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We present an ab initio nonperturbative time-dependent approach to the problem of a helium atom driven by
an intense xuv laser pulse. Based on the finite-element discrete-variable-representation, a space discretization
is proposed for the radial grid in spherical coordinates. Absolute angle-integrated and triple-differential cross
sections for double ionization by absorption of two photons are obtained over a range of photon energies
between 39.5 eV �31.4 nm� and 54 eV �23 nm�, where the process is dominated by nonsequential ionization
mechanisms. We show that the agreement with several other sets of previous predictions is good, as long as the
effective interaction time is defined properly. Two-photon double ionization at the photon energy of 57 eV
�22 nm�, for which both sequential and nonsequential channels are open, is also discussed. For double photo-
ionization in the near-threshold regime, our results do not indicate a preferential mode of energy sharing
between the two escaping electrons, while asymmetric energy sharing becomes the dominant mode with
increasing excess energy. Overall, the two ionized electrons strongly prefer to escape along the polarization
axis of linearly polarized laser fields.
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I. INTRODUCTION

Recent advances in the availability of intense radiation
from free-electron laser sources �1–4�, which are operating
in a wide spectral range, and high-order harmonic generation
sources �5� in the extreme ultraviolet �xuv� regime have
opened up new avenues to depict the atomic and molecular
inner-shell dynamics on an unprecedented ultrashort time
scale. Innovative detection techniques, such as COLd Target
Recoil-Ion Momentum Spectroscopy �COLTRIMS� �6�, have
enabled experimentalists to precisely measure the momenta
and energies of the particles involved in a complete breakup
reaction of few-electron atomic and molecular systems, with
He and H2 being the two primary targets of current investi-
gations.

The two-photon double ionization �DI� of the helium
atom induced by intense short xuv laser pulses has received
considerable attention from both theorists �7–15� and experi-
mentalists �16� over the past few years. The two-photon DI
cross section at a photon energy of 41.8 eV was experimen-
tally determined by using an intense xuv pulse produced by
high-order harmonics �16�. Theoretically, copious ap-
proaches, based upon the time-dependent Schrödinger equa-
tion �TDSE� have been developed and refined to depict the
two-electron response to a temporal laser pulse. These in-
clude the finite-difference methods of Taylor �7�, Pindzola,
Robicheaux, Colgan �8,9� and their many collaborators, the
atomic B-spline approach of Bachau and collaborators �10�,
the R-matrix Floquet approach of van der Hart and Feng
�11�, and the J-matrix method of Piraux’s group �12�. Very
recently, the problem was also addressed by Ivanov and
Kheifets �13�, who projected the time-propagated wave func-
tion on a field-free momentum-space convergent close-
coupling �CCC� wave function, and by McCurdy and co-
workers �14�, who solved coupled Dalgarno–Lewis-type
driven equations perturbatively using the exterior complex
scaling �ECS� approach, and Shakeshaft �15�, who applied
second-order perturbation theory.

For xuv radiation with a peak intensity around
1014–1015 W /cm2, the average ponderomotive energy
gained by an electron over one optical cycle �o.c.� is consid-
erably smaller than a typical photon energy of about 45 eV.
This suggests that the lowest nonvanishing order of pertur-
bation theory �LOPT� should be valid for the two-photon DI
process for these situations �17�. Therefore, it is meaningful
to define the N-photon generalized cross section and to ex-
tract its value from the solution to the TDSE, as long as
proper care is taken for the intensity, duration, and shape of
the laser pulse. If perturbation theory is valid, this cross sec-
tion can be calculated using effectively time-independent
methods �infinitely long pulses�. In practical calculations, a
small dependence of the extracted cross section on these pa-
rameters might occur, but then one has to be careful about
the interpretation of such results.

Although our understanding of the problem has certainly
improved through the intense efforts mentioned above, there
are still many open questions. For the one-photon DI of he-
lium initially in its ground state, good agreement between
experiment and theory has been achieved over the entire
range of photon energies between threshold �18� and the
asymptotic regime �19�, where the shake-off process domi-
nates �20�. In contrast to one-photon DI, however, the current
situation for two-photon DI of the same system is far from
satisfactory. There continue to be active debates as to the
importance of final state correlation in the double-continuum
state with two free electrons and the residual He2+ ion for
extracting physically meaningful quantities from the propa-
gated solution of the TDSE. In principle, one should project
onto the exact solution to the Schrödinger equation in the
absence of the electromagnetic field. In most practical in-
stances, however, this is computationally difficult, and it is
worth investigating how simpler approaches affect the ex-
tracted cross sections. The published total cross sections for
the process �see, for example, Ref. �14�� differ by almost two
orders of magnitude depending on how these cross sections
are extracted. There are claims in the literature �12� that ac-
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counting for the full correlation in the final state changes the
results dramatically when compared to approaches which
project the solution to the TDSE onto an uncorrelated prod-
uct of two Coulomb functions. From a purely theoretical
point of view, this is no different than projecting onto a prod-
uct of a bound state of He+ and a Coulomb function for
single ionization, yet there have been very few questions
raised in the literature concerning that approximation.

