = �1 − �2, �26b�

�Q = 1
2 ��1 + �2� , �26c�

�W = 1
2 ��1 − �2� , �26d�

and the Hamiltonian function

H̄1 = � fQ . �27�

Now a 2-torus formerly labeled by the constant values
��1 ,�2� is labeled by the constant values �Q ,W�. From Eqs.
�23� and �25� it follows that in the new coordinates the local
canonical 2-form is

�2 = dQ ∧ d�Q + dW ∧ d�W. �28�

Since �Ji�=N /2, the allowed values of the components �1
and �2 form a closed square with length �−N /2,N /2�. It
follows that the allowed ranges of Q and W become −N

Q
N and −�N− �Q��
W
 �N− �Q�� as is illustrated in
Fig. 3�a�. The allowed ranges of �Q and �W can be chosen in
a number of ways. For values of Q��1 ,�2� and W��1 ,�2�
such that both �1 and �2 are defined, they are coordinates on
a 2-torus mod�2	�, and it is convenient initially to say that
each ranges between −	 and 	. Then, �Q would also range
from −	 to 	, while �W would range from −�	− ��Q�� to
�	− ��Q��. This, however, is inconvenient. It is better to tile
the ��1 ,�2� plane as indicated in Fig. 3�b� such that �Q and
�W have the independent ranges −	
�Q
	 and −	 /2

�W
	 /2.

It follows from our discussion of the breakdown of the
�� ,�� coordinates that not all values of �Q ,W� label a
2-torus. If �1 and �2 are such that one or both �’s is unde-
fined, the functions �Q and �W become meaningless. Thus we
cannot use these coordinate functions at any point such that
�W�=N− �Q�.

IV. DEGENERATE PERTURBATION OF THE PAULI
MOTION

In the previous section it was shown that, to first order in
field strengths and angle, the principal effect of the perturba-
tion is a periodic evolution �Q at fixed N, Q, W, and �W. To
describe the effects of second-order terms in the Hamil-
tonian, we use classical canonical degenerate perturbation
theory a second time, effectively reducing the system to a
single degree of freedom.

The Hamiltonian H̄ in Eq. �16� is a function of the space-
fixed components of the Pauli vectors Ji,xj

�Eqs. �13�� in the
space-fixed basis �x̂ , ŷ , ẑ�. In a reference frame specified by
the basis vectors �x̂i�� ŷ��̂i , ŷi�� ŷ , ẑi�� �̂i� the components
of the Pauli vectors Ji,xj�

are expressed as functions of �i and
�i:

�Ji,x�,Ji,y�,Ji,z�� = ��N2

4
− �i

2 cos �i,�N2

4
− �i

2 sin �i,�i	 .

�29�

These vector components are then written as functions of the
coordinates Q ,W ,�Q ,�W� using the transformations in Eqs.
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�26�. The space-fixed components of Ji are related to its �i
frame components by the orthonormal transformation matrix
Mi:

Ji,� = Mi,���Ji,��, �30a�

where �=x ,y ,z, ��=x� ,y� ,z�, i=1,2, and

Mi,jk = x̂j · x̂k�. �30b�

We substitute the resulting expressions Ji,xj
�Q ,W ,�Q ,�W� for

the space-fixed components into Eq. �16� to obtain

H̄ = −
1

2N2 + � fQ + H̄2�Q,W,�Q,�W� . �31�

We then enact the canonical transformation

�Q,W,�Q,�W� → �Q̃,W̃, �̃Q, �̃W� , �32�

using a near-identity generating function

g�q, P̃� = qP̃ + g1�q, P̃� . �33�

Since g1 must be periodic in �Q, one obtains expressions for
the new Hamiltonian h,

h0 + h1 = H̄0 + H̄1, �34a�

h2 = 
H̄2��Q
, �34b�

where


f��Q
=

1

2	
� f d�Q. �34c�

The result is a Hamiltonian h=h0+h1+h2 which is indepen-

dent of �̃Q.

A. The fully reduced Hamiltonian

It is straightforward to compute 
H̄2��Q
, and one obtains

�dropping all decorations in the final coordinate system�

h2 = hc + �W2 + �W

+ ���N2 − �Q − W�2��N2 − �Q + W�2�cos�2�W� ,

�35a�

where each of the coefficients �, �, and � is second order in
the field strengths,

�� −
N2

16
2B2, �35b�

�� −
N2

16
�B2 − �3NFx�2 +

2B4

B2 + �3NFx�2	 , �35c�

�� −
3NFzB

2�B2 + �3NFx�2
. �35d�

hc is independent of the coordinates �W ,�W�, and may be
regarded as another additive constant,

hc =
N2

16
�B2

3
�7 +

2B2

B2 + �3NFx�2	 − 17N2Fx
2�N2

+
N2

16
� �3NFx�2

3
+ B2�1 −

2B2

B2 + �3NFx�2	�Q2.

�35e�

h2 is independent of �Q, rendering Q a constant of the mo-
tion, and we have obtained a system with one degree of
freedom governed by the effective Hamiltonian h2�W ,�W�.

B. Expression in scaled parameters

The Hamiltonian in Eqs. �35� can be expressed in terms of
� f defined in Eq. �19b� such that �h2��� f

2. The following
definition of � allows a convenient parametrization of all
possible field magnitude ratios at a given perturbation
strength � f:

−N

0

N

−N

0

N

QW

−N/2 0 N/2
−N/2

0

N/2

µ
1

µ
2

(a)

0
0

δ
Q−π

π

−π

−π

−π

π

−π/2

π/2

ψ
1

ψ
2

−π

π

π

δ
W

b

d

a

a

c

b

c

d

(b)

FIG. 3. �Color online� Transformation of the coordinate ranges.
�a� The set of all possible components �i of Ji along �i, for �Ji�
=N /2 and i=1,2, define a closed square. The introduction of the
coordinates Q=�1+�2, W=�1−�2 implies the ranges −N
Q
N
and −�N− �Q��
W
N− �Q�. �b� �1 and �2 are angular coordinates
on a 2-torus, defined mod�2	�. The ranges of �Q= ��1+�2� /2 and
�W= ��1−�2� /2 are inconvenient when restricted to the square in-
dicated in the figure. Since the square is simply a particular choice
of tiling the 2-torus, we are free to retile the plane such that the
angles have rectangular restrictions. The pairs of triangular regions
marked with identical letters contain points in the plane which rep-
resent identical points on the torus. We see that the torus can be
described by the angles −	�Q
	 and −	 /2�W
	 /2.
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� = tan−1�3N�F�
�B� 	, 0
 �


	

2
. �36�

This implies the following two field definitions:

3NF = 2� f sin � , �37a�

B = 2� f cos � �37b�

with the Zeeman and Stark limits at �=0 and �=	 /2, re-
spectively. The angle between the electric field and the x axis
is �, and implies that F sin �=Fz. Then Eq. �35b� is rewritten
using Eq. �37b�:

� = −
N2� f

2

4
2 cos2 � . �38a�

�, �, and hc in Eqs. �35c�–�35e� depend on the quantity
�3NFx�2. For near-perpendicular fields such that ����� fn

3

�1, we may replace Fz with �F and �3NFx�2 with �3NF�2

with negligible error at second order. Using these replace-
ments, along with Eqs. �37�, we rewrite Eqs. �35c�–�35e� as

� =
N2� f

2

4
�1 − 2�cos2 � + cos4 ��� , �38b�

� = −
N2� f

2

4
�4 cos � sin �

�

� fN
2	 , �38c�

hc =
N2� f

2

4
�−

17

9
+

38

9
cos2 � +

2

3
cos4 �	N2

+
N2� f

2

4
�1

3
+

2

3
cos2 � − 2 cos4 �	Q2. �38d�

V. REDUCED DESCRIPTIONS

In this section we display the topological structure of the
reduced phase spaces.

A. Structure of the four-dimensional reduced phase space �N

The space of all Kepler orbits at a fixed N is denoted
�N�S2�S2, and each of the points �J1 ,J2� in this four-
dimensional reduced phase space represents a Kepler orbit.
The local canonical coordinates in �N are �Q ,W ,�Q ,�W�. We
organize the structure of �N by considering the subset of
phase space that is located at each value of Q and W �Fig. 4�.
At each �Q ,W� with �Q�N and �W� �N− �Q��, there is a
2-torus with coordinates �Q and �W. At points 0 �Q�N,
W=� �N− �Q�� there is a circle �27�. At each of the four
corners �Q=�N , W=0� and �Q=0, W=�N�, there is
only a point. At every value of Q and W, we call the phase-
space orbit generated by the Hamiltonian Eq. �20c� the Pauli
orbit at fixed Q ,W and also fixed �W if �W�N− �Q�. A Pauli
orbit is a one-dimensional closed curve everywhere except at
the four corners, where it is a point.

The second-order field terms act as a small perturbation to
the Pauli system described in Sec. III. One may describe the

resulting motion as a Pauli orbit of fixed Q, with slowly
varying orbital elements W and �W.

Three distinct structures of phase space result from fixing
particular values of Q on the closed interval �−N ,N� �see Fig.
4�. �i� The trivial case is obtained by fixing Q=�N, where
phase space is a point. �ii� Fixing any Q such that 0 �Q�
N results in a structure which is depicted in Fig. 5�a�. W
ranges between ��N− �Q��, and for all �W�N− �Q� there is a
2-torus with coordinates �Q and �W, which collapses to a
circle at either W=� �N− �Q��. A circle at every W is identi-
fied with a Pauli orbit. For �W�N− �Q�, the Pauli Hamil-
tonian H=� fQ=� f��1+�2� generates the circle with coordi-
nate �Q, and at W=� �N− �Q��, the Pauli orbit is along the
appropriate �i. For convenience we define �Q to be equal to
�Q for �W�N− �Q�, and to be equal to the appropriate �i for
W=� �N− �Q��. �iii� The case of Q=0 is illustrated in Fig.
5�b�. W ranges between �N, and for all �W�N there is a
2-torus with coordinates �Q and �W, which collapses to a
point at either W=�N. For �W�N, the Pauli orbit is the
circle with coordinate �Q, and at W=�N, the Pauli orbit
consists of a single point in �N.

For the nontrivial cases �ii� and �iii�, when we consider
each Pauli orbit at fixed N and fixed Q to be a point in a fully
reduced phase space, then that space is a two-dimensional
surface denoted �N,Q, which is connected like a sphere �Ap-
pendix B� and is equipped with the local canonical coordi-
nates �W ,�W�.

Here we must caution the reader about a subtle point. In
the four-dimensional phase space S2�S2, the two-
dimensional surface defined by constant Q and constant �Q
and spanned by �W ,�W� is not homeomorphic to a sphere. It
is only after we regard all points �Q�0
�Q2	� as being
equivalent that the �W ,�W� surface called �N,Q is homeomor-
phic to a sphere.

B. Two-dimensional fully reduced phase space �N,Q

The total energy of the system is the value of the Hamil-
tonian h,

FIG. 4. The structure of �N, the four-dimensional reduced phase
space at fixed N. Each base point �Q ,W� with �Q�N and �W�
 �N− �Q�� labels a 2-torus with coordinates �Q and �W. The points
0 �Q�N, W=� �N− �Q�� correspond to a circle. At each of the
four corners �Q=�N , W=0� and �Q=0, W=�N�, the phase
space consists of a single point. At each fixed Q, W, and fixed �W if
�W�N− �Q�, there is a periodic orbit, which we call the Pauli orbit,
generated by the Hamiltonian H=� fQ=� f��1+�2�. Each Pauli or-
bit is a circle except at the four corners, where it is a point.
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h = −
1

2N2 + � fQ + h2�W,�W;N,Q� , �39�

where h2 is defined in either Eqs. �35� or Eqs. �38�. Since h2
conserves N and Q and is independent of �Q, the dynamics
are described by the motion of the system point on the
�W,�W� surface �N,Q. The system point will evolve on this
surface according to Hamilton’s equations of motion,

dW

dt
= −

�h2

��W
, �40a�

d�W

dt
=

�h2

�W
. �40b�

Therefore, all information about the total energy �Eq. �39��,
and the dynamics of the second-order system �Eqs. �40��, are
ascertained by inspection of the contours of h2 on the
�W ,�W� surface at fixed N and Q.

