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Nonsequential two-photon double ionization of helium
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We present accurate time-dependent ab initio calculations on fully differential and total integrated (gener-
alized) cross sections for the nonsequential two-photon double ionization of helium at photon energies from 40
to 54 eV. Our computational method is based on the solution of the time-dependent Schrédinger equation and
subsequent projection of the wave function onto Coulomb waves. We compare our results with other recent
calculations and discuss the emerging similarities and differences. We investigate the role of electronic corre-
lation in the representation of the two-electron continuum states, which are used to extract the ionization yields
from the fully correlated final wave function. In addition, we study the influence of the pulse length and shape
on the cross sections in time-dependent calculations and address convergence issues.
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I. INTRODUCTION

Double ionization of helium has long been of great inter-
est in atomic physics since it provides fundamental insights
into the role of electronic correlation in the full three-body
Coulomb breakup process. Understanding the dynamics in
this simple, two-electron system is crucial to understanding
more complex atoms and even simple molecules [1-16].
With the advent of intense light sources in the vuv and xuv
region [17-23], the focus of interest has switched from one-
photon to multiphoton processes. Specifically, two-photon
double ionization has been the subject of intense theoretical
studies. Several authors [24-33] have calculated generalized
cross sections for the nonsequential two-photon ionization
process in the energy range from 40 to 54 eV using a wide
variety of computational methods. Despite considerable ef-
forts, quantitative agreement between the different calcula-
tions has not yet been reached. The reasons for the remaining
discrepancies are the subject of ongoing discussions. In par-
ticular, there have been speculations that the representation
of the double continuum might be responsible for the exist-
ing differences. Nevertheless, even for methods which take
correlation into account in the final states, the cross sections
obtained still disagree, and a systematic change in the results
due to the improved treatment of electronic correlation has
not yet been observed. Recently, experimental data has be-
come available as well. Hasegawa, Nabekawa et al. [34,35]
used the 27th harmonic at 41.8 eV of a femtosecond pulse
from a Ti:sapphire laser, and Sorokin et al. [36] performed
their experiment at the FLASH free-electron laser in Ham-
burg at 42.8 eV. While this is a good beginning, the uncer-
tainties in the data are too large to help in resolving differ-
ences in the theoretical calculations. With the current rapid
progress in intense xuv sources, further experiments that
cover larger energy ranges can be expected in the future
which might help to clarify the situation.

*johannes.feist@tuwien.ac.at

1050-2947/2008/77(4)/043420(13)

043420-1

PACS number(s): 32.80.Rm, 32.80.Fb, 42.50.Hz

Calculations for two-photon ionization employ either a
time-independent (TI) or a time-dependent (TD) approach.
TI methods involve either lowest-order perturbation theory
(LOPT) or R-matrix Floquet theory. TD methods are based
on a direct solution of the time-dependent Schrodinger equa-
tion and are therefore not restricted to any given order of the
perturbation. Thus, they can be applied equally well to the
strong field regime. In the present case of moderate intensi-
ties of the xuv field (~10'> W/cm?), corrections to LOPT
are expected to be small. The decisive advantage of TD
methods comes here from a different aspect. Namely, TI cal-
culations of processes involving correlated two-electron final
states in the continuum \Ifk],kz(rl ,T,) require the knowledge
of the final state in the entire configuration space in order to
calculate the transition amplitude

it g, = (Wi i UMW), (1)