The major issue, therefore, is how closely the approxi-
mate and exact solutions to the TDSE in the absence of the
field affect the computed cross sections. While circumspec-
tion is important, the current variations among the existing
calculations do not seem sensible. Even within the subset of
calculations, which project onto an uncorrelated product of
two Coulomb functions, there are disagreements up to about
a factor of 2 in the total cross sections, and these differences
are further emphasized when one looks at theoretical predic-
tions for the fully differential cross sections. In contrast to
the issue regarding the importance �or lack thereof� of corre-
lation in the final state, however, one can explain why these
smaller differences exist and give sound theoretical argu-
ments about how to bring them into agreement. This issue
will be further discussed below.

The present work on the two-photon breakup problem of
the helium atom induced by an intense xuv laser pulse is
motivated by the unsatisfactory situation described above.
For the parameters typically used in or planned for future
experimental investigations, we attempt once again to obtain
a nonperturbative time-dependent wave-packet solution to
the problem. We carefully define the model below and
present some consistency and convergence checks to illus-
trate the numerical accuracy of our results.

Specifically, we employ a combination of the finite ele-
ment �FE� and discrete-variable-representation �DVR� meth-
ods with a time-dependent Arnoldi-Lanczos algorithm. This
FE-DVR grid-based approach provides a convenient way to
model the laser-atom interaction. In particular, the span of
each finite element can easily be adjusted to meet the need of
practical problems. In addition, we do not need the field-free
atomic eigenstates �except for the initial state� to achieve the
time evolution of the system.

The remainder of this paper is structured as follows. In
Sec. II, we describe how the FE-DVR method is applied to
the laser-driven two-electron atom, with emphasis on the es-
sential differences between the current approach and many
other methods to treat the same problem. A procedure to
extract the double ionization information from the time-
evolved wave packet is also presented. Section III exhibits
our results for the total angle-integrated and the fully differ-
ential cross sections for two-photon double ionization at a
variety of photon energies. We also check the stability of our
results against variations of the laser intensity, the pulse
length, the spatial mesh, and the number of partial waves
included in the expansion of the wave function. Where avail-
able, a comparison with other theoretical predictions is
made. Finally, we present some conclusions and an outlook
in Sec. IV. Unless otherwise indicated, atomic units �a.u.� are
used throughout the paper.

II. THEORY

A. FE-DVR method of the two-electron system

The essential idea behind the FE-DVR method is to di-
vide the truncated configuration space into finite elements.
Each element is then further discretized by properly chosen
local Gaussian DVR points. To achieve a smooth represen-
tation of the wave function of interest when crossing the
common boundary between two neighboring elements, one
introduces so-called “bridge” functions. Except for these
bridge functions, which connect the two elements, all DVR
basis functions are nonzero only within their respective ele-
ment. Note that derivative continuity is neither theoretically
required nor important in practice. This leads to an optimal
spatial representation for the time-propagation step, espe-
cially when developing a parallel implementation where
communication between processors needs to be minimized.
For a given set of finite elements and mesh points, the rel-
evant globally normalized DVR basis �f i�r�� can be uniquely
determined. More details were given by Rescigno and Mc-
Curdy �21�. In this work, we also use the Gauss-Lobatto
mesh points for all elements. However, we remove the first
and last DVR functions to explicitly account for the bound-
ary conditions.

We further expand the wave functions of the helium atom
in singlet �total spin S=0� or triplet �S=1� spin states as

�S�r1,r2,t� = �
Ll1l2

�
j�i

� f i�r1�f j�r2�Cl1l2L
ij �t� + �− 1��

�f j�r1�f i�r2�Cl2l1L
ij �t��Yl1l2

LM��1,�2�

+ �
Ll1�l2

�
i

f i�r1�f i�r2�Cl1l2L
ii �t�

1

1 + �l1l2

��Yl1l2
LM��1,�2� + �− 1��Yl2l1

LM��1,�2�� . �1�

Here we defined the phase factor �� l1+ l2−L+S. The un-
known coefficients Cl1l2L

ij �t� explicitly depend on the time t if
the helium atom is subjected to a time-dependent external
field. In the above representation, we notice that
�S�r2 ,r1 , t�= �−1�S�S�r1 ,r2 , t� under exchange of the two
electrons. Since our initial �ground� state is a singlet state,
we will only consider the S=0 case below. The summation
over �l1l2� includes all possible combinations of l1 and l2
forming the total angular momentum L and a given parity �.
For example, if l1� l2, we need to include the partial wave
�l1 , l2� as well as �l2 , l1�. On the grid points, the DVR basis
functions in Eq. �1� satisfy f i�rj�=�ij /		i, where 	i is a
weight factor determined by the particular DVR scheme
�here Gauss-Lobatto�. If the laser pulse is polarized along the
z axis, the total angular magnetic quantum number M is con-
served. Hereafter, we assume M =0 for such a linearly polar-
ized pulse without loss of generality. As a consequence, we
are left with a five-dimensional problem characterized by the
angular momenta �Ll1l2� and the radial mesh points �ri ,rj�.

It is worthwhile to make a few comments regarding the
set of time-dependent expansion coefficients �Cl1l2L

ij �t��. First,
it is important to realize that we must have
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Cl1l2L
ii �t� = Cl2l1L

ii �t� �2�

for the singlet state and

Cl1l2L
ii �t� = 0 �3�

for the triplet state. Along the diagonal line, where rj =ri,
Cl1l2L

ii �t�, and Cl2l1L
ii �t� for a pair of partial waves are thus not

independent of each other. They must satisfy Eq. �2� for our
case of interest. On the other hand, we would not need to use
the mesh points at the line rj =ri to discretize the triplet states
because of Eq. �3�. Therefore, the second summation term in
Eq. �1� can be dropped.