On �N,Q the canonical 2-form in Eq. �28� is

�2 = dW ∧ d�W. �41�

Equation �41� is not defined at the poles �W=� �N− �Q���,
but we will be interested only in surface integrals of Eq. �41�,
and not the 2-form itself.

To describe the dynamics of the reduced system, it is use-
ful to depict the �W ,�W� surface as a two-dimensional sur-

face in a three-dimensional space in several different ways
�Fig. 6�.

�1� The �W ,�W� surface may be depicted as a cylinder of
radius �= 1

2 and height L=2�N− �Q��. Then the canonical
2-form �Eq. �41�� is equal to the differential of the Euclidean
area on the cylinder’s surface, �2=dAcyl. However, the
boundaries of this cylinder must be understood to each rep-
resent a single point on the �W ,�W� surface �the north and
south poles�. Cutting this cylinder along �W=�	 /2 and un-
rolling the surface yields flat contour maps of h2, which ap-
pear in this paper and in Ref. �14�. In these flat representa-
tions, �i� the area is the canonical area, �ii� left and right
edges where �W=�	 /2 are identified, and �iii� the upper
and lower boundaries where W=� �N− �Q�� are understood
to each consist of a single point. The cylinder representation
is useful for calculating actions, and for depicting the phase
space on a page, but it can obscure the behavior near the
poles W=� �N− �Q��.

�2� As an alternative, the �W ,�W� surface may be depicted
as a sphere �28� of radius r=N− �Q� in a fictitious Cartesian
space ��1 ,�2 ,�3�, with W=�3 and �W= 1

2 tan−1��2 /�1�. The
space of Pauli orbits at any fixed Q with �Q �N is homeo-
morphic to this sphere, and the canonical 2-form is related to
the differential of Euclidean surface area by �2= 1

2dAsph / �N
− �Q��.

�3� Finally, Sadovskií and Cushman �11–13� have pro-
posed that the differential structure �smoothness� of the re-
duced phase space is represented by embedding that space in
the coordinates �	1 ,	2 ,	3�, where

	1 = W ,

	2 = 4�J1,x1�
,J2,x2�

+ J1,y1�
,J2,y2�

� ,

	3 = 4�J1,y1�
,J2,x2�

− J1,x1�
,J2,y2�

� .

In this space, the �W ,�W� surface takes the form of a surface
of revolution defined by �	2 ,	3�= (� cos �2�W� ,� sin �2�W�)
with radius function

� = ��N2 − �Q + W�2��N2 − �Q − W�2� .

For 0 �Q �N this surface is smoothly embedded. How-
ever, if Q=0 this surface is not smoothly embedded, but is
pointed at the poles such that in a small neighborhood of
�W=�N� the embedded �W ,�W� surface is a cone �Fig. 5�b�,
right�.

Both the cylinder with ends identified and the Q=0 sur-
face in Eq. �3� are homeomorphic to the sphere.

C. Definition of the classical spectrum

The classical �second-order� spectrum �29� at a given N is
defined by the set of all admissible values of Q and h2. Since
Q is restricted such that −N
Q
N, the spectrum is con-
fined to lie within this interval. At fixed N and Q, the upper
and lower boundaries of the spectrum are given by the maxi-
mum and minimum values of h2, which is a continuous and
bounded function on the �W ,�W� surface. It follows that the
classical spectrum is a closed and bounded subsection of the

FIG. 5. The structure of the reduced phase space at fixed N and
fixed Q, and the space of all Pauli orbits �N,Q. The values of W
range between ��N− �Q��. For all W such that �W�N− �Q�, there
exists a 2-torus with coordinates �Q and �W. On each torus, the �Q

circle is identified with the Pauli orbit, generated by the Hamil-
tonian H=� f��1+�2�. �a� For a fixed Q with 0 �Q�N, there
exists a circle at the end points W=� �N− �Q��, identified with the
Pauli orbit, and having the appropriate �i coordinate. �b� For Q
=0 there is only a single point at W=�N, each identified with a
stationary Pauli orbit. �a�,�b� �right� For all fixed N and Q��N,
the space of all Pauli orbits �N,Q is a two-dimensional surface that
is connected like a sphere and has the coordinates W and �W. At
every point on this surface there exists a Pauli orbit which is �a�
everywhere a circle for 0 �Q�N, but �b� for Q=0 a circle at all
nonpolar points, but a point at the poles.

SEMICLASSICAL THEORY OF THE STRUCTURE OF THE … PHYSICAL REVIEW A 77, 043422 �2008�

043422-9



�Q ,h2� plane. To every point �Q ,h2� in the classical spectrum
there corresponds a joint level set in the four-dimensional
phase space �N, and �N is the union of those level sets. Each
level set may be connected or disconnected, and we define
the classical degeneracy of the joint level set of �Q ,h2� as the
number of its disjoint components. In Fig. 6 each joint level
set having h2 less than the energy of the x point corresponds
to two contours �a “northern” and a “southern”�, and is clas-
sically doubly degenerate.

D. Connected components of the (Q ,h2) level sets

For many points of the spectrum, each connected compo-
nent of the corresponding �Q ,h2� joint level set in �N is a
2-torus. Each individual 2-torus has the coordinates �Q �see
Sec. V A�, and a second periodic coordinate �W which in-
creases uniformly with time around the h2 contour on the

�W ,�W� surface. However, for some level sets, one or more
of their connected components may not be a 2-torus. A com-
ponent of the �Q ,h2� joint level set is not a 2-torus if its
intersection with the �W ,�W� surface �i� contains a relative
fixed point where Eqs. �40� vanish, or �ii� passes through one
of the four points �Q ,W� where the Pauli orbit degenerates to
a point �at Q=�N, or Q=0 and W=�N; see Fig. 4�. All
spectrum points �Q ,h2� for which the joint level set is not
composed entirely of 2-tori are marked on the plots of clas-
sical spectra with either dashed �red or magenta online�
curves or �cyan online� diamonds �30�. �i� and �ii� imply that
when a component of a joint level set is not a 2-torus, its
structure may be discerned from its intersection with �N,Q.

For components that contain a nonpolar relative fixed
point on �N,Q, its structure is determined by analysis of the
linear stability matrix. Its eigenvalues are given by

�� = � 2����2 cos�2�W���

�
� + cos�2�W��3W2 − N2 − Q2 −

2W2�W2 − N2 − Q2�2

�2 	 ,

FIG. 6. �Color online� The �W ,�W� surface �N,Q is depicted as a two-dimensional surface in a fictitious three-dimensional space in two
ways. The canonical coordinates on �N,Q are W with −�N− �Q��
W
 �N− �Q��, and a 	-periodic coordinate �W with −	 /2
�W	 /2
�undefined at W=� �N− �Q���. �a� The canonical 2-form appropriate for the primitive action integrals is dW∧d�W and is equal to the
differential of the surface area of the cylinder of radius �=1 /2 and height L=2�N− �Q��. Cutting this cylinder along �W=�	 /2 and unrolling
the surface yields the flat contour map in �b�. The upper and lower boundaries of the cylinder each represent a single point. Such is the
topology of a surface of a sphere. �c� �N,Q is depicted by a sphere of radius N− �Q� with W=�3 and �W=tan−1��2 /�1� /2. However, the
differential of the spherical surface area is 2�N− �Q��dW∧d�W. On the sphere, all contours that do not contain a fixed point may be regarded
as librators, but in the flat representation, the contours can form either apparent librators or apparent rotators.
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� = ��N2 − �Q + W�2��N2 − �Q − W�2� . �42�

When Eq. �42� is imaginary �real� the relative fixed point is
an o point �x point�.

Components of �Q ,h2� level sets with 0 �Q�N that ap-
pear as an o point on the �W ,�W� surface have the simple
structure of a smooth 1-torus �a Pauli orbit�. However, com-
ponents whose intersection contains an x point have a com-
plex structure resembling a figure eight crossed with a circle.

Additional types of complex components are found at Q
=0. In Sec. V A we determined that, for Q=0, the Pauli orbit
at either pole �W=�N� is a point. Therefore, any component
of a �Q=0,h2� level set that contains a pole cannot be a
2-torus. For some F and B, the value of h2�Q=0, W
=�N� is a local extremum, and these points are isolated,
effectively forming o points �31� at a pole of �N,Q. However,
for some field parameters, there are components of level sets
at Q=0 which form an extended contour passing through one
or both of the poles of the �W ,�W� surface. Since there are �Q
rings present at all points of the contour except the poles, any
such component of a level set must contract to a point as it
passes through either pole. A component of a level set of
�Q ,h2� which passes through either W=N or W=−N or both,
is a pinched 2-torus, with a pinch point at each pole it passes
through �Fig. 7�.

VI. MONODROMY OF ACTIONS

In this section we examine the properties of the classical
actions as functions of Q and h2. Those �Q ,h2� level sets in
�N with components that are 2-tori may form �a� a single
simply connected family; �b� a single multiply connected
family; �c� two �or more� disjoint families, each of which
may be either simply or multiply connected. In a sufficiently
small neighborhood of �N about any one 2-torus, one can
always construct local smooth action and angle variables
�32�. However, we must carefully distinguish between lo-
cally smooth action variables and what we refer to as primi-
tive action integrals. The primitive action integrals are sim-
ply areas on Poincaré surfaces divided by 2	. However, for
some F and B, these are not smooth functions of Q and h2.

In this section we will first compute the two primitive
action integrals associated with each 2-torus, and find that
they have discontinuous derivatives as functions of the con-
stants of the motion. We then show how to obtain smooth
action variables from the primitive actions by continuation.
The resulting functions are locally smooth functions of the
constants of the motion, but if a family of tori is multiply
connected, it may be impossible to construct a single-valued
and smooth action variable on the entire family. When this is
the case, smooth continuation of a local action variable leads
to a globally multivalued function on the classical spectrum.
Whenever smooth continuation of an action variable around
some closed loop in the classical spectrum brings that action
variable back to a new value, the system is said to have

“nontrivial monodromy of action and angle variables,” or
simply “monodromy.”

A. Primitive action integrals

To construct primitive actions, we consider the intersec-
tion of each �Q ,h2� 2-torus with two fixed Poincaré surfaces,
and integrate the canonical 2-form Eq. �41� over the area in
the Poincaré surface that is bounded by the intersection con-
tour. The two Poincaré surfaces are chosen to be �i� the
�Q ,�Q� surface, and �ii� the �W ,�W� surface. By inspecting

FIG. 7. �Color online� For some F and B there exist components
of �Q ,h2� level sets that are pinched 2-tori at Q=0. �a� Contours of
constant h2 on the unrolled cylinder representation of the �W ,�W�
surface for Q=0, �=0, and �1��2. A particular contour for
which �h2 /�W=0 on each of its points is highlighted �red online�.
This level set meets the north and south poles �W=�N� at T points
which are marked with �yellow online� triangles. All points �W ,�W�
for which �W�N are crossed by a circle having the coordinate �Q.
However, at the poles W=�N, no such circle exists. �b� Therefore
the corresponding level set has the topology of a doubly pinched
torus. Everywhere except at the poles it is a smooth two-
dimensional surface. Coordinates on the two-dimensional sections
of this surface are ��W ,�Q�, where �W is a coordinate around the
contour on the �W ,�W� surface. �c� These contours are obtained
from contours similar to those of �a� by tilting the fields from per-
pendicular such that � /� fN

3=0.2. The contour that passed through
both poles at perpendicular fields divides into the two highlighted
�red online� contours at different energies for nonzero �. �d� The
doubly pinched torus in perpendicular fields is split into two singly
pinched tori at different energies when the fields are tilted.