where U™ is the transition operator for an N-photon process
(N=2 in the following). As the numerical or analytical deter-
mination of accurate correlated continuum final states re-
mains a challenge, evaluation of Eq. (1) involves, inevitably,
additional approximations that are difficult to control. Add-
ing the time as an additional degree of freedom to the six
spatial dimensions of the two-electron problem allows one to
bypass the determination of \I,kpkz‘ Propagating the wave
packet for sufficiently long times enables the extraction of
the relevant dynamical information entirely from the
asymptotic region where electron correlations become negli-
gible. Moreover, residual errors can be controlled by system-
atically varying the propagation time. This advantage comes
along with a distinct disadvantage: Results will, in general,
depend on the time structure imposed on the external pertur-
bation, specifically on the duration and temporal shape of the
xuv pulse. A comparison with TI calculations on the level of
(generalized) cross sections therefore requires a careful ex-
traction of information and checks of the independence from
pulse parameters.
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In our theoretical approach, we solve the time-dependent
Schrodinger equation (TDSE) using the time-dependent
close-coupling (TDCC) scheme, cf. [24-26,37]. For the spa-
tial discretization, we employ a finite element discrete vari-
able representation (FEDVR), and the temporal propagation
is performed by means of the short iterative Lanczos (SIL)
procedure with adaptive time-step control. We present de-
tailed convergence tests as a function of pulse duration, pulse
shape, duration of propagation, gauge, spatial grid structure,
and partial wave decomposition. For two-photon double ion-
ization in the photon energy range 40-50 eV, we reach an
accuracy on the 2% level. Our present results are compared
with available experimental and theoretical data. Atomic
units are used unless indicated otherwise.

II. METHOD OF PROPAGATION

The interaction of a helium atom (with infinite nuclear
mass) with linearly polarized light is described by the Hamil-
tonian

1
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where the interaction with the electromagnetic field in the
dipole approximation is either given in length gauge by

H, = E(1)(Z + %)), 3)
or in velocity gauge by

2
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(4)

If the exact solution were available, the two gauges would be
strictly equivalent. Within approximate solutions, however,
discrepancies may arise. The degree of gauge dependence
can therefore be exploited as a measure for the convergence
of the numerical solution toward the exact solution.

A. Time-dependent close coupling

In order to solve the time-dependent Schrodinger equation
9 .
lg‘l’(rl,rz,t) =H’\P(r17r2’t)’ (5)

we expand the six-dimensional wave function W(r;,r,) in
coupled spherical harmonics

o0
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with

VI (QL Q) = 2 (lymybmy[LLLM)Y Q) Y2 ().
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(7)

Substitution of Eq. (6) into Eq. (5) yields a system of
coupled partial differential equations in (r|,r,,?), the TDCC
equations [37],
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where in practice the sums have to be truncated at certain
maximum angular momenta (L, maxs2.max)-

We restrict ourselves to partial waves with total M=0
since M is conserved for linearly polarized laser fields. The
helium singlet (S=0) ground state is space symmetric. As the
spin quantum number S is conserved in the dipole approxi-
mation, the wave function is space symmetric for all times,
implying that Rz I (ry,ry,0)= Rz b (ry,ry,t). As a conse-
quence, the functlons Rz l(rl,rz, ) need not be stored for
[,>1,. Together with the parlty selection rules, which only
allow certain combinations (L,[;,1,), this greatly reduces the
numerical effort for solving the close-coupling equations.

B. Spatial discretization

For the discretization of the radial functions R,L1 ,12(”1 ,F,1),
we employ a finite element discrete variable representation
(FEDVR) [38-41]. We divide the radial coordinates into fi-
nite elements in each of which the functions R} .1, are repre-
sented in a local DVR basis with a correspondmg Gauss-
Lobatto quadrature to ensure the continuity of the wave
function at the element boundaries. This method leads to
sparse matrix representations of the differential operators and
to a diagonal potential matrix (within quadrature accuracy).
Additionally, the boundary condition at r;=r,=0 can be eas-
ily fulfilled by omitting the first basis function in the first
finite element. The derivative discontinuity in the partial
wave expansion of the electron-electron interaction at r;
=r,, on the other hand, demands special treatment to guar-
antee an accurate representation of the Hamiltonian in the
FEDVR basis [42,43].

C. Temporal propagation

For the temporal propagation of the solution of the
coupled equations (8), we employ the short iterative Lanczos
(SIL) method [44-46] with adaptive time-step control. The
initial He ground state is obtained by relaxing an arbitrary
test function in imaginary time. In the SIL method, some-
times also referred to as Arnoldi-Lanczos algorithm, the time
evolution operator

U(t,1 + Af) = exp[— iH(r)Ar] )

is represented by an N X N matrix U™ in an N-dimensional
Krylov subspace which is formally generated by repeated

action of H on an initial state ¥(r) and subsequent Gram-
Schmidt orthogonalization.
The Lanczos algorithm is very effective because the ma-

trix H™ is tridiagonal and can be directly obtained by use of
a three-term recursion relation involving mainly matrix-
vector and scalar products. The sparse structure of the kinetic
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energy matrices due to the division of coordinate space into
finite elements enables efficient parallelization. In our calcu-
lations, which have primarily employed computers based on
cluster architectures, we have observed linear scaling of the
computational speed up to 450 processors. This gives us the
possibility to employ pulses with comparably long durations
(up to a few femtoseconds) in our simulations. In addition,
extensive numerical convergence tests can be performed
within reasonable time (cf. Sec. III D).