Second, a closer look at the coefficients reveals that

Cl1l2L
ij �t� = �	i	 j�1/2
Yl1l2

LM��1,�2�����r1,r2,t��r1=ri

r2=rj

. �4�

As expected, the expansion coefficient Cl1l2L
ij �t� is just the

value of the radial function on the mesh point �i , j�, multi-
plied by weight factors for the Gaussian integration. Finally,
we stress that, in the present representation, only mesh points
in the lower triangular region are built into the wave func-
tion, i.e., indices j� i in Eq. �1�. The values of the wave
function in the upper triangular region �r2
r1� can be deter-
mined uniquely by using the exchange symmetry of the sys-
tem.

All the one-electron Hamiltonian and dipole matrices are
set up on the mesh points we discussed above. An issue
worth emphasizing concerns the calculation of the matrix
elements of the two-electron Coulomb repulsion interaction
1 / �r1−r2� in the present FE-DVR scheme. In the multipole
expansion, V��r1 ,r2�=r�

� /r�
�+1 has a cusp at r1=r2, which

leads to a discontinuity in the first-order derivative. It there-
fore might be a poor description if the matrix elements are
approximated by Vij,i�j�

� =�ii�� j j�rj
� /ri

�+1. Here, we follow the
idea of McCurdy et al. �22,23� to calculate the matrix ele-
ments by solving a Poisson equation. By doing so, all the
matrix elements of the potential remain diagonal with respect
to the radial coordinates as well, without loss of accuracy.

In the length gauge, the resulting time-dependent
Schrödinger equation for the helium atom in a linearly po-
larized laser pulse can be written as

i
�

�t
Cl1l2L

ij �t� = �
j��i�

�
�l1�l2�L��

�Hijl1l2L
i�j�l1�l2�L� + E0f�t�sin�	t�

��z1 + z2�ijl1l2L
i�j�l1�l2�L��Cl1�l2�L�

i�j� �t� , �5�

where Hijl1l2L
i�j�l1�l2�L� are the matrix elements of the field-free

Hamiltonian. Furthermore, E0 and 	 denote the peak
strength of the electric field and the photon angular fre-
quency �i.e., the photon energy in atomic units�, respectively,
while f�t� describes the time-dependent envelope of the ap-
plied laser pulse. In Eq. �5�, the summations over j�� i� and
�l1�l2�L�� mean that the sums are running over all possible
partial waves if j�� i� but only include partial waves with
l1�� l2� if j�= i�. Note that using the FE-DVR scheme allows
us to represent the Hamiltonian as an extremely sparse ma-

trix, whose nonzero elements are concentrated along the di-
agonal.

In the present work, the solution for the time-dependent
coefficients �Cl1l2L

ij �t�� is achieved via a high-order Arnoldi-
Lanczos algorithm. Denoting C�t� as the vector containing
all the coefficients Cl1l2L

ij �t�, we determine C�t+
t�
=exp�−iH�t�
t�C�t� for a sufficiently small time step 
t. A
significant advantage of this time evolution scheme is the
fact that only matrix-vector multiplications are required.
These, in turn, benefit from the sparse matrices involved in
the FE-DVR approach. We refer the readers to Ref. �24� for
more details and discussions regarding the application of the
Arnoldi-Lanczos algorithm to solving the TDSE.

During the time evolution, the time-dependent values of
the radial wave function of the two-electron system on the
�r1 ,r2� grid can be directly obtained without ever resorting to
one-electron orbitals. This provides an excellent representa-
tion of the combined response by the laser-driven correlated
system. It is another one of the appealing features in the
present application of the FE-DVR scheme to the problem of
double photoionization.

B. Initial state of the helium atom

Due to the large size of the Hamiltonian matrix, it is en-
tirely impractical �and unnecessary� to directly diagonalize
the Hamiltonian to obtain the initial ground state. In this
work, we set 
t→−i
t and relax the system from an arbi-
trary spatial distribution to obtain the wave function of the
ground state. Time evolution in imaginary time is again
achieved by means of the Arnoldi-Lanczos algorithm. For a
sufficiently long propagation time, the system settles down
into its lowest eigenstate. Specifically, we use

E = −
1

2
t
lim

t→+�
ln� 
��t + 
t����t + 
t�



��t����t�
 � . �6�

In the present work, we use a spatial box of rmax=60 a.u.,
divided into 150 finite elements with four Gauss-Lobatto
DVR basis functions set up in each element. Using angular
momenta l1,2�3, the ground-state energy was obtained as
−2.903041 a.u., which is sufficiently accurate for the present
purpose.

C. Extraction of the cross sections in two-photon double
ionization process

We now discuss the extraction of the total �neither the
energies nor the angles are resolved� and the fully differential
�energies and angles resolved� for double photoionization. As
commented upon earlier, there are not only discrepancies be-
tween calculations that include electron correlation in the
final state, but there are also differences between calculations
that use uncorrelated final-state wave functions to extract the
cross sections. For example, Foumouo et al. �12� obtain very
different results with or without accounting for the full long-
range correlation between all three charged particles in the
final state. Horner et al. �14�, on the other hand, claim to also
have included this interaction in a sufficiently accurate way
through exterior complex scaling. Their expression to com-
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pute the required projection coefficient is based on a surface
integral involving an uncorrelated final state and the deriva-
tive of the exact scattering wave function. Finally, Ivanov
and Kheifets �13� project to a field-free momentum-space
convergent close-coupling wave function, which also con-
tains correlation effects to large distances. Both of the latter
sets of results �13,14�, are similar to those obtained in several
other approaches, where the cross section was extracted by
projecting to an uncorrelated product of two Coulomb
waves. However, there are still discrepancies of about a fac-
tor of 2 among the results obtained in a number of these
calculations.