SEMICLASSICAL THEORY OF THE STRUCTURE OF THE … PHYSICAL REVIEW A 77, 043422 �2008�

043422-11



Fig. 4, it can be seen that for 0 �W�N the �Q ,�Q� surface
is a cylinder which is capped by rings of �1 and �2 at either
end, while at W=0 it is connected like a sphere.

The intersection of a �Q ,h2� torus with surface of section
�i� is a ring with coordinate �Q, and the integral of Eq. �28�
over a surface bounded by the Pauli orbit may be taken to be
�33�

JQ�Q,h2� = Q . �43�

Thus, Q is simultaneously a conserved quantity, a primitive
action, and a locally smooth action variable near every torus.

The definition of the other action is complicated because
the �W ,�W� surface is connected like a sphere, and because
the area of that surface is not a smooth function of Q near
Q=0.

Consider a level set of the fully reduced Hamiltonian on
the �W ,�W� surface defined by the equation h2=E2. The level
set may consist of a single connected component, or multiple
disjoint components on the surface. Each disjoint component
may or may not contain a relative fixed point, where Eqs.
�40� vanish. If a disjoint component does not contain a fixed
point and does not pass through the north or south pole at
Q=0, it forms a smooth one-dimensional closed curve on the
�W ,�W� surface �34�. Each such curve �i� divides the �W ,�W�
surface into two areas, and �ii� forms a corresponding con-
tour on the unrolled cylinder which is either an apparent
librator or an apparent rotator �Fig. 8�. The two areas created
on the cylinder by such a contour must sum to the total
�W ,�W� surface area 2	�N− �Q��, and are identified with the
areas inside and outside the contour of an apparent librator,
or above and below the contour of an apparent rotator.

The classical action integral is defined for each apparent
rotator or librator and is directly proportional to the canoni-
cal area dW∧d�W which is bounded by the level curve of h2
on the �W ,�W� surface. The topology of this surface implies
that there are two equally valid areas, which in general have
different values. Thus we define for each disjoint smooth
curve of the level set h2=E2 two equally valid action inte-
grals which we refer to as primitive actions �35�:

J+�h2;N,Q� =
1

2	
�

A+�h2�
dW ∧ d�W, �44a�

J−�h2;N,Q� =
1

2	
�

A−�h2�
dW ∧ d�W. �44b�

The integral is over the area of the �W ,�W� surface that is
bounded by the curve of constant h2, and the + and − sub-
scripts have the following meaning. Each apparent rotator or
librator is a contour which bisects the total phase space into
two areas A1 and A2, such that A1+A2=2	�N− �Q�� �Fig. 6�.
Then, the functions in Eqs. �44� could have been defined as
J1�h2�=A1 /2	 and J2�h2�=A2 /2	. However, since the sum
of the areas is fixed, and no two level sets can intersect, one
of the two functions J1,J2 is an increasing function of h2
while the other is a decreasing function. We denote the in-
creasing function J+�h2�=A+ /2	 and the decreasing function
J−�h2�=A− /2	.

As was previously mentioned, for some values of h2,
there may be multiple contours which are mutually disjoint,
but have the same constant value h2=E2 �Fig. 6�. Since each
of the individual contours Ci that does not contain a fixed
point bisects the �W ,�W� surface, it follows that for every

δ
w

W

−(N−|Q|)

0

N−|Q|(a)

π/2−π/2

δ
w

W

0
−(N−|Q|)

0

N−|Q|

π/2−π/2

(b)

FIG. 8. �Color online� Contours of the Hamiltonian h2 on the
unrolled cylinder representation of the �W ,�W� surface at �=5°, N
=15, �=0, and �a� Q=0 and �b� Q=4. The surface has the topology
of a sphere such that left and right edges are identified, and the top
and bottom edges each consist of a single point. Darker regions
indicate lower energies, points indicate fixed points, and an x-point
separatrix is marked �red online� as are three other disjoint contours
�blue online�. At Q=0 in �a�, fixed points are present, but not
marked at W=�N. As Q increases to Q=4 in �b�, these o points
migrate from the poles toward the equator �W=0� along �W=0, to
form the two additional o points marked in �b�. Each disjoint con-
tour of h2 which does not contain a fixed point forms either an
apparent rotator or an apparent librator, bisecting the total phase
space into two areas A1 and A2, such that A1+A2=2	�N− �Q��. An
appropriate action is defined by either J1�h2�=A1 /2	 or J2�h2�
=A2 /2	. We identify the J that increases with energy as J+, and the
one that decreases with energy as J−. For each energy greater than
that of the separatrix, there is a single apparent librator, localized
about the maximal energy o point at W=0, �W=�	 /2. Each libra-
tor admits the construction of two actions. If A1 is the area contain-
ing the maximal o point, then J−=A1 /2	 is a strictly decreasing
function of energy, while J+=A2 /2	 is strictly increasing. For all
energies below that of the separatrix, there are two disjoint contours
having the same value of h2 �a classical double degeneracy�. One
contour CN is localized in the “north” �W�0�, while the other CS is
in the “south” �W0�. In such a case, both J+�h2� and J−�h2� are
defined for each disjoint contour. For CN, let A2 be the area con-
taining the minimal energy o point �which is located at �a� the north
pole for Q=0, and �b� W�9, �W=0 for Q=4�. Then J+

�N�=A2 /2	 is
a strictly increasing function of h2, while J−

�N�=A1 /2	 is strictly
decreasing. Similarly for CS, if A2 contains the minimal energy at or
near the south pole, J+

�S�=A2 /2	, while J−
�S�=A1 /2	.
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such contour Ci there exists a pair of functions J+
�i� and J−

�i�,
given by Eqs. �44�.

It follows directly from the above discussion that J+ and
J− cannot both be smooth functions of Q near Q=0. Since
the total canonical area on �N,Q is 	2�N− �Q��, by their defi-
nitions �Eqs. �44��

J+ + J− = N − �Q� . �45�

The derivative with respect to Q of the right-hand side of Eq.
�45� is not continuous at Q=0. Therefore either J+, or J−, or
both must have a discontinuous derivative with respect to Q
at Q=0.

In Fig. 9 we consider a classical spectrum for nearly per-
pendicular fields. Each point of the dashed red boundary rep-
resents a 1-torus. The �cyan online� diamonds each represent
a singly pinched torus. All points inside the �red online�
dashed boundary, but excluding the two points marked by the
�cyan online� diamonds, represent a 2-torus. From each
2-torus we may construct the primitive actions J+ and J− and
plot their contours. In Fig. 9�a� the contours of J+�Q ,h2� are
smooth for all points on the spectrum except along Q=0,
where they are smooth only for energies less than the energy
of the lower diamond. At energies above the lower diamond,
�J+ /�Q has a jump discontinuity at Q=0. The magnitude of
the jump is greater above the upper diamond. In Fig. 9�b� we
plot the contours of J−�Q ,h2�, and find an analogous situa-
tion. Here the contours are smooth at energies higher than
the upper diamond, and the magnitude of the jump disconti-
nuity increases as we pass each diamond to lower energies.

We can understand the behavior of such discontinuities
quantitatively by examining the area generated by level
curves of h2 on a family of schematic cylinders parametrized
by Q �Fig. 10�.

Consider a family of level sets with a fixed value of h2,
ranging over an infinitesimal interval of Q, centered about
Q=0. This family will intersect �N,Q at each Q of the infini-
tesimal interval, forming a contour on its cylindrical repre-
sentation �Fig. 10�. If no member of this family contains a
fixed point, or passes through W=�N, then either all mem-
bers of the family form apparent rotators, or all members
form apparent librators on the cylindrical representation of
the �N,Q.

Each apparent rotator �Fig. 10�a�� has one associated area
that contains one pole, and a complementary area containing
the other pole. Since the coordinates on the cylinder are W
with −�N− �Q��
W
 �N− �Q��, and �W with −	 /2
�W
	 /2, the complementary areas are

Arot
above = 	�N − �Q�� − �

−	/2

	/2

W d�W = 2	Jrot
above, �46a�

Arot
below = 	�N − �Q�� + �

−	/2

	/2

W d�W = 2	Jrot
below. �46b�

The value of the integral I=�W�h2 ;Q�d�W is a smooth func-
tion of Q provided that the level set of h2 does not contain a
fixed point. It follows that, for a family of apparent rotators,
both �J+ /�Q and �J− /�Q include a term equal to − 1

2sgn�Q�,
and therefore are discontinuous at Q=0.

Each apparent librator �Fig. 10�b�� has one associated area
that contains neither the north nor the south pole, while the
complementary area contains both:

Alib
inside =� W d�W = 2	Jlib

inside, �47a�

Alib
outside = 2	�N − �Q�� −� W d�W = 2	Jlib

outside. �47b�

Again the integral is smooth provided the level set does not
contain a fixed point, and it follows that the primitive action

Q
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FIG. 9. �Color online� Contours of the primitive actions are
plotted on a classical spectrum in near perpendicular fields with N
=15, �=50°, � f =10−6, � /� fN

3=0.2. All points inside the dashed
red boundary and excluding the points marked by the �cyan online�
diamonds represent a 2-torus with coordinates ��Q ,�W�. The �N,Q

located at Q=0 is plotted in Fig. 7�c�, and we identify each of the
�cyan online� diamonds with a singly pinched torus. The primitive
actions J+�Q ,h2� and J−�Q ,h2� are defined on each 2-torus but may
not be smooth at Q=0. �a� �J+ /�Q is continuous across Q=0 at
energies less than that of the low-energy singly pinched torus. But
at all greater energies, �J+ /�Q has a jump discontinuity. �b� �J− /�Q
is continuous across Q=0 at energies greater than that of the high-
energy singly pinched torus, but has a jump discontinuity at all
lower energies. Such structure in the primitive actions can be quan-
titatively determined for any field parameters by examining the be-
havior of the joint level sets of �Q ,h2� at fixed h2 in a neighborhood
of Q centered about Q=0.
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associated with the area inside the apparent librator has a
smooth derivative with respect to Q at Q=0, while
�Joutside /�Q contains a term equal to −sgn�Q� and is therefore
discontinuous at Q=0. If a family of librators encircles a
minimum of h2, J+ will pass smoothly through Q=0, while if
the family encircles a maximum, J− will be smooth.

Thus we conclude the following. �i� �J� /�Q has a jump
discontinuity at Q=0 described by a term − 1

2sgn�Q� for each
pole the associated area contains. �ii� For apparent rotators
both the J+ and J− areas contain one pole. �iii� For apparent
librators encircling a maximum, the J− area does not contain
any pole while the J+ area contains both. �iv� For apparent
librators encircling a minimum, the J+ area does not contain
any pole while the J− area contains both. We can summarize
these conclusions compactly by

�J�
�Q

= −
z�
2

sgn�Q� + �smooth� , �48�

where

z+ = �1, rotators,

0, librators encircling a minimum,

2, librators encircling a maximum,
� �49a�

z− = �1, rotators,

2, librators encircling a minimum,

0, librators encircling a maximum.
� �49b�

The type of apparent family present near Q=0 depends on F
and B and can be determined for all field parameters by
analysis of the fully reduced Hamiltonian.

Let us look back to Figs. 9�a� and 9�b�. If we investigate
the corresponding contours of the Hamiltonian on �N,Q �plot-
ted at Q=0 in Fig. 7�c��, we find that near Q=0 and at
energies greater than that of the upper diamond, the level sets
form families of apparent librators which contain a maxi-
mum of h2. At energies less than that of the lower diamond
the families form apparent librators containing a minimum.
Meanwhile, at energies which lie between the diamonds,
there are families of apparent rotators. The patterns in the
magnitudes of the discontinuities are explained by Eqs. �48�
and �49�.