The SIL method also allows for a convenient error control
since for a given subspace order N the difference of the
propagated wave function W™V (z+Ar) to the lower-order ap-
proximation W™-D(z+Ar) can be calculated with only little
extra effort and may be used as a tolerance parameter during
propagation. In our implementation, we use a Krylov sub-
space of fixed order (with N=12 for all calculations pre-
sented in this work) and an adaptive time step so that
[TM(r+Ar) =T D(r+Ar)|? is smaller than a given toler-
ance parameter (typically in the order of 107%°). Hence, we
achieve a high-order approximation of the exponential func-
tion [Eq. (9)], and the temporal propagation is explicitly uni-
tary and unconditionally stable. In addition, high accuracy is
guaranteed due to the automatic adjustment of the time step.

III. EXTRACTING DYNAMICAL INFORMATION

Subsequent to the time propagation, the information on
excitation and ionization probabilities and on differential and
total cross sections must be extracted from the wave packet
that is represented on a grid in a finite domain in coordinate
space. This is a nontrivial task as straightforward projection
is, for all practical purposes, precluded. Ideally, one would
project onto asymptotic eigenstates of He, including its
single and double ionization continua. As no closed solutions
for the double continuum are available, this is not directly
possible. Numerical diagonalization of the Hamiltonian is
not feasible either. First, the basis is too large to allow diago-
nalization. Second, the inclusion of the correct asymptotic
boundary conditions in a numerical solution is highly non-
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trivial and computationally expensive. In addition, avoiding
the construction of these eigenstates is one of the significant
advantages of the TD approach. We circumvent the need for
projection onto exact eigenstates by exploiting the fact that
we can propagate the wave packet for long times after the
conclusion of the pulse. Thereafter, the three-body Coulomb
system (nucleus and two electrons) has reached (near asymp-
totically) large distances such that projection onto approxi-
mate energy eigenstates is possible without significant error.

The states we eventually use to represent this continuum
are eigenstates of the He Hamiltonian without the electron-

electron interaction H,,=|F;—F,|"!, i.e., products of two
Coulomb waves with Z=2. This amounts to assuming that
the electrons are far enough apart that their influence on each
other can be neglected. By the same token, products of plane
waves would be equally applicable when the electrons are far
from the nucleus and its Coulomb potential could therefore
be neglected. The advantage of using Coulomb waves is that
orthogonality to bound states is built in. As the singly ionized
part of the wave function can to a very good approximation
be written as the product of an unperturbed bound state of
He* and a Coulomb wave (with effective charge Z=1), the
projection onto products of Coulomb waves is automatically
orthogonal to the singly ionized part and no additional
screening of the wave function has to be performed. Neglect-
ing the electron-electron interaction, which is purely repul-
sive, introduces a small energy shift in the spectrum that
decreases as the distance between the electrons increases.
This effect can be controlled by varying the time of projec-
tion.

We obtain the energy-space wave function by projecting
the spatial wave function onto products of energy-
normalized Coulomb waves ¢g, i.e.,

Py 1 (ELEy) =i 1, b, | RT 1) (10)

Switching from the angular momentum representation
(L,1,,1,) to the representation in angular variables ({);,(),),
the six-dimensional (effectively, five-dimensional) distribu-
tion can be written as [26,47]

PPUELE, Q. ) = | 3 ey, (0, 0) P (EE)| (11)

Ll

where o;=arg I'(1+[+i7) are the Coulomb phases. From Egq.
(11), reduced probability distributions can be determined by
integrating over unobserved degrees of freedom. For ex-
ample, integrating over the solid angles (,,(),) gives the
energy distribution (E,,E,) of the electron pair (Fig. 1).