In an attempt to clarify the situation, it seems reasonable
to first determine numerically reliable results for the various
cross sections by neglecting the electron-electron interaction
in the projection state before addressing the much more com-
plicated three-body breakup problem in a fully correlated
way. Since the former has not yet been achieved in a satis-
factory manner, due to reasons unrelated to correlations in
the projection state �see below�, we follow the example of
previous works and construct the field-free two-electron
double continuum state as an uncorrelated product of one-
electron continuum states.

For a one-electron system, we have

�k
�−��r� =

1

k
�
lm

ile−i�l�k��kl
�c��r�Ylm�r̂�Ylm

� �k̂� , �7�

with the asymptotic behavior

�kl
�c��r� �

r→�
	 2

�
sin�kr +

Z

k
ln 2kr −

l�

2
+ �l� , �8�

where �l denotes the Coulomb phase. The radial continuum
wave function satisfies

�
0

+�

�kl
�c��r��k�l

�c��r�dr = ��k − k�� . �9�

Thus, our continuum states are normalized in momentum
space according to 
�k

�−� ��k�
�−�
=��k−k��.

The singlet two-electron continuum wave function satis-
fying the incoming boundary condition �−� is given by

�k1,k2

�−� �r1,r2� =
1
	2

��k1

�−��r1��k2

�−��r2� + �k2

�−��r1��k1

�−��r2�� .

�10�

It is normalized in momentum space according to


�k1,k2

�−� ��k1�,k2�
�−� 
 = ��k1 − k1����k2 − k2�� + ��k1 − k2����k2 − k1�� .

�11�

In the present work, the discretized Coulomb continuum
state �kl

�c��r� is obtained by solving the one-electron
Schrödinger equation for the He+ ion �Z=2�, using the same
mesh points as for the neutral helium atom. This yields a
self-consistent grid representation of the time-evolved wave
packet and the final continuum states. Care must be taken
regarding mesh points on the edge of the spatial box, where
the continuum states generally have a nonvanishing probabil-

ity distribution. A matching procedure using the asymptotic
behavior of the Coulomb continuum wave function was em-
ployed to renormalize the numerical solutions in momentum
space. Checking our results against those from the routine
COULFG of Barnett �25� showed excellent agreement.

In practice, there are two approaches to produce the Cou-
lomb wave function in the DVR scheme. The strategy dis-
cussed above is one in which the box size is fixed. Another
one is to directly diagonalize the Hamiltonian matrix while
satisfying bound-state boundary conditions. A continuum
state with any desired positive energy can then be found by
varying the size of the box. An advantage of this approach is
the straightforward way to renormalize the wave function to
the energy space through multiplication by �1/2�Ei�, where
��Ei� is the density of states at the energy Ei. Our numerical
experiments, however, showed that the latter method is more
time consuming than the former.

Note that the final double-continuum state, when approxi-
mated by a product of two Coulomb waves with Z=2, is
orthogonal to the single-continuum channels, which them-
selves are approximated as a product of a bound hydrogenic
1s orbital �Z=2� and a Coulomb wave for Z=1. Within these
approximations, therefore, no interference between single-
continuum and double-continuum channels needs to be con-
sidered, due to the removal of the contributions from the
single-ionization channels.

Therefore, after subtracting the overlap with the initial
bound state, the probability amplitude for the two-photon
double ionization at the end of the laser pulse can be written
as


�k1,k2

�−� ���t�
 = �
L=0,2

�
l1l2

�− i�l1+l2ei��l1
�k1�+�l2

�k2��

�Yl1l2
LM�k̂1, k̂2�Fl1l2

L �k1,k2� . �12�

The partial-wave amplitude in momentum space satisfies the
exchange symmetry

Fl2l1
L �k2,k1� = �− 1��Fl1l2

L �k1,k2� . �13�

Physically, the quantity 
�k1,k2

�−� ���t�
 corresponds to the
probability amplitude for two electrons escaping with mo-

menta k1 and k2 in the directions of k̂1 and k̂2 after absorbing
the photons. The total cross section for the nonsequential
�NS� two-photon DI is given by

�NS = �	

I0
�2 Pkk

Teff
�2� , �14�

where I0 is the peak intensity, Pkk denotes the probability for
double ionization, and Teff

�2� is an “effective interaction time.”
These will be further discussed below.

For time-dependent calculations, a few words about the
validity of Eq. �14� are necessary. First of all, the formula for
the generalized cross section �NS given in Eq. �14� is only
valid for the direct or nonsequential process, in which the
ionization probability is proportional to the pulse duration.
On the other hand, if two electrons are kicked out in a se-
quential way, the ionization probability is proportional to the
square of the pulse duration rather than the pulse duration
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itself. This can occur, and usually does, for 	�54.4 eV in
helium. The two photons are then predominantly absorbed
one after the other, almost independently of each other. The
two possibilities are depicted in Fig. 1 for a photon energy of
57 eV, where both sequential and nonsequential channels are
open. In this case, it is not straightforward to define either the
ionization rate or the cross section for the entire event.