B. Intrinsically multivalued smooth classical action variables

In order to construct a smooth classical action variable, a
discontinuous primitive action must be smoothly continued
across Q=0. If we interpret the primitive action J��Q ,h2� as
the principal branch of a smooth but intrinsically multivalued
action variable, then at each crossing of Q=0 at energies for
which z� is nonzero, a new branch of J��Q ,h2� is encoun-
tered. Each new branch consists of the old branch plus an
additional term:

J+
continued = J+

old + sgn�Q�z+Q , �50a�

J−
continued = J−

old + sgn�Q�z−Q , �50b�

where z� is given by Eqs. �49�. The additional terms in the
new branches repair the intrinsically discontinuous slope at
Q=0 �Eq. �48�� but may introduce a multivalued smooth
classical action variable if a single sheet cannot be used to
cover an entire spectrum. In Fig. 11 the principal action J+ is
continued across Q=0 into Q0 at energies which have two
different values of z+. In both cases it is impossible to cover
the entire spectrum with a single-valued and smooth classical
action variable.

C. Monodromy and vector transport

To classify classical spectra, we consider the smooth
transport of two independent vectors tangent to contours of

locally smooth action variables. Let �Q̂ , ĥ2� be unit vectors in
the tangent space of the spectrum. Vectors t which are tan-
gent to contours of the primitive actions Eqs. �43� and �44�
are �with arbitrary orientation convention�

t+ =
�J+

�h2
Q̂ −

�J+

�Q
ĥ2, �51a�

FIG. 10. Most level sets of the second-order Hamiltonian h2

form apparent rotators or apparent librators on a schematic cylinder
representation of a �W ,�W� surface, parametrized by Q. Two points
marked A and B schematically represent those o points of h2 which
attain extremal values on the �W ,�W� surface. By interchangeably
associating these points with a maximum and minimum, one gains
insight into the properties of the actions J+ and J− as functions of Q
by investigating the properties of the areas. In general, the contours
of h2 are smooth curves on the cylindrical surface that are also
smooth functions of Q. However, the height of the cylinder is
2�N− �Q��, which has a discontinuous derivative with respect to Q at
Q=0. �a� The contour of an apparent rotator divides the phase space
into two halves. Although the contour itself is a smooth function of
Q, neither the shaded and unshaded areas are smooth at Q=0. Since
the coordinate W is zero at the equator of the cylinder, the shaded
area is 	�N− �Q��+�W d�W, and the unshaded area is 	�N− �Q��
−�W d�W. The value of the integral I=�W�h2 ;Q�d�W is a smooth
function of Q provided the level set of h2 does not contain a fixed
point. Therefore, at Q=0, both areas of an apparent rotator have a
discontinuity in derivative with respect to Q equal to −	 sgn�Q�.
�b� For an apparent librator, the shaded area is 2	J, where J=J+ if
B is a minimum, and J=J− if B is a maximum. This area is a smooth
function of Q. The unshaded area is equal to 2	�N− �Q�−J� and is
composed of a part that is smooth and a part that has a discontinuity
in slope equal to −2	 sgn�Q� at Q=0. Using only these observa-
tions and a map of the contours of h2 at Q=0, one may determine
the discontinuities that appear in J+ and J− for all parameters.
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t− =
�J−

�h2
Q̂ −

�J−

�Q
ĥ2, �51b�

tQ = ĥ2. �51c�

Vectors which are tangent to contours of the smoothly con-
tinued action are given by

t+
continued =

�J+

�h2
Q̂ − � �J+

�Q
+ sgn�Q�z+	ĥ2, �52a�

t−
continued =

�J−

�h2
Q̂ − � �J−

�Q
+ sgn�Q�z−	ĥ2. �52b�

The vectors in Eqs. �52� differ from the vectors tangent to the
primitive actions �Eqs. �51�� by a vector tangent to contours
of constant Q with integer magnitude.

t+
continued − t+ = − sgn�Q�z+ĥ2 = − sgn�Q�z+tQ, �53a�

t−
continued − t− = − sgn�Q�z−ĥ2 = − sgn�Q�z−tQ. �53b�

These equations imply that, if a primitive action J� is
smoothly continued across Q=0, a vector tangent to its con-
tinued contours is rotated with respect to a vector tangent to
the primitive J� contours at the same point. The transforma-
tion between the vectors tangent to the primitive contours Q
and J�, and vectors tangent to the continued contours can be
written in matrix form:

�tQ
continued

t�
continued� = � 1 0

− z�sgn�Q� 1
��tQ

t�
� . �54�

Looking back to Fig. 11, the consequences of Eq. �54� for
smooth transport of vectors about a closed loop is illustrated
by a series of arrows. At point � in Fig. 11�a�, the vector
v2= t+ is tangent to contours of J+ and is transported along
that contour to point �. Then this vector is transported along
the contour Q=5 to �. To smoothly transport back to �, we
must pass to the first continued branch of the multivalued
action at Q=0. As a result, when v2 returns to point � it has
been transformed. In contrast, if we transport the vector v1
= tQ about the same closed loop, v1 returns identically to
itself. Using Eq. �54� the transformation of the vectors v1 and
v2 is equivalent to multiplication by the matrix M1
= �1,0 ;1 ,1� written in the basis v1 ,v2� at �:

M1 = �1 0

1 1
�, v1,v2� = ��1

0
�,�0

1
�� . �55�

Such a transformation occurs for transport about any coun-
terclockwise closed loop encircling the lower �cyan online�
diamond. Similar considerations applied to the closed loop
��� in Fig. 11�b� yield a transformation equivalent to mul-
tiplication by the matrix M2 in the same basis, where

M2 = �1 0

2 1
� . �56�

To fully classify this spectrum we consider all possible
closed loops. Similar analysis applied to counterclockwise
loops encircling the upper diamond yields Eq. �55� again.
Any clockwise traversal of a loop encircling a single dia-
mond yields the matrix inverse to M1, M1

−1=M−1= �1,0 ;
−1 ,0�, while any encircling both diamonds will yield M2

−1.
Finally, transport about any loop that begins and ends on the
same branch will result in a transformation described by the
identity matrix E= �1,0 ;0 ,1�. This exhausts all possible
closed loops for any spectrum that is topologically equiva-
lent to that in Fig. 11, as any possible loop is equivalent to
some combination of these basis loops. Thus any spectrum
having two singly pinched tori at different energies is classi-
fied by listing the three matrices M1 ,M2 ,E�.

In this manner, spectra for any weak, nearly perpendicular
F and B �such that ����� fN

3�1� are classified by a list of
matrices which describe the effects of smooth vector trans-
port about all possible closed loops on the spectrum. By Eq.
�54� the values of the components of the matrices are deter-
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FIG. 11. �Color online� Contours of the primitive action
J+�Q ,h2� and its smooth continuation into negative Q are plotted on
the classical spectrum. N=15, �=50°, � f =10−6, � /� fN

3=0.2.
Lighter contours are of the principal branch, and the additional
darker contours are of the first continued branch encountered when
smoothly continuing across Q=0 into Q0. �a� Here the contours
are continued through the rotators where z+=1, such that J+ is
smoothly joined to the branch J+−Q at Q=0 for energies that lie
between the two �cyan online� diamonds. �b� Here the contours are
continued through the librators where z+=2 such that J+ is smoothly
joined to the branch J+−2Q at Q=0 for energies that lie above the
upper �cyan online� diamond. To classify this classical spectrum,
consider the smooth transport of vectors tangent to the spectrum
about the counterclockwise, closed loops marked ���. In both �a�
and �b�, there is a passage to a second branch at Q=0 between �
and � such that the vector does not return to itself at �. The angle
of rotation is greater when the loop encircles both �cyan online�
diamonds in �b�.
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mined by the structure of the Hamiltonian h2 on �N,Q in an
infinitesimal neighborhood near Q=0 through Eqs. �49�.

As an alternative to smooth continuation of the primitive
actions, one may transform between any overlapping smooth
action functions. For example, when continuing around a
2-defect in region II or the �M.Int interval, it is easiest to
visualize the transport of tangent vectors along the smooth
contours J+ below the defect point, and along contours of J−
above �see Fig. 12�.

VII. MULTIVALUED ACTIONS AND QUANTUM LATTICE
DEFECTS

The connection between the classical system and quantum
calculations is through the EBKM quantization of the ac-
tions. In this section, we will see how each resulting semi-
classical “state” is associated with quantized values of the
constants of the motion, and an associated point in a classical
spectrum. A collection of such points forms a lattice of points
in the spectrum. When a classical spectrum has an intrinsi-
cally multivalued action, the associated lattice has a defect.
In this section we also consider the appropriate quantum op-
erators having expectation values which correspond with the
quantized constants of the motion. Through this connection,
quantum spectra in near perpendicular fields are classified by
the presence of monodromy.

A. EBKM quantization

Quantization of primitive classical actions selects those
classical tori which correspond to approximate quantum en-
ergy eigenvalues. The semiclassical quantization conditions
are

N = n = 1,2,3, . . . , �57a�

Q = q = − �n − 1�,− �n − 2�, . . . ,�n − 1� . �57b�

Comparing semiclassical with calculated quantum spectra,
we find that either of the primitive actions J+ or J− is quan-
tized as half integers:

J� = k + 1
2 , k = 0,1, . . . ,n − �q� − 1. �57c�

Thus, in a primitive semiclassical approximation, a quantum
state is associated with each contour of h2 with J+ or J−
quantized as in Eq. �57c� on each �N,Q at quantized values of
N and Q as in Eqs. �57a� and �57b� such that �N,Q=�n,q. As
an example, consider the case B=0 and F parallel to the x
axis where Eq. �39� is reduced to

hStark = −
1

2N2 +
3NF

2
Q −

N4F2

16
�17N2 − 3Q2 − 9W2� .

�58�

This Hamiltonian is independent of �W such that W is a con-
stant. Then it follows from definitions �44a� and �44b� that,
for B=0, J+

�N�=J+
�S�= �N− �Q�+ �W�� /2 and J−

�N�=J−
�S�= �N− �Q�

− �W�� /2. Either of these equations and the EBKM quantiza-
tion conditions Eqs. �57a�–�57c� imply N=n, Q=q, and W2

= �2k+1−n+ �q��2, where k=0,1 ,2 , . . . ,n− �q�−1. Subse-
quent substitution into the Hamiltonian hStark above yields an
EBKM spectrum which differs from the well-known formu-
las �36� only by a quantum correction 19N4F2 /16.

B. Quantum operators

To obtain a collection of quantum spectra for the crossed
fields Hamiltonian Eq. �2�, we expand the wave function in a
basis �37� of bound spherical eigenstates �n , l ,m� of the un-

perturbed hydrogen Hamiltonian Ĥ0, and compute the eigen-
values Ej and eigenvectors �� j� of the resulting matrix.
There is good agreement between the obtained quantum ei-
genvalues and the primitive semiclassical energy eigenvalues
for almost all states in weak near-perpendicular spectra.

On a finite basis of bound eigenstates of Ĥ0, the matrix Ĥ0

possesses a well-defined inverse Ĥ0
−1 such that Ĥ0Ĥ0

−1

= Ĥ0
−1Ĥ0= I. The eigenvalues of Ĥ0 in the �n , l ,m� bases are

En=−�2n2�−1, and it follows that Ĥ0
−1�n , l ,m�=−2n2�n , l ,m�.