A. Total cross sections

Integrating Eq. (11) over all variables including E, and E,
gives, up to prefactors, the total double ionization cross sec-
tion. The dependence on the primary photon energy is only

implicit through the electromagnetic pulse entering the
propagation. Within a time-dependent calculation, the result-
ing double ionization (DI) probability depends on the spec-
tral distribution, i.e., the shape and duration of the laser
pulse, while the fundamental quantity of interest, the DI
cross section (DICS) at fixed frequency of the ionizing ra-
diation does not. Extraction of the DICS therefore requires
special care.

For one-photon ionization, a straightforward relationship
exists between the energy-dependent ionization yield and the
cross section. From a single pulse calculation, one can thus
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FIG. 1. (Color online) Energy distribution after two-photon
double ionization from two different laser pulses with a mean en-
ergy of (w)=42 eV. The pulse (a) has a sin’ envelope of total du-
ration 4 fs (~40 cycles). The distribution is centered around the
line 2{w)—1,-1,=E;+E,=5 eV, with a FWHM of about 1.5 eV
due to the finite duration of the pulse. The pulse (b) is a ten-cycle
(~1 fs) sin? pulse.

obtain the cross section for all energies contained within the
pulse [27,48]. This is not possible without additional ap-
proximations for two-photon or multiphoton ionization, since
the relation between cross section and yield contains an in-
tegral over intermediate energies. For the evaluation of this
integral, the intermediate states and energies would have to
be explicitly available. In the current approach, this is not
easily possible without losing the key advantage of the time-
dependent method of not having to construct intermediate or
final states explicitly.

The alternative is to use a sufficiently long pulse with
narrow spectral width and calculate the cross section from
the total yield with the approximation that it is constant over
the width of the pulse. For this approximation to be valid, the
spectral width of the pulse must be smaller than the energy
width over which the cross section significantly changes. We
can check the convergence by varying the pulse length. Fig-
ures 1 and 2 illustrate this for both the joint two-electron
energy distribution PP(E,,E,) (Fig. 1) and the integral (Fig.
2) along lines of constant total energy E,+E, in Fig. 1 for
two different pulses: a pulse with a duration of T=4 fs con-
taining about 40 optical cycles and one with 7=1 fs contain-
ing about ten optical cycles. While the 4 fs pulse is sufficient
to resolve the cross section a few eV above the threshold, the
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FIG. 2. (Color online) (a) Fourier spectra of 4 fs and 1 fs sin?
laser fields with a mean energy of 42 eV. (b) Double ionization
probability vs total energy E,,=E|+E, (i.e., the integral over lines
with Ei,;=E|+E, from Fig. 1). For the long pulse, the double ion-
ization probability directly reflects the Fourier spectrum. For the
shorter pulse the electron energy distribution is influenced by the
energy dependence of the cross section (cf. Fig. 8).

shorter pulse (frequently employed, see Refs. [26,27,29]) re-
sults in averaging over the threshold region.

Another requirement is that the pulse has to be weak
enough such that lowest-order perturbation is applicable, and
the ground state depletion can be neglected. We therefore
choose a peak intensity of /,=10'> W/cm?. Variation be-
tween 10! W/cm? and 103 W/cm? results in deviations for
the total cross section at 42 eV of less than 0.3%. For an
intensity of 10'> W/cm?, the two-photon yield is a factor of
10* higher than with 10" W/cm?.

Another test for the applicability of perturbation theory is
the linear scaling of the yield with the total duration 7 of the
pulse. This means that the transition rate must be propor-
tional to ®(¢)", where ®(¢)=1(f)/ w is the photon flux and N
is the minimum number of photons required for the process
to take place. The double ionization yield is then given by

nonseq —

pP! f ’ dtoy® ()N, (12)

—00

where oy is the total generalized N-photon cross section for
double ionization of He. Accordingly, the cross section is
given by

O’]\] ~ | —
10 2 eff, N

xfffdel dE, dQ, dQ, PPC(E|,E,,Q,,9,),
(13)

where the effective time T,y for an N-photon process is
defined as
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TeffN: Jw dt(@)N (14)
> . IO

For a sin® pulse envelope and a two-photon process, Togp 18
found to be 357/128 [25,27,29]. Equation (13) is valid for
direct, i.e., nonsequential, double ionization when no on-
shell intermediate state is involved.