Furthermore, we have to ensure that the system irradiated
by the intense xuv pulse is far from saturation. This requires
that a laser pulse of relatively low intensity and short inter-
action time must be employed in numerical calculations. An
effective interaction time Teff

�N� for an N-photon process is
then defined by �12�

Teff
�N� � �

0

�

f2N�t�dt , �15�

with the result

Teff
�2� = 35�/128 �16�

for a sine-squared pulse shape of a duration of �.
On the other hand, we need to propagate the system on a

relatively long time scale to extract the cross-section infor-
mation. As a consequence, the laser parameters must be cho-
sen in a properly balanced way for practical calculations. For
the present case of interest, peak intensities between 1014 and
1015 W /cm2 and time durations of 10–15 optical cycles
meet the above criteria.

In a time-dependent formulation, therefore, the depen-
dence of the N-photon cross section on the number of pho-
tons absorbed not only occurs through the factor �	 / I0�N, but
also through the effective interaction time defined above. As
seen from the definition, the result depends explicitly on how
many photons are being absorbed.

The energy sharing between the two escaping electrons
can be uniquely determined through the hyperangle �
=tan−1�k2 /k1�. We set E1=Eexc cos2 � and E2=Eexc sin2 �,
where Eexc=2	− I2+ is the excess energy for two-photon
double ionization. For a given energy sharing �, the triple-
differential cross section �TDCS� can be written as

d3�

d� dk̂1 dk̂2

= �	

I0
�2 1

Teff
�2�� � dk1� dk2� k1�

2k2�
2

���� − tan−1� k2�

k1�
���
�k1�,k2�

�−� ���t�
�2.

�17�

It is important to remember that there are two indistinguish-
able electrons in the final channel, and hence the energy
sharings described by � and � /2−� represent the same ob-
servable event. Therefore, we either need to consider 0��
�� /4 or � /4���� /2 to avoid double counting. The
TDCS with respect to the energy of one electron is then
given by

d3�

dE1 dk̂1 dk̂2

=
1

k1k2 cos2 �
�	

I0
�2 1

Teff
�2�

�� � dk1� dk2� k1���k2� − k1� tan ��

�� �
L=0,2,l1l2

�l1l2
�k1�,k2��Yl1l2

LM�k̂1, k̂2�Fl1l2
L �k1�,k2���2

,

�18�

where we have defined the phase factor

�l1l2
�k1,k2� = �− i�l1+l2ei��l1

�k1�+�l2
�k2��. �19�

By collecting all ionization events, the total cross section for
two-photon double ionization is then given by

�NS =� d�� dk̂1 dk̂2
d3�

d� dk̂1 dk̂2

= �	

I0
�2 1

Teff
�2�� � dk1 dk2

d2P�k1,k2�
dk1 dk2

. �20�

Here we have introduced the momentum distribution

d2P�k1,k2�
dk1 dk2

= �
L=0,2

�
l1l2

�Fl1l2
L �k1,k2��2. �21�

Similarly, the corresponding two-electron energy distribution
is given by

d2E�E1,E2�
dE1 dE2

=
1

k1k2

d2P�k1,k2�
dk1 dk2

. �22�

Due to the limited pulse duration and thus a finite laser band-
width, the energies of the two escaping electrons generally
do not satisfy the condition of E1+E2=Eexc exactly. This is
the principal reason to introduce momentum or energy dis-
tributions, which are spread out but peak around the above
result. Details about how the two escaping electrons gain

Nonsequential Sequential

He+

He

He2+

E2 = 2.6

E1 = 32.4E
n
er

gy
(e

V
)

79.0

24.6

0.0

Eexc = 35.0

FIG. 1. �Color online� Schematic representation of the helium
energy levels involved in the double ionization by absorption of two
photons for a photon energy of 57 eV. The energies are given in
units of eV in the diagram. The nonsequential and sequential ion-
ization mechanisms are represented by the solid and dashed arrows,
respectively.
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their kinetic energy can be understood by monitoring the
energy distribution during the interaction with the applied
pulse.

III. RESULTS AND DISCUSSION

As mentioned previously, we confine the system to a spa-
tial box of rmax=60 a.u. This truncated configuration space
is further divided into 150 finite elements, with four Gauss-
Lobatto DVR basis functions set up in each element. The
distribution of the elements is chosen in such a way that the
spatial variation of the wave function close to the nucleus
�determined by the nuclear charge Z� and far away from the
nucleus �determined by the highest energy of a free electron�
can be represented accurately. We also checked that the re-
sults presented below do not change within the thickness of
the line when the box size is enlarged to rmax=80 a.u.

Having obtained the initial state of the system as de-
scribed above, the time propagation in the laser field is ac-
complished through the Arnoldi-Lanczos algorithm. Com-
pared to other time-propagation approaches, such as leapfrog
or a split-operator approach �9�, the present scheme allows us
to take relatively large steps in time. Specifically, using only
400 steps per optical cycle is sufficient to achieve converged
solutions of the TDSE for the cases presented in this paper.
Most of the results presented below were obtained with a
sine-squared pulse with a peak intensity of either 5�1014 or
3�1015 W /cm2 and a time duration of ten optical cycles.
However, we will also discuss the dependence of the results
on the length of the pulse.