The existence of the inverse operator to Ĥ0 in the basis of
bound states allows the definition of two additional operators

which commute with each other and with Ĥ0 but do not
commute with the full Hamiltonian �38�. These operators are
the quantum analog of the canonical momenta in Eqs.
�26a�–�26d� and require the operator analogs of the angular
momentum and Runge-Lenz vectors. Classically the Runge-
Lenz vector is defined by
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FIG. 12. �Color online� Type-II spectrum. The spectrum h2 vs q
for � /� fn

3=0.2, n=20, F=146 V /cm, B=0.302 T, or �=50° and
� f =10−6. The quantum basis included n-manifolds from 18 to 22.
The �blue online� circular dots are derived from quantum calcula-
tions, while all other structures are derived from classical perturba-
tion theory and semiclassical quantization of actions. Two indepen-
dent monodromy circuits are marked by sequences of letters. A
�1,0;2,1� defect is characterized by lattice vector transport of
v1 ,v2� along locally smooth action contours connecting points
marked by the latin letter cycle ABCDEFA. This circuit encircles
both point defects and after a complete circuit has been made, v1

returns to the vector v1+2v2 depicted in gray at point A. A �1,0;1,1�
defect is characterized by transport of v1 ,v2� along smooth con-
tours connecting points marked by the sequence of greek letters
�������. When a complete circuit has been made v1 returns to the
vector v1+v2 depicted in gray at point �.

CHRISTOPHER R. SCHLEIF AND JOHN B. DELOS PHYSICAL REVIEW A 77, 043422 �2008�

043422-16



A = p� L −
r

�r�
. �59�

The corresponding quantum operator must be Hermitian, and
was defined by Pauli as �2�

Â =
1

2
�p̂� L̂ − L̂� p̂� −

r̂

�r̂�
. �60�

By use of Ĥ0
−1 one may extend Pauli’s analysis to multiple

n-manifolds by altering an operator he introduced with the

replacement −2n2→ Ĥ0
−1:

� fQ̂ =
B

2
L̂z +

3Fx

4
Ĥ0

−1Âx, �61�

and we also define a related operator

� fŴ =
B

2
�−

Ĥ0
−1

2
Âz −

3Fx

2
�−

Ĥ0
−1

2
L̂x. �62�

From the fundamental canonical commutation relations and
definitions �61� and �62� it follows that

�� fQ̂,� fŴ� = 0, �63a�

�� fQ̂,Ĥ0� = 0, �63b�

�� fŴ,Ĥ0� = 0. �63c�

Since both operators �61� and �62� commute with Ĥ0, they
are diagonal in n, with eigenvectors that are linear combina-
tions of the �n , l ,m� states at a fixed n.

If we define the following function of n:

� f�n� = 1
2
�B2 + �3nF�2, �64�

then the eigenvectors of � fQ̂ �Eq. �61�� have the eigenvalues
� f�n�q with q=−�n−1� ,−�n−2� , . . . , �n−1�, while the eigen-

vectors of � fŴ �Eq. �62�� have the eigenvalues � f�n�w with
w=−�n− �q�−1� ,−�n− �q�−2� , . . . , �n− �q�−1�.

C. Quantum lattices

The second- �and higher-�order energy may be defined as

h2
j = 
� j�Ĥ�� j� − 
� j�Ĥ0�� j� − 
� j�� fQ̂�� j� . �65�

To scale these expectation values, define

n̄j = �− 1
2 
� j�Ĥ0

−1�� j� . �66�

The expectation value in Eq. �65� is scaled by substituting
Eq. �66� into Eq. �64� and dividing Eq. �65� by the result,

h2
j

� f
=

1

� f�n̄�

� j��Ĥ − Ĥ0 − � fQ̂��� j� . �67�

The scaled expectation value of the � fQ̂ operator is similarly
defined as

qj =
1

� f�n̄�

� j�� fQ̂�� j� . �68�

Then a quantum lattice �or energy momentum spectrum or
quantum web� of eigenstates of H is constructed as follows.
For each eigenstate, which in the limit of zero fields is a
member of a specific n-manifold, plot �h2� j �Eq. �65� or Eq.
�67�� vs qj �Eq. �68��. For weak near-perpendicular fields, the
result is a lattice consisting of n2 points �39�. A quantum
lattice appears in Fig. 12. A �blue online� dot is located at the
point �h2

j /� f ,qj� for each quantum state at n=20.
The semiclassical approximation to the quantum lattice is

constructed by plotting contours of the primitive classical
actions J� and Q having values that are quantized according
to Eqs. �57�. Intersections of the contours yield semiclassical
eigenvalues. We observe that almost all points in the quan-
tum lattice lie close to such intersections.

The quantum lattices can be classified by considering the
transport of lattice vectors along contours of smooth classical
action variables �Sec. VI C� and would result in the same list
of matrices as the corresponding classical spectrum �Fig. 12�.
It follows that, if a classical spectrum has a multivalued ac-
tion variable, the corresponding quantum lattice will have a
lattice defect.

VIII. STRUCTURE OF SPECTRA IN NEAR-
PERPENDICULAR FEILDS

In this section we finally explain all of the structures in
the quantum spectra that were displayed without explanation
in Ref. �14�. All structure in those spectra follow from the
study of contour plots of h2 �Eqs. �35�� on �N,Q, the �W ,�W�
surface. The following general principles should be recalled.
�i� In each region of �� ,��, at each Q, the maximum and
minimum of h2 on �N,Q give the upper and lower boundaries
of the spectrum in the �Q ,h2� plane. �ii� For most values of
�Q ,h2� that lie within the spectral boundary, the level sets
correspond to either one �classical nondegeneracy� or two
�classical double degeneracy� 2-tori in �N�S2�S2. The two
fundamental loops of these tori are a Pauli orbit and a con-
nected level contour of h2 on �N,Q. �iii� The level sets that are
not entirely composed of disjoint tori are marked with either
dashed lines �red or magenta online� or �cyan online� dia-
monds. At Q=0, there is no Pauli orbit at the poles of �N,Q=0
such that any contour of h2 which passes through a pole
forms a pinched torus in �N. At perpendicular fields the en-
ergies of the poles are equal and one finds a doubly pinched
torus, while in near-perpendicular fields there are two singly
pinched tori with different energies. The pinched tori are
marked on the spectrum with �cyan online� diamonds. �iii�
Discontinuities in primitive actions follow the patterns de-
scribed in Fig. 10 and are written explicitly in Eqs. �49�.

Shown in Fig. 13 is a map of the parameter space �� ,��
for weak near-perpendicular fields with 0
�
	 /2 and 0

 ����� fN

3�1. The spectra are divided into regions ac-
cording to the list of matrices associated with vector trans-
port �Sec. VI C�, and the presence of a classical double de-
generacy �Sec. V C�. As was shown in previous sections,
both of these can be determined by analyzing the structure of
the fixed points of h2 on �N,Q.
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Demarcating the different regions of the map are the
�black and blue online� solid curves, derived by analysis of
h2, and given by

�crit
Z ��� = �

4N�� − ��
� f sin�2��

, �69a�

�crit
S ��� = �

4N�� + ��
� f sin�2��

. �69b�

Equations �69� divide the near-perpendicular parameter
space into six regions, and, when equal to zero, divide the
perpendicular field interval ��=0� into three subintervals �
�1, �1��2, and ���2, with

�1 = cos−1�2−1/4� � 32.765 ° , �70a�

�2 = cos−1���6

2
− 1	 � 61.701 ° . �70b�

There are two critical points where �crit
Z =�crit

S in weak near-
perpendicular fields at

�3 = � 3−1/4� fN
3 � � 0.7598� fN

3, �71a�

�3 = cos−1���3 − 1

2
	 � 52.771 ° . �71b�

Spectra with ��1 and 0 ����crit
Z are classically doubly

degenerate for all �Q ,h2� that are located in the interior of an
inner triangular area. These spectra include the Zeeman limit
��=0, � meaningless� denoted Z.Lim, the perpendicular Zee-
man interval �0��1, �=0� denoted �Z.Int, and the near-
perpendicular Zeeman region denoted Z.R. On the map �Fig.
13�, the boundaries of these degenerate triangular subareas
are marked on the sample spectra plotted above Z.R, Z.Lim,
and �Z.Int because the boundaries consist of level sets
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FIG. 13. �Color online� A map of the structure of classical spectra for all F and B such that ����� fn
3�1. All field magnitude ratios are

covered on the horizontal axis by Eq. �36� with 0°
�
90°, with pure magnetic field at �=0° and pure electric field at �=90°. 	 /2−� is
the angle in radians between the electric and magnetic fields, with perpendicular fields �=0 along the lower margin of the map. For 0
 ����� fn

3�1, the �black and blue online� solid lines demarcate six regions. Each region contains spectra that are classified by a list of
matrices in square brackets. Plotted in each region approximately above its parameter values are the outlines of representative spectra. Their
implied x and y axes are Q and h2, respectively; �red online� dashed lines mark the energy of o points of h2, �magenta online� dashed lines
mark x points, and �cyan online� diamonds indicate the energies of pinched tori. A classical double degeneracy is present in the Stark limit
�S.Lim�, the perpendicular Stark interval ��S.Int�, and the Stark region �S.R�, as well as near the Zeeman limit in regions marked R, �Z.Int,
and Z.R. Near the Zeeman limit the degeneracy is contained within the small triangular portions of the spectrum including the lower �red
online� boundary. In the Stark limit all points save the lower boundary are doubly degenerate, and the degeneracy in nearby spectra is
confined within the small triangular region including its upper �red online� boundary.
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which are not entirely composed of tori. The lower boundary
�red dashed line online� of this region is also classically dou-
bly degenerate, but the upper boundary �magenta dashed line
online� marks the energy of an x-point separatrix on �N,Q,
and is therefore not doubly degenerate.

Spectra with ���2 and 0 ����crit
S have a similar clas-

sically doubly degenerate inner triangular area. These spectra
include the Stark limit ��=	 /2, � meaningless� denoted
S.Lim, the perpendicular Stark interval ��2���	 /2, �=0�
denoted �S.Int, and the near-perpendicular Stark region de-
noted S.R. Here, points on the upper boundary are classically
doubly degenerate, while the lower boundary �dashed ma-
genta online� marks the energy of an x-point separatrix on
�N,Q, and is not degenerate.

To understand how the this map is derived, we consider
the structure of h2 on the �N,Q in the various parameter re-
gions.

A. Structure of h2 on �N,Q at Q=0

In Sec. VI we showed how the determination of a list of
matrices, used to classify a spectrum, depends on the classi-
fication of level sets as apparent rotators or apparent librators
on �N,Q at Q=0. In Fig. 14 we plot a representative �N,Q=0
for each region of the map except the regular region R �R has
a simple structure which is described in the figure caption�.
Near-perpendicular regions comprise the top row, and per-
pendicular regions are on the bottom. For all �� ,� /� fN

3�
inside a given region as demarcated in Fig. 13, the contours
of h2 on �N,Q=0 will have a similar structure to the represen-

tative plotted in Fig. 14 such that the same number and types
of fixed points will be present. �i.e., for all �� ,� /� fN

3� inside
a given region, the contours of h2 on �N,Q are topologically
equivalent�.

Nonpolar fixed points are located at the coordinates

�W,�W� = �−
�

2�� − ��
,0	 , �72a�

�W,�W� = �−
�

2�� + ��
, �

	

2
	 , �72b�

provided that the resulting W satisfies the requirement W
N. These fixed points are either x points or o points in
accordance with Eq. �42�. Additional polar o points are lo-
cated at both poles of �N,Q=0 in regions R, Z.R, S.R, Z.Lim,
�Z.Int, �S.Int, and S.Lim, and at a single pole of �N,Q=0 in
regions I.Z and I.S.