B. Differential cross sections

The triply differential cross section (TDCS) for emitting
one electron with energy E; into the solid angle ();, while
the second one is emitted into (,, follows from Eq. (13) as

doy (w)N 1 f
———=|—| — | dE,P(E,E,,Q,,Q),).
dE, dQy dQy  \Iy) Teen) =7 (BB, (o)

(15)

The TDCS presented in this paper are all calculated in co-
planar geometry, i.e., ¢;=¢@,=0°. In the limit of an infinitely
long laser pulse with well-defined energy (i.e., a deltalike
spectrum), Eq. (15) becomes equivalent to

doy (w)N
—_—— = — P(E,,Nw-E;,Q,Q,),
dE, dQ, dQ  \I)) Tuin (EyNo - E1,01,0)

(16)

as calculated in time-independent approaches. Unlike the
joint two-electron energy distribution, the TDCS as calcu-
lated by Eq. (15) is, within reasonable limits, insensitive to
the pulse shape used in the time-dependent approach since
the Fourier width of the pulse is accounted for by the inte-
gration over the energy of the second electron.

Instead of specifying one of the energies and integrating
over the other, it is also possible to specify energy (or mo-
mentum) sharing. For that purpose, we transform from the
usual coordinates (E|,E,) to (Ey,a), with E=E,+E, and
tan(a)=E,/E,. For a fixed value of «, the integration is per-
formed over the total energy E,,, in other words, along
straight lines through the origin in Fig. 1. This results in the
TDCS at fixed energy sharing (the frequently investigated
case of equal energy sharing corresponds to a=1/2).

C. Influence of final-state correlations

Since the extraction of double ionization observables
eventually proceeds by projection onto uncorrelated Cou-
lomb final states, controlling and monitoring the effect of
residual electron-electron correlations on the cross section
becomes important. The key point is that electronic correla-
tions are fully included in the initial state and in the time
propagation and therefore in the wave packet at the point of
projection. We monitor the residual error by further propa-
gating the wave function after the conclusion of the laser
pulse (i.e., letting the electrons move further apart) and vary-
ing the time of projection. If the final state were an eigenstate
of the full Hamiltonian, the results would not depend on how
long the projection is delayed. The residual dependence on
the time of projection is thus a direct measure of the error
introduced by the neglect of final-state correlation during
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FIG. 3. (Color online) Convergence of the total cross section
with propagation time 7. The cross section is calculated at different
times 7 after the 4 fssin®> pulse from Fig. 1, with intensity
10'2 W/cm? (angular momentum expansion with L,,.=3 and
!} max=12.max=7). Plot (a) shows that while there is some noticeable
change for short times, the results are stable at later times and seem
to converge to a limiting value. This is confirmed in the inset (b),
which shows the same data vs 1/7. Extrapolation to 1/7— 0 using
a quadratic fit shows a limiting value of 0.4595, only slightly higher
than the result obtained at 7=21 fs. Plot (c) shows the temporal
evolution of the ratio of the expectation values of the electron-
electron interaction energy (H,,)=(|f;—F,|"!) and the total energy

(H).

projection. As that time is extended, this error should become
negligible. The maximum time one can wait is limited in
practice by the box size, as the ionized wave packet will hit
the box boundaries at some point and be reflected. To test for
convergence we performed one calculation with a box size of
800 a.u., using the same 4 fs sin? laser pulse at 42 eV as in
Fig. 1(a), and let the wave function propagate for an addi-
tional 21 fs after the end of the pulse. The doubly ionized
part is still completely contained in the box after this time.
Figure 3 displays the convergence of the total cross sec-
tion as a function of the field-free propagation time 7. Delay-
ing the projection from 7=1 fs to 7=21 fs changes the total
cross section by less than 2%. Extrapolating to infinite time
[and therefore to an infinite separation of the two electrons,
Fig. 3(b)] changes the cross section by less than 0.2%. This
gives an estimate of the error due to projection of that order
of magnitude. Furthermore, the electron-electron interaction
energy is responsible for less than 1% of the total energy of
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FIG. 4. (Color online) Radial wave function density for Fig. 3, at 7=2 fs (a), 7=8 fs (b), 7=14 fs (c), and 7=20 fs (d) after the end of the
pulse. For the wave function at 20 fs, the doubly ionized part of the wave function is completely contained in the box with ry,7,
>70 a.u.. By integrating the probability density over this region, an upper bound for the double ionization yield can be established. The gray
lines indicate the border between singly and doubly ionized parts by visual inspection. The lighter gray line at r;,r,=40 a.u. is the apparent
border at =8 fs, while the darker gray line at r;,7,=70 a.u. is suggested by the distribution at 7=20 fs. The density located between the two
borders contains singly ionized parts that would by mistake be identified as being doubly ionized at 7=8 fs due to the lack of spatial