Figure 2 shows our results for the radial electron density
after five and ten optical cycles of a 42 eV laser pulse with a
duration of ten optical cycles, a sine-squared envelope, and a
peak intensity of 5�1014 W /cm2. The high densities near
the edges correspond to excitation and single ionization,
while double ionization corresponds to the regime where
both r1 and r2 are large. The lack of structure in this regime
indicates that the double ionization occurs in a nonsequential
manner, leading to a smooth distribution.

A. Angle-integrated cross section

Figure 3 shows our results for the total two-photon
double-ionization cross section of He over a range of photon
energies from threshold to 54 eV, i.e., just below the energy
where sequential double ionization becomes possible. These
results are compared with a number of recently published
theoretical predictions and also with an experimental mea-
surement for the incident photon energy of 41.8 eV by Ha-
segawa et al. �16�. The results are presented on both a loga-
rithmic and a linear scale, with the latter being more
appropriate to discuss the similarities and remaining differ-
ences between some of the very close predictions.

To begin with, we notice excellent agreement between our
predictions and those obtained by Laulan and Bachau �10� as
well as Foumouo et al. �12� in their “no correlation” �NC�
model, i.e., where the uncorrelated product of the two Cou-
lomb functions is used to extract the cross section from the
propagated wave function. There is also satisfactory, though

not perfect agreement with the published results of Feng and
van der Hart �11�, who used an effectively time-independent
R-matrix-Floquet method and those of Ivanov and Kheifets
�13�, who used the convergent close-coupling method to gen-
erate the field-free two-electron continuum wave function,
on which the time-propagated wave function was projected.
Very close agreement is also obtained with the results of Hu
et al. �9�, provided we multiply their published result by
128 /70�1.83. This modification of the Hu et al. results is
appropriate, since they simply used � /2 for the effective in-
teraction time Teff

�2�. Hence, the discrepancy between the pub-
lished results of Huet al. �9� and many of the other calcula-
tions using the same uncorrelated state for projection seems
to be due entirely to the factor Teff

�2� rather than to an origi-
nally suspected pulse-shape and/or peak-intensity depen-
dence of the results. Questions of intensity dependence, or
the lack thereof, will be further discussed below. Finally, we

FIG. 2. �Color online� Radial electron density after five �a� and
ten �b� optical cycles of a 42 eV laser pulse with a duration of ten
optical cycles, a sine-squared envelope, and a peak intensity of 5
�1014 W /cm2.
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are aware of another ongoing effort by Feist et al. �26�, who
use a similar approach to ours with a different and entirely
independent numerical implementation. Not surprisingly, we
have been informed �27� that their results �not shown� are
very close to ours.

There are two other sets of predictions shown in Fig. 3,
namely, those obtained by Foumouo et al. �12� in their “full
correlation” �FC� model, in which the time-propagated wave
function was projected to correlated field-free close-
coupling-type wave function generated by the J-matrix
method, and recent results by Horner et al. �14� obtained
using a time-independent exterior complex scaling method.
Both of these sets of predictions differ significantly from the
others, with the FC results being nearly an order of magni-
tude larger in the near-threshold regime. This is very surpris-
ing, since the two-electron continuum wave function was
generated in a similar way to the CCC approach, i.e., one of
the electrons is described by a true continuum orbital while
the other is represented by a square-integrable pseudostate.
Hence one might expect similar results from the two ap-
proaches. Note that Horner et al. �14� also claim to have
accounted for electron correlations to essentially the full ex-
tent, but their results are generally the smallest of all sets.
Except for the FC results, and those of Nikolopoulos and
Lambropoulos �28,29� �not shown, since they are even
higher than the FC values�, all theoretical predictions, in-
cluding the latest set of Shakeshaft �15� �not shown�, are
compatible with the only existing experimental data point of

Hasegawa et al. �16�, which has an approximate uncertainty
of one order of magnitude according to the authors �30�.

We are not in a position to comment or speculate on pos-
sible reasons for the remaining discrepancies, but the current
work, and that of Feist et al. �26�, have already motivated
additional calculations, for example, by Horner �31�. Hope-
fully, this work will either remove or shed more light on the
origin of the remaining discrepancies. It seems clear, how-
ever, that there are now several highly accurate numerical
models available, which have been implemented indepen-
dently by several groups, and which yield the same results
for the well-defined NC theoretical model in the perturbative
regime. These methods predict a smooth, almost linear in-
crease of the two-photon double-ionization cross section for
He in its ground state between the thresholds for nonsequen-
tial �39.5 eV� and sequential ionization �54.4 eV�. A closer
look at some of the predictions reveals fluctuations that seem
to be of numerical rather than of physical nature.

Next, we turn to a potential dependence of the extracted
cross section on the peak intensity of the applied laser field.
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FIG. 4. �Color online� Total cross section of the two-photon
double ionization of the helium atom, as obtained for a sine-squared
42 eV laser pulse of ten optical cycles with peak intensities of 5
�1014 and 3�1015 W /cm2. The results shown for an effective

interaction time T̃eff
�2� account for the depletion of the ground-state

population �see the text�.
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FIG. 5. �Color online� Total probability �dashed line, left scale�
for two-photon double ionization and the corresponding generalized
total cross section �solid line, right scale� for the two-photon double
ionization of helium, as obtained for a 42 eV laser pulse with a
sine-squared envelope and a peak intensity of 5�1014 W /cm2 for
pulse lengths varying between 0 and 20 optical cycles.