For �N,Q=0 in near perpendicular fields, there are two re-
gions �Z.R and S.R� which contain families of rotators that
are classically doubly degenerate. In both cases the degener-
ate rotators are separated from nondegenerate librators by an
x-point separatrix. In perpendicular fields all but �M.Int
have a similar double degeneracy; however, note that the
Stark limit does not have a separatrix and is composed al-
most entirely of doubly degenerate rotators �40�. If we begin
at perpendicular fields in �Z.Int ��S.Int� and increase �, as
we pass through Z.R �S.R� the location of the x point mi-
grates south �north� reaching the pole at �crit

Z ��crit
S � where we

Z.R I.Z II I.S S.R

Z.Lim ⊥Z.Int ⊥M.Int ⊥S.Int S.Lim

FIG. 14. �Color online� The structure of �N,Q at Q=0 for all field configurations such that ����� fn
3�1, except the regular region R.

Each �N,Q=0 depicted above is structurally similar to every �N,Q=0 within the same region marked on the map with the same label �Fig. 13�.
Each region for perpendicular fields �=0 has a representative in the bottom row. For perpendicular fields �bottom row� all except �M.Int
have a classical double degeneracy and effective o points at each pole, while �M.Int has a doubly pinched torus which passes through both
poles. In near-perpendicular fields �top row�, there are six parameter regions, five of which have a representative in the top row. Z.R and S.R
have effective o points at both poles and families of doubly degenerate apparent rotators, separated from nondegenerate librators by an
x-point separatrix. I.S and I.Z have a singly pinched torus at one pole, and an effective o point at the other, while region II has a singly
pinched torus at each pole. The region that is not represented is the completely regular region R where the structure on �N,Q is composed
entirely of apparent rotators with an effective o point at each pole, one maximum and one minimum.
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pass to I.Z �I.S�. During this passage the energy range and
phase space area of the southern �northern� rotators shrinks
to zero.

In near-perpendicular fields are three regions �I.Z, II, and
I.S� which contain level sets associated with singly pinched
tori. On �N,Q these level sets pass through the poles at the
T-point angles �W

T�:

�W
T� =

1

2
cos−1��

�
�

�

2�N
	 . �73�

In Eq. �73�, the + sign yields the angles of T points at the
north pole, while the − sign yields the angles of T points at
the south pole. Regions I.S and I.Z each have one singly
pinched torus with its pinch point located at one pole of
�N,Q=0. Region II has two singly pinched tori, one of which
has a pinch point located at the north pole of �N,Q=0, and the
other a pinch point at the south pole. In perpendicular fields
there is one interval ��M.Int� which has one doubly pinched
torus, with a pinch point located at each pole of �N,Q=0.

B. Structure of h2 on �N,Q for �Q��0

In Fig. 14 we plot a representative �N,Q with nonzero Q
for each region of the map except the regular region R �R has
a simple structure that is described in the figure caption�. In
all regions except the Stark limit, as �Q� is increased from
Q=0, o points which are present at a pole at Q=0 become
nonpolar o points and migrate toward the equator. This be-
havior is illustrated by comparing the �N,Q=0 of Fig. 14 in all
regions that have polar o points with their corresponding
�N,Q for Q�0 depicted in Fig. 15. For regions with an

x-point separatrix and associated classical double degeneracy
�Z.Lim, Z.R, �Z.Int, �S.Int, and S.R�, there exists a certain
�Q�=Qcrit for which a migrating o point reaches the same
location as the x point. When this occurs, the fixed points
“annihilate,” removing both the separatrix and the associated
double degeneracy for all �Q��Qcrit. For perpendicular
fields,

Qcrit =
N�� � ��
��2 − �2

. �74�

The appropriate sign choice in Eq. �74� is determined by the
requirement �Q�
N to be − for ��1 and + for ���2. As
the fields are tilted from perpendicular, the value of Qcrit
decreases, and there exist values of � for which Qcrit=0
where the degenerate regions collapse to a pinched level set.
This occurs on the boundaries between Z.R and I.Z and S.R
and I.S �online black and blue curves in Fig. 13�. At these
boundaries, the doubly degenerate inner triangular subareas
of spectra collapse to a single value of �Q ,h2� marked with a
�cyan online� diamond.

In all regions, except the Stark limit, when QcritQN,
�N,Q has two nonpolar o points, located at the maximum and
minimum values of h2. Although they are not explicitly de-
picted, these contours are similar to the contours depicted in
Fig. 15, I.Z, II, I.S and �M.Int. At these large values of Q,
only the locations of the o points differ from region to re-
gion. For perpendicular fields both o points lie on the equa-
tor, and for large � they remain very near to the poles.

As an example, consider how a spectrum in the Stark
region S.R varies with Q. A sample spectrum is plotted over

Z.R I.Z II I.S S.R

Z.Lim ⊥Z.Int ⊥M.Int ⊥S.Int S.Lim

FIG. 15. �Color online� The structure of �N,Q for 0QN �and 0QQcrit in Z.R, Z.Lim, S.R, �S.Int� for all field configurations such
that ����� fn

3�1 except R. As �Q� increases from zero, effective o points at the poles in Fig. 14 migrate toward the equator along either
�W=0 or �W=�	 /2 in all relevant regions �and in R� except for the Stark limit �S.Lim�. The structure of �N,Q in the Stark limit is the same
for all Q. If the region also contains a separatrix dividing degenerate and nondegenerate contours, then there exists a �Q�=Qcrit such that a
migrating o point will annihilate the x point on the separatrix, removing both the separatrix and the degeneracy from the structure of the
contours. For 0QN, the �N,Q in regions �M.Int, I.Z, II, I.S, and R all share the same simple structure, determined by a single maximum
energy, and a single minimum energy o point for all 0QN. Such structure is attained in all regions except the Stark limit for Q
�Qcrit.
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the region labeled S.R on the map �Fig. 13� or one may be
viewed in Fig. 11 of Ref. �14�. We see that the small classi-
cally doubly degenerate triangular region exists only for a
certain range of Q, and at Q=0 the degeneracy occupies its
maximal energy range. Qcrit is the value of �Q� where the
upper boundary, marking the energy of the maximal o point,
and lower boundary, marking the energy of the x-point sepa-
ratrix, meet. As was explained, this is the value of Q where
the o point and the x point annihilate, removing the degen-
eracy for �Q��Qcrit. The corresponding pictures on �N,Q are
found in Fig. 14 �S.R� for Q=0 and Fig. 15 �S.R� for �Q�
Qcrit, and for �Q��Qcrit, �N,Q would look most similar to
Fig. 15 �I.S�.

C. Map reconsidered

Having considered all the different topological structures
of the fully reduced Hamiltonian found in near-perpendicular
electric and magnetic fields, we can now look back at the
curves dividing the regions of the map and better understand
how they are related to topological changes in h2. �i� On �Z

for ��1, where in Fig. 13 Z.R changes to I.Z, the x-point
separatrix on �N,Q at Q=0 �Fig. 14, Z.R� collides with the
southern polar o point, creating one singly pinched torus
�Fig. 14, I.Z�. In this process, the rotators near the south pole,
which had overlapped in energy with those near the north
pole, disappear. As a result the triangular classically doubly
degenerate region of the spectrum shown in Fig. 13, Z.R
collapses into a single monodromy point �cyan diamond in
Fig. 13, I.Z�. �ii� On �S for ���2, when we go from S.R to
I.S, a similar process occurs on �N,Q at Q=0 near the north
pole. �iii� On �Z for ���1, where in Fig. 13 I.Z changes to II
and R changes to I.S, the minimum energy polar o point on
�N,Q at Q=0 bifurcates into a nonpolar minimum o point and
a singly pinched torus. This is depicted in Fig. 14 where the
minimum energy o point at the north pole in I.Z bifurcates as
we pass into region II into the singly pinched torus at the
north pole, and a minimum o point which has migrated away
from the pole. �iv� On �S for ��2, where I.S changes to II
and R changes to I.Z, a similar process happens to the maxi-
mum o point on �N,Q at Q=0. This is depicted in Fig. 14
where the maximum energy o point at the south pole in I.S
bifurcates in II into the singly pinched torus at the south
pole, and a maximum o point which has migrated away from
the pole. These considerations give a complete explanation
of the spectra that were displayed in Ref. �14�.

IX. QUANTUM CORRELLATION DIAGRAMS

As the field parameters are varied across boundaries of
the map �Fig. 13� the topological structure of the contours of
h2�W ,�W� can change abruptly. However, the quantum en-
ergy eigenvalues are always continuous and even differen-
tiable functions of � and �. In this section we examine how
the eigenvalues evolve from region to region on the map.

A. Degeneracy breaking: From perpendicular to near-
perpendicular fields

Near the Zeeman and Stark limits, the quantum energy
spectra have a structure in the second-order splitting associ-

ated with a double degeneracy. For perpendicular fields, the
degeneracy in these regions is �very nearly� exact, and when
the fields are tilted into nearly perpendicular configurations,
the degeneracy is broken. As � is varied, the formerly degen-
erate pair are displaced to higher and lower energies. If mul-
tiple adjacent degenerate pairs exist for �=0, then as � is
varied such states can exhibit anticrossings �41�. An example
of such behavior appears in Fig. 16, where the solid curves
depict the energies of 15 eigenstates from the q=0 manifold
near the Stark limit as � is increased from zero ��S.Int
→S.R�. The energies of the 12 states associated with the
anticrossings have a markedly different behavior from the
three lowest-energy states which are nondegenerate at �=0.
The detail in Fig. 16�b� illustrates that anticrossings between
members of the 12 high-energy states are very narrow for
h2 /� f�−0.063 and widen near the three low-energy states
as is found near h2 /� f =−0.0637, � /� fn

3=0.35. Near
h2 /� f =−0.064, � /� fn

3=0.17 the lowest-energy state above
the �magenta online� dashed line behaves as if reflected from
the three nondegenerate states below.

The nature of the states in such degenerate portions of the
spectrum can be understood in terms of the classical degen-
eracy found on �N,Q. In a primitive semiclassical approxima-
tion, a quantum state is associated with each contour of h2
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FIG. 16. �Color online� Correlation diagram from perpendicular
to near-perpendicular fields. The energy eigenvalues of the 15
eigenstates at n=15, q=0 for �=80°, � fn

3=0.01 are plotted as
functions of � /� fn

3 using 111 evenly spaced data points. The quan-
tum basis included n-manifolds 12–18. Eigenstates that are �very
nearly� degenerate at �=0 are split and anticross as the fields are
tilted from perpendicular. �a� The four dashed lines are the classical
energies of �from top to bottom�: an effective o point at the south
pole, an effective o point at the north pole, an x-point separatrix
�magenta online�, and a nonpolar o point having the minimum en-
ergy on �N,Q=�15,0. All energies between those of the north pole
and of the x-point separatrix are classically doubly degenerate. �b�
Detail near the energy of the x separatrix reveals that anticrossings
between the states that occur well inside the classically degenerate
region are very narrow, but become larger near the x-point
separatrix.
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with J+ or J− quantized as in Eq. �57c�. For perpendicular
fields h2 �Eq. �35�� is symmetric about the equator W=0.
Then, for some F and B there are two disjoint classical con-
tours, c�N� localized in the north �W�0� and c�S� localized in
the south �W0�, which have the same value of h2. For
every northern contour c�N� having an appropriately quan-
tized primitive action, there is a corresponding southern con-
tour c�S� with the same action J�

�N�=J�
�S�, forming a degenerate

pair of states. When the fields are tilted from perpendicular,
the W symmetry is broken but there may still be regions of
classical double degeneracy. However, in this case if a con-
tour in the north has a particular value of J�, the contour in
the south having the same energy does not necessarily have
the same value of J�. Thus in general the degeneracy in the
quantum states is removed as � is varied. Continuing to tilt
the fields may produce nonzero values of � for which the
difference in the primitive actions J�

�N�−J�
�S� is an integer. In

this case both contours are associated with a quantum state
having the same energy, producing again a double degen-
eracy. Since the primitive semiclassical approximation does
not account for tunneling, northern states are decoupled from
southern states, and the locations where the semiclassical
levels cross indicates the locations of the quantum anticross-
ings.