FIG. 3. �Color online� Total angle-integrated cross section for
two-photon double ionization of helium as a function of the photon
energy on both a logarithmic �a� and linear �b� scale. The various
theoretical approaches are described in the text. Note that the pub-
lished results of Hu et al. �9� were multiplied by a factor of 128/70.
A laser pulse with a duration of ten optical cycles, a sine-squared
envelope, and a peak intensity of 5�1014 W /cm2 was used in the
present calculations.
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As mentioned above, such a dependence was originally pro-
posed by Hu et al. �9� to explain the differences between
their results and those of Piraux et al. �32�, which are essen-
tially the same as the NC results of Foumouo et al. �12�. We
will now show that such an intensity dependence does not
exist, at least not for the intensities considered here, if the
depopulation of the initial state is properly accounted for.

At the end of the laser pulse we have

Pkk = �NS�
0

�

F2�t�Pgs�t�dt �23�

for the direct two-photon double ionization. Here Pgs�t� is
the survival probability of the initial state in the time-
dependent laser field and

F�t� =
I0

	
f2�t� �24�

is the photon flux. For a relatively weak peak intensity and a
short time duration of the pulse, the system is only weakly
ionized and we may use the approximation Pgs�t��1. Inde-
pendent of the laser intensity, this yields an effective time of
35� /128 for a sin2 pulse of total length �. In order to ensure
the validity of the above approximation, Foumouo et al. �12�
used a peak intensity of only 1013 W /cm2 and a pulse dura-
tion of ten optical cycles. Due to the small ponderomotive
energy and the large photon energy, on the other hand, lowest
nonvanishing order of perturbation theory is actually ex-
pected to be still valid for the two-photon double-ionization
process at much higher peak intensities, at least up to about
1015 W /cm2. The introduction of a cross-section concept
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FIG. 6. �Color online� The coplanar triple-differential cross section for two-photon DI of helium in a ten-cycle sine-squared laser pulse
of central photon energy 42 eV and peak intensity 5�1014 W /cm2 for equal energy sharing �E1=E2=2.5 eV� of the two outgoing electrons.
The angle listed in the figure is the angle between the laser polarization vector and one of the two escaping electrons, while the emission
angle of the second electron varies. Our results for �Lmax, l1,max, l2,max�= �3,3 ,3�, �3,4,4�, and �3,5,5� are compared with the �3,3,3� results of
Hu et al. �9� after multiplication of the latter results by 128/70.
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would make little sense if the result were strongly affected
by the field intensity itself.

Consequently, one should address the following ques-
tions: �1� How do the approximations above behave if the
peak intensity is boosted, for example, to 1015 W /cm2 or
even higher? �2� Is the concept and the subsequent calcula-
tion of cross sections still meaningful at such high intensi-
ties?

We will now attempt to answer these questions by taking
a closer look at the survival probability of the ground state.
For a photon energy of 42 eV, a peak intensity of 5
�1014 W /cm2 for the sine-squared pulse, and a pulse dura-
tion of ten optical cycles, we find Pg.s.=0.922 at the end of
the pulse. Hence, the approximation Pg.s.�t��1 is still accu-
rate within a few percent. For the same pulse parameters,
except for a peak intensity of 3�1015 W /cm2, on the other
hand, we obtain a survival probability of only 0.615 at the
end of the pulse. Hence, if we still want to use the same
method, we need to account for this depopulation of the ini-
tial state. Since Pg.s.�t��1 at all times, one should use the
definition

T̃eff
�2� � �

0

�

f4�t�Pg.s.�t�dt . �25�

This yields T̃eff
�2��35� /128 for the effective interaction time

and hence a larger cross section.
Figure 4 exhibits the influence of the peak intensity on our

results for the total cross section for I0=5�1014 and 3
�1015 W /cm2, respectively. As expected, using Teff

�2�

=35� /128 reduces the result for the higher peak intensity,
thereby suggesting a small but clearly noticeable intensity
effect. However, this effect essentially disappears to within
the thickness of the line when the depopulation of the initial
state is properly accounted for through the effective interac-

tion time T̃eff
�2�.

Figure 5 shows the effect of the pulse length on the ex-
tracted results for the total cross section at a fixed laser in-
tensity of I0=5�1014 W /cm2. For pulse durations larger
than about six optical cycles, the probability for double ion-
ization at the end of the pulse is directly proportional to the
pulse length and, consequently, the effective interaction time.
The cross section is then well defined and essentially no
dependence on the length of the pulse remains after dividing
the probability by Teff

�2�. Hence, the time-dependent results
become directly comparable to those obtained in time-
independent or Floquet-type approaches. For short pulse du-
rations �less than six optical cycles with the current param-
eters�, on the other hand, the relationship between Pkk and
the pulse length is no longer linear for the present param-
eters, and hence the extraction of a cross section using the
formalism described above becomes meaningless.

B. Triple-differential cross sections

Figure 6 displays the triple-differential cross section for
two-photon DI of helium in a ten-cycle sine-squared laser
pulse of central photon energy 42 eV and peak intensity 5
�1014 W /cm2 for equal energy sharing �E1=E2=2.5 eV�
of the two outgoing electrons. These results are for the co-

(b)(a) (c) (d) (f)(e)

FIG. 7. �Color online� The TDCS in 3D representation. The laser parameters are the same as in Fig. 6. The polarization vector of the laser

light �z axis� and the emission angle of one of the escaping electrons �k̂1� define the yz plane. The results are for angles of 0° �a�, 30° �b�,
60° �c�, 90° �d�, 120° �e�, and 150° �f� between k̂1 and the z axis. Because of the dependence of the magnitudes on k̂1 �see also Fig. 6�, each
figure has been individually scaled.
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FIG. 8. �Color online� Momentum �left column� and energy �right column� distributions of the two escaping electrons. The laser pulse has
a sine-squared envelope around the peak intensity of 5�1014 W /cm2 and a time duration of ten optical cycles. The central photon energies
are 42, 48, 54, and 57 eV, respectively. The color bars are corresponding to units of 10−4 a.u.
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planar geometry, where the electric field vector of the lin-
early polarized laser field and the momentum vectors of the
two escaping electrons all lie in the same plane.

After once again multiplying the published results of Hu
et al. �9� by 128/70 to account for the different definitions of
Teff, the two sets of results obtained with the same maximum
values Lmax= l1,max= l2,max=3 agree very well with each other,
with only small differences in the heights of some of the
maxima. Note that we compare with the results shown in
Fig. 4 of Hu et al. �9�. These results were obtained using the
time-dependent close-coupling �TDCC� approach �33�, and
they differ �slightly� from the results presented in Fig. 3 of
the same paper. We also note that Ivanov and Kheifets �13�
divided their TDCS results by 2.2 in order to achieve a better
shape comparison with Hu et al. �9�. Hence, the original
absolute values of Ivanov and Kheifets are in better agree-
ment with our predictions, both for the total �see Fig. 3� and
the triple-differential cross section.

Following a suggestion by Feist �27�, we also checked the
convergence of the results by increasing l1,max and l2,max to 4
and 5, respectively. Especially for the smallest TDCS values,
when one of the electrons escapes at 90° relative to the laser
polarization axis, the results change noticeably, i.e., the
�Lmax, l1,max, l2,max�= �3,3 ,3� model is apparently not yet con-
verged everywhere, with the most visible problem occurring
for �1=90° and �2�270°. With our current computer code
and the computational resources available to us, we cannot
perform larger calculations, but the closeness of the �3,4,4�
and �3,5,5� results suggests that the latter predictions are suf-
ficiently converged that we would feel confident to compare
them to experimental data if those became available. This
conclusion is further supported by the work of Feist et al.
�26�, who were able to push the angular momenta even
higher.

To provide additional information about out-of-plane ge-
ometries, Fig. 7 presents a three-dimensional �3D� impres-
sion for the triple-differential cross section for two-photon
DI of helium. As in the previous figure, the direction of one
of the escaping electrons is fixed with respect to the polar-
ization axis of the laser field, but we are now plotting the
probability for the other electron to escape into any direction.
Having already looked at the coplanar cut of this figure, the
strong dependence of the emission pattern on the fixed direc-
tion of one of these electrons is not surprising. It is clear that
the two electrons try to avoid escaping in the same direction.
In some cases, there is a tendency for escape on nearly op-
posite sides of the nucleus, but the details depend upon the
direction between the laser polarization and the fixed mo-
mentum vector of one of the electrons. This indicates a com-
parable effect of the laser and the Coulomb fields. Overall,
the two ionized electrons strongly prefer to escape along the
polarization axis of the linearly polarized laser field. We
hope that these detailed predictions will encourage experi-
mentalists to test them as soon and in as much detail as
possible.

Finally, we consider the momentum and the energy distri-
bution of the two escaping electrons. Recall that Horner et
al. �14� predicted a significant change in the total cross sec-
tion already below the threshold for sequential double ion-
ization at 54.4 eV. We therefore show our results for four
different central photon energies �42, 48, 54, and 57 eV� in
Fig. 8. At the lowest photon energy of 42 eV, we see an
essentially flat distribution of the momenta and, correspond-
ingly, the energies of the two escaping electrons. With in-
creasing photon energy, but still below the threshold for se-
quential ionization, the probability that one of the two
electrons takes essentially all the excess energy while the
other takes none is strongly increasing, i.e., asymmetric en-
ergy sharing begins to dominate. At 57.0 eV, on the other
hand, we see a clear signature of the sequential ionization
mechanism. The excess energy of 1.29 a.u. is likely distrib-
uted in the way that one of the electrons takes 1.19 a.u.,
while the other takes 0.10 a.u. This corresponds to using the
first photon to kick out one electron with a final energy of
57.0–24.6 eV, and the second photon to ionize He+�1s�,
yielding a free electron of energy of 57.0–54.4 eV �see Fig.
1�. Nevertheless, some probability for other scenarios re-
mains, indicating that the nonsequential double-ionization
mechanism is still competing.

IV. CONCLUSIONS

We have presented new calculations for two-photon
double ionization of helium in a short, strong laser pulse. The
distinguishing feature of our method is the use of a finite-
element discrete-variable representation for the radial coor-
dinates of the problem. Our results agree well with predic-
tions from previous calculations, in which the cross sections
were extracted by projecting the time-propagated wave func-
tion to an uncorrelated product of Coulomb functions. Our
results for the various cross sections are numerically stable,
and we have demonstrated that they neither depend on the
pulse length nor on the laser intensity, as long as we are in
the limit where the lowest nonvanishing order of perturba-
tion theory should be valid. Previous findings to the contrary
were apparently due to problematic definitions of the effec-
tive interaction time and the neglect of the initial-state de-
population in strong fields. In the future, we plan to extend
the present work and investigate whether projecting on a
correlated final state will change the results, as predicted by
Foumouo et al. �12�.
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