Looking back to Fig. 16, we identify the four dashed lines
from top to bottom with the energies of the structures in Fig.
14 �S.Int and S.R: the o point at the south pole, the o point
at the north pole, the x-point separatrix �magenta online�, and
the nonpolar o-point minimum. States with energies below
that of the separatrix correspond to apparent librators while
states above correspond to apparent rotators. From the semi-
classical model �or simply from correspondence with
�h /��=−2 sin�2��W when not near an anticrossing�, we
identify the northern �southern� rotators with states having
energies that are decreasing �increasing� functions of �. The
anticrossings in the classically degenerate region which
widen near the x separatrix are expected from tunneling be-
tween the northern and southern rotators, which would be
strongest near the separatrix. As was discussed in Sec.
VIII B, as � increases the energy range and phase-space area
of the northern rotators are diminished, but the energy range
and phase-space area of the southern rotators are increased.
The semiclassical approximation predicts that northern rota-
tors should disappear while new southern rotators should ap-
pear near the energy of the x separatrix. The analogous quan-
tum process is present in Fig. 16�b� near h2 /� f =−0.0642,
� /� fn

3=0.19, where the lowest-energy northern rotator
changes character from a decreasing function of � to an in-
creasing function of � near the energy of the separatrix.

Consider quantum expectation values of the operator � fŴ
�Eq. �62�� corresponding to the classical coordinate W. The
scaled expectation value is

wj =
1

� f�n̄�

� j�� fŴ�� j� . �75�

For perpendicular fields, the calculated degenerate quantum
states are linear combinations of the northern and southern
states corresponding to the odd and even parity about W=0,

and the expectation value �Eq. �75�� vanishes. In between
each anticrossing, the expectation �Eq. �75�� displays the
northern or southern character of each quantum state. The
quantum states are strongly coupled again at each anticross-
ing, where states adjacent in energy exchange their northern
and southern character. The expectations of wj �Eq. �75�� for
both states in an anticrossing are exchanged within an inter-
val of � /� fn

3 that is inversely proportional to the energy
width of the anticrossing. These phenomena are illustrated in
Fig. 17�a� where wj is plotted for the same states that appear
in the energy correlation diagram in Fig. 16.

To visualize the W character of quantum states in a spec-
trum, one may augment the quantum lattice such that a dot
for each quantum state �� j� is plotted at the values
�qj ,h2

j ,wj�. In Fig. 17�b� we plot an augmented lattice for a
spectrum with a classical double degeneracy but no quantum
degeneracy, and away from any anticrossing. The lattice
points are spaced regularly, and in the limit n→� at fixed
� fn

3 can be considered to define a surface in three dimen-
sions. The projection of the augmented lattice into the �Q ,h2�
plane recovers the usual quantum lattices, but suggests that
two families of quantum states exist within the triangular
classically degenerate regions, and that each family requires
a separate lattice coordinate system. Furthermore, one such
coordinate system is connected continuously with the states
in the rest of the spectrum, while the other is confined within
the triangular region. This situation is precisely what results
when constructing such a coordinate system from the classi-
cal actions.

B. From the Zeeman limit to the Stark limit in near-
perpendicular fields

We now consider the correlation between the energy
eigenstates in the Zeeman limit and the energy eigenstates in
the Stark limit as we continuously vary the field parameters
from F=0 to B=0 at a constant value of � in the near-
perpendicular region.

In Fig. 18 we trace the evolution of the 15 eigenstates
associated with the n=15 and q=0 manifolds as � is varied
from 0° to 90°, holding both � f =0.01 /n3 and �=0.2� fn

3

fixed. Each of the 15 states corresponds to a contour on �N,Q
at Q=0 �Fig. 14� as the structure of the contours changes
continuously from Z.Lim to S.Lim. As we move from left to
right in Fig. 18, the corresponding series of diagrams in Fig.
14 are from Z.Lim to Z.R, across the upper row of pictures to
S.R and then to S.Lim. Energies of classical level sets which
have at least one component that is not a 2-torus are marked
with dashed lines or diamonds.

At the Zeeman limit �=0° �Z.Lim�, the four states with
least energy are associated with pairs of degenerate apparent
rotators, separated from 11 apparent librators at high energies
by an x-point separatrix, with energy marked by a dashed
line �magenta online�.

When � is increased holding � /� fn
3=0.2 fixed, the de-

generacy in the rotators is broken �Z.R�. The northern rota-
tors move to lower energies while the southern rotators move
to higher energies, resulting in avoided crossings which are
narrow except when they occur at energies close to the sepa-

CHRISTOPHER R. SCHLEIF AND JOHN B. DELOS PHYSICAL REVIEW A 77, 043422 �2008�

043422-22



ratrix. The lowest two dashed red lines are the energies of the
polar effective o points. The energy of the southern pole
climbs to higher energies and meets the descending x sepa-
ratrix at ��29°, removing the classical double degeneracy.
As we would expect from the semiclassical model, the north-
ern rotators pass uneventfully through the energy of the
south pole, while southern rotators experience interactions as
they cross the x separatrix to become librators.

Upon passing ��29°, the x-point separatrix and the south
polar o point collapse into a singly pinched torus, the energy
of which is marked with a string of �cyan online� diamonds

�I.Z�. Distinction between the energy evolution of apparent
librators above the diamonds and the apparent rotators below
the diamonds is no longer present. This is expected because
this region is devoid of degeneracy, and we do not expect
groups of states here to have vastly different sharp W local-
izations.

At ��39°, the o point at the north pole splits into a non-
polar o point and a singly pinched torus �II�. States that have
energies between the energies of the pinched tori are appar-
ent rotators, while those above and below are apparent libra-
tors. However there is no real distinction between these, and
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FIG. 17. �Color online� �a� The expectation values wj = 
� j�� fŴ�� j� /� f for the 15 energy eigenstates at n=15, q=0 for �=80°, � fn
3

=0.01 are plotted as functions of � /� fn
3 with 111 evenly spaced data points �compare with Fig. 16�. The quantum basis included

n-manifolds 12–18. �a� At �=0 doubly degenerate eigenstates are coupled by tunneling into symmetric and antisymmetric combinations of
northern and southern states such that wj =0. As the fields are tilted from perpendicular, the wj expectations assume values that are in
agreement with the localization of the semiclassical states on �N,Q. For � /� fN

30.1 there are expectation values associated with six
northern and six southern rotators, and three librators which very closely follow the classical expectations of W for the minimum o point
plotted in �blue online� dots and the x point plotted with �red online� crosses. At energy anticrossings, the quantum states �adiabatically�
exchange their W character, with narrow anticrossings between rotators in the far north and far south occurring within small intervals of
� /� fN

3, and wider anticrossings occurring between rotators near the W locations of the x-point separatrix. The state labeled � is a northern
rotator which changes character to a southern rotator at � /� fN

3�0.17 where it crosses the W of the x point, mildly affecting the librator,
which visibly oscillates about the x point. The very slow W exchange between the southernmost northern rotator, and the northernmost
southern rotator at � /� fN

3�0.36 is identified with the wide energy anticrossing in Fig. 16�b� at �h2 /� f ,� /� fN
3���−0.0637,0.35�. �b� An

augmented quantum lattice is constructed by plotting a dot for each quantum eigenstate �� j� at the coordinates �qj ,h2
j ,wj�. Classical

boundaries are plotted at their classical expectation values of W. The augmented lattice aids in clarifying the nature of the triangular
classically degenerate regions which occur in the two-dimensional quantum lattices, and suggests that such quantum lattice vector transport
can be well defined when they pass through the boundaries of the triangle that are not associated with the classical x-point separatrix.
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in Fig. 18 the quantum energies pass with little disturbance
through the energy of a pinched torus as they change appar-
ent character between rotators and librators. This passage is
in contrast with changes of character which occur as energies
cross an x-point separatrix.

At ��59°, the maximal energy o point supporting the
Zeeman librators combines with the pinched torus at the
south pole into an o point with maximal energy �I.S�. The
singly pinched torus at the north pole divides the southern
rotators from the low-energy Stark librators.

At ��64° the pinched torus at the north pole splits into
an x point and an effective polar o point �S.R�. As � contin-
ues to increase, the north polar o point climbs in energy to
meet that of the south pole, while the energy of the x point
decreases to join that of the minimal o point. The x point
separates the low-energy Stark librators from the high-energy
Stark rotators. At all energies between that of the x point and

the north pole, there is a classical double degeneracy, and the
associated narrow anticrossing behavior.

When the Stark limit �S.Lim� is reached at �=90°, every
state except that with the lowest energy is paired in a double
degeneracy associated with a northern-southern rotator pair.

X. CONCLUSION

We have used classical perturbation theory to derive an
integrable system which describes the dynamics of the hy-
drogen atom in weak near-perpendicular electric and mag-
netic fields. Semiclassical quantization of the resulting inte-
grable system is in good agreement with quantum
calculations, and provides interpretation of the structures in
the second-order quantum spectrum that were predicted but
not explained in Ref. �14�.

0 10 20 30 40 50 60 70 80 90

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

θ

h 2j /ω
f

L+

R

R

L−
R

(a) (b)

Zeeman
Limit

Stark
Limit

72 74 76 78 80 82
−0.07

−0.065

−0.06

−0.055

−0.05

−0.045

−0.04

L−

R

Z.R I.Z II I.S S.R

FIG. 18. �Color online� Correlation diagram from the Zeeman to the Stark limit in near-perpendicular fields. The energy eigenvalues of
the 15 eigenstates at n=15, q=0, � fn

3=0.01 are plotted as functions of � in near-perpendicular fields � /� fn
3=0.2. The quantum basis

included n-manifolds 12–18. The evolution of the energies of the states is traced with solid �blue online� lines from the Zeeman limit �Z.Lim�
�=0° to �=90° at the Stark limit �S.Lim�, passing into the regions �Z.R, I.Z, II, I.S, and S.R� at approximately �
= �0° ,29° ,38° ,59° ,64° , and 90°� en route. Energies for which at least one component of the classical level set is not a 2-torus are
marked with dashed curves or curves of diamonds. The upper �lower� curve of �cyan online� diamonds represents the energy of the singly
pinched torus at the south �north� pole, and joins smoothly to �red online� dashed curves which mark the energy of a polar effective o point.
The �magenta online� dashed curves joining the curve of diamonds mark the energy of an x-point separatrix, and all energies between an
x-point energy and the nearest effective o-point energy are classically doubly degenerate. For ��59° �� 29°�, the dashed curve with
maximum �minimum� energy is that of the Zeeman �Stark� librator o point. Regions of states separated by the energies of classical structures
are marked with either an R, an L+, or an L−, indicating that they are associated with apparent rotators, apparent librators about a maximal
energy, and apparent librators about a minimal energy, respectively. In the upper right-hand corner of the figure, detail near the Stark limit
is enlarged. States associated with apparent rotators in classically doubly degenerate regions exhibit narrow anticrossings, which widen near
the energy of the x-point separatrix. As the energy range of degeneracy in the Zeeman �Stark� region is diminished with increasing
�decreasing� �, states associated with southern �northern� rotators pass through the energy of the x separatrix and change character to
librators, while northern �southern� rotators continue unaffected into nondegenerate regions below �above� the energy of the effective o point
at the south �north� pole.
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APPENDIX A: KEPLER AVERAGING

1. Average in the orbital frame

To average functions of phase space over an unperturbed
Kepler orbit; use the identity M =Ne and the eccentric
anomaly �, defined by Kepler’s equation �N=�− M

N sin �,
to rewrite Eq. �6d� as �43�


g��N
=

1

2	
�

0

2	

g�1 −
M

N
cos �	d� . �A1�

The functions to be averaged depend on the position vector
and tensor components �xj and xixj� in the space-fixed frame
with basis vectors x̂ , ŷ , ẑ�. These components can be ex-
pressed in terms of the orbital reference frame components
�xj� and xi�xj�� with basis vectors x̂� , ŷ� , ẑ��=  M

M , L�M
LM , L

L � us-
ing the orthonormal direction cosine matrix transformation

Ri,j = x̂i · x̂ j�. �A2�

Since the orbit is fixed, the Kepler averages Eq. �A1� of xj
and xixj reduce to averages in the orbital frame,


xj��N
= Rj,k

T 
xk���N
, �A3a�


xixj��N
= Ri,k

T 
xk�xp���N
Rp,j . �A3b�

The averages in the orbital frame may be computed by ex-
pressing the xj� and xi�xj� components in terms of the eccentric
anomaly using �44�

r� = �x�,y�,z�� = �N2�cos � −
M

N
	,NL sin �,0� .

�A4�

2. Computing Eqs. (6) of Sec. II A

To compute Eq. �6b�, average H1 as it appears in Eq. �2�
using 
L��N

=L, and Eq. �A3a� with R1,1
T =Mx /M and the

average of Eq. �A4�,


r���N
= �− 3

2NM,0,0� . �A5�

The result is 
H1��N
in Eq. �12�.

The average of H2 as it appears in Eq. �2� is


H2��N
=

B2

8
�
xx��N

+ 
yy��N
� + Fz
z��N

, �A6�

and is computed by noting that the only nonzero Kepler-
averaged xi�xj� are �using M2+L2=N2�


x�x���N
=

N2

2
�N2 + 4M2� , �A7a�


y�y���N
=

N2

2
L2. �A7b�

After expressing the averages in the orbital frame via Eqs.
�A3� and �A7� one obtains:


H2��N
=

B2

8

x�x���N

�R1,1
T 2 + R2,1

T 2� +
B2

8

y�y���N

��R1,2
T 2 + R2,2

T 2� + FzR3,1
T 
x���N

. �A8�

The Fz term is − 3
2NFzMz, while the term proportional to B2

may be reexpressed by substitution using � j�Ri,j
T �2

=�i�Ri,j
T �2=1, which follows from the orthonormality of R.

One obtains


H2��N
= −

3

2
NFzMz +

B2

8

x�x���N

+
B2

8
��
y�y���N

− 
x�x���N
�R3,1

T 2 + 
y�y���N
R3,3

T 2� . �A9�

After substitution of Eqs. �A7� and R3,1
T =Mz /M and R3,3

T

=Lz /L, the result is 
H2��N
in Eq. �12�.

a. The explicit generating function f1

The terms in H2� require the first-order generating function
f1 �f2 is not needed because 
�f2 /��N��N

=0 by the imposed
periodicity of f�. To obtain an explicit functional form for f1,
we first note that Eqs. �5b� and �6b� together imply the fol-
lowing partial differential equation in the Delaunay coordi-
nates:

� f1

��N
= N3�
H1��N

− H1� = N3Fx�
x��N
− x� . �A10�

The last equality is obtained from the difference of 
H1��N
in

Eq. �12� and H1 in Eq. �2� and is independent of B because

Lz��N

=Lz. We obtain an explicit form for f1 by the indefinite
integration of Eq. �A10� over �N, holding the rest of the
Delaunay variables fixed. Again utilizing the eccentric
anomaly �, one obtains

f1 = − N5FxR1,1
T ��1 −

M2

2N2	sin � −
M

2N
sin � cos ��

− N4LFxR1,2
T �1 −

M

2N
− cos � +

M

2N
cos2 �	 + C ,

�A11�

which is of the form

f1 = f̃1 + C , �A12�

where the undetermined integration constant C is constrained
only by the requirement that it be independent of �N. We are
free to choose

C = − 
 f̃1��N
= N4LFxR1,2

T �1 +
M

4N
	 �A13�

such that


f1��N
= 0. �A14�

SEMICLASSICAL THEORY OF THE STRUCTURE OF THE … PHYSICAL REVIEW A 77, 043422 �2008�

043422-25



b. The second-order Hamiltonian is independent of FxB

Substituting Eq. �A12� and H1 as it appears in Eq. �2� into
Eq. �5d� produces an expression for H2� that has an average
of the form


H2���N
= Fx�� �x

�N

� f̃1

��N
�
�N

+� �x

�L

� f̃1

��p
�
�N

+� �x

�Lz

� f̃1

���
�N

	 − Fx� �
x��N

�L

�
 f̃1��N

��p

+
�
x��N

�Lz

�
 f̃1��N

��
	 −

3

2N4�� � f̃1

��N
	2�

�N

.

�A15�

Since f̃1 is proportional to Fx, 
H2���N
is composed entirely of

terms proportional to Fx
2. Thus, the second-order dynamics of

hydrogen in near-perpendicular fields has been rendered in-
dependent of the mixed field term FxB by our choice of
integration constant C in Eq. �A13�.

c. Computing ŠH2�‹�N

The evaluation of Eq. �A15� is lengthy and tedious; we
outline the essential steps here, and publish a detailed ac-
count as supplementary material �42�.

After eliminating M �via N2=L2+M2�, x and f̃1 are func-
tions only of N and L and the functions R1,1

T , R1,2
T , and �.

Their averages 
x� and 
 f̃1� are independent of � and are
considerably reduced. The required partial derivatives of
these four functions in the Delaunay coordinates are straight-
forward to compute; using implicit differentiation of Ke-
pler’s equation for calculating derivatives of �, and main-
taining the derivatives of the Ri,j

T as formal functions. After
substituting these partial derivatives into Eq. �A15� and per-
forming the required averages, one obtains


H2���N
=

Fx
2N4

16
L�5N2 + 3L2�� �R1,1

T

�L

�R1,2
T

��p
−

�R1,2
T

�L

�R1,1
T

��p

+
�R1,1

T

�Lz

�R1,2
T

��
−

�R1,2
T

�Lz

�R1,1
T

��
	

−
Fx

2N4

16
��5N2 + 4L2�R1,2

T

�
�R1,1

T

��p
− 5L2R1,1

T �R1,2
T

��p
+ �14N2 + 10L2�R1,1

T 2

+ 20L2R1,2
T 2	 . �A16�

The final simplifications come from the properties of RT.
Since RT is independent of �N, the expression in large paren-
theses of the first term can be interpreted as the Poisson
bracket, R1,1

T ,R1,2
T � in the Delaunay variables. It is straight-

forward but tedious to verify the following identity �we find
it is quickest to use the Euler matrix form of RT �45�, elimi-

nating the orbital inclination i with the equation i
=cos−1�Lz /L��:

R1,1
T ,R1,2

T � = −
R1,3

T 2

L
. �A17a�

By the same suggested method, it is trivial to prove two
more identities:

�R1,1
T

��p
= R1,2

T , �A17b�

�R1,2
T

��p
= − R1,1

T . �A17c�

Substituting these identities into Eq. �A16�, one obtains


H2���N
= −

Fx
2N4

16
�5N2 + 3L2�R1,3

T 2 −
Fx

2N4

16
��5N2 + 24L2�R1,2

T 2

+ �14N2 + 15L2�R1,1
T 2� . �A18�

Eliminating R1,2
T 2 with the column orthonormality of RT, and

cosmetically eliminating L2 in favor of M2, one obtains


H2���N
= −

Fx
2N4

16
�29N2 − 24M2 − 21L2R1,3

T 2 + 9M2R1,1
T 2� .

�A19�

Finally, with R1,1
T =Mx /M and R1,3

T =Lx /L, we have arrived at

H2���N

as it appears in Eq. �12�.

APPENDIX B: THE TOPOLOGY OF �N,Q

The space of all Kepler orbits at fixed N is �N�S2�S2.
Each point K��N is an equivalence class of points in the
full six-dimensional Cartesian phase space such that all
points �x ,y ,z , px , py , pz� contained in a particular Kepler or-
bit having the vectors J1 and J2 are equivalent �46�. Define a
natural distance between two Kepler orbits:

dK�K,K̃� = �J1 − J̃1� + �J2 − J̃2� . �B1�

A Pauli orbit P��N is a subset of the space of all Kepler
orbits at a fixed N defined by

P � �K � �N�Q = �1 + �2,W = �1 − �2, and if �W� N

− �Q� then �W = 1
2 ��1 − �2�� . �B2�

In �N, each P is either a one-dimensional closed curve or a
point �if Q=�N or Q=0 and W=� �N− �Q���. If P is not a
point, then each K� P��N is labeled by a value of the co-
ordinate �Q.

Let the space of all Pauli orbits at a fixed Q be denoted
�N,Q. Each point P��N,Q is an equivalence class of points
K��N such that all points K which are contained in the
same P defined in Eq. �B2� are equivalent. This structure,
motivated by the perturbative description of the motion, de-
termines the effective topology on the �W ,�W� surface.

Proposition. �N,Q, the two-dimensional fully reduced
phase space at fixed N and Q �the �W ,�W� surface� is homeo-
morphic to a sphere.
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The homeomorphism is given in spherical polar coordi-
nates �r ,� ,�� by

N − �Q� = r , �B3a�

W = r cos � , �B3b�

�W =
�

2
. �B3c�

To establish that neighborhoods of �W ,�W� near W=� �N
− �Q�� are connected like a sphere, we show that, given any P

and P̃ such that �i� Q= Q̃ with �Q�
N, �ii� W=W̃ with �W�
N− �Q�, but �iii� �W� �̃W, then ∀ K� P ∃ K̃� P̃ such
that

lim
W→��N−�Q��

dK�K,K̃� = 0. �B4�

To show this, obtain expressions for J1,xi�
�Q ,W ,�Q ,�W� and

J2,xi�
�Q ,W ,�Q ,�W� from Eqs. �29� and �26�, then substitute

them into the definition of dK in Eq. �B1� and evaluate for the

case Q= Q̃, W=W̃ to obtain

�dK��Q,W�=�Q̃,W̃� = �N2 − �Q + W�2!1 + �N2 − �Q − W�2!2,

�B5a�

where

!1 =�1 − cos��Q + �W − �̃Q − �̃W�
2

, �B5b�

!2 =�1 − cos��Q − �W − �̃Q + �̃W�
2

. �B5c�

For a given �Q, Eq. �B5b� will vanish if

�̃Q = �Q + �W − �̃W + 2	k1 �B6a�

and Eq. �B5c� will vanish if

�̃Q = �Q − �W + �̃W + 2	k2, �B6b�

where ki=0,�1,�2, . . .. These two equations can be simul-

taneously satisfied only if ��W− �̃W�=k3	 �k3
=0 ,�1,�2, . . .�. But since the �W coordinate is 	 periodic,

all such points mean that �W= �̃W, and we recover the trivial
fact that Pauli orbits with the same values of �Q ,W ,�W� are

identified. But suppose �W� �̃W and consider the limit of Eq.
�B5a� as W approaches ��N− �Q��:

lim
W→��N−�Q��

dK = 2�N� Q���Q�" Q�!1

+ 2�N" Q���Q�� Q�!2. �B7�

For Q=0 or Q=�N, both terms in Eq. �B7� vanish, consis-
tent with the fact that at these four points the phase space
consists of a single Kepler orbit. For all Q with 0 �Q�N,
either the term proportional to !1 or the term proportional to
!2 will vanish as W→� �N− �Q��. The surviving term can
always be made to vanish by taking the limit at the fixed

value of �̃Q such that the required equation �B6b� or �B6a� is

satisfied. That is, for any �Q, �W, and �̃W, there exists a �̃Q,
depending linearly on �Q, such that the limit Eq. �B7� van-
ishes.
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