separation.

the wave packet at 7=21 fs [Fig. 3(c)]. The differential cross
sections show the same qualitative convergence behavior
with time as the total cross section.

This shows that projecting onto products of Coulomb
waves 18 not a serious limitation. In other words, when the
electrons have had time to move apart, their interaction can
be neglected when projecting onto final states. For higher
electron energies than in this test case (~2.5 eV), the error is
expected to be even smaller and the convergence faster.

Due to the fact that the coordinate space representation of
the fully correlated wave packet is available at the time of
projection, an alternative, semiquantitative check and error
estimate for double ionization exists. From the visual inspec-
tion of snapshots of the joint radial distribution at different
times (Fig. 4), final states representing double ionization can

be separated from those representing single ionization. While
the singly ionized part of the wave function moves parallel to
the r; axes, the doubly ionized parts of the wave function
have positive momentum for both electrons so that they
move away from both axes. With increasing time, the spatial
overlap between singly and doubly ionized states decreases,
and the two contributions can be identified visually. An esti-
mate for an upper bound for the total double ionization cross
section can thus be found by just integrating the radial den-
sity over the area that the doubly ionized wave packet occu-
pies [r;,r,>70 a.u. in Fig. 4(d)]. This integral, which still
contains a small portion of single ionization accompanied by
excitation to Rydberg states, gives an upper bound for the
total double ionization cross section. In the present case (Fig.
4), the extracted estimate is about 25% higher than the value
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determined by projection. This discrepancy is predominantly
caused by the existence of high-lying Rydberg states which
also have contributions at large values of r.

One could expect that the choice of the final state is even
more important when calculating differential cross sections
because less degrees of freedom are integrated over. Specifi-
cally, the triply differential cross section (TDCS) depends on
the partial-wave phase shifts, which may not have fully con-
verged at the time of projection. In order to monitor possible
errors in the angular distribution, we have also extracted the
TDCS by a complementary method employing the coordi-
nate representation of the two-electron wave packet at large
propagation time, bypassing projection. As we are interested
in the TDCS at equal energy sharing, we take only that part
of the wave packet with r|=r,, the part where both electrons
have moved out to the same distance from the nucleus in the
same time. This is what a (microscopic) time-of-flight detec-
tor would identify as equal-energy electrons. We then di-
rectly determine the angular distribution for this part of the
wave function

dU'WP(El = E2)

ar|¥(r,r,Q,,Q,)[%.
dEldQIdﬂzocf "W (r,r,Q,,Q,)|

(17)

This estimate for the TDCS, referred to in the following as
the wave packet (WP) method, is compared with the projec-
tion onto Coulomb waves [Eq. (15)] in Fig. 5. The excellent
agreement we find attests to the fact that residual errors due
to final-state correlations at the point of projection are, in-
deed, negligible. Even when projecting onto plane waves
(not shown), we have found that the TDCS at equal energy
sharing almost exactly agrees with the result obtained from
projection onto Coulomb waves (up to a global scaling factor
of about 1.1). This suggests that the Coulomb potential of the
ionic core can also be neglected in the asymptotic region
when only the differential behavior is of interest. The neglect
of the electron-electron interaction is expected to be even
less important.

In addition, Fig. 5 shows the angularly resolved value of
the electron-electron interaction energy. For this, the radial
distance of both electrons was taken as r; ;=150 a.u., which
corresponds to the position of the doubly ionized wave
packet at the point of projection. Clearly, the electrons only
move into directions where their interaction energy is negli-
gible compared to the total energy of the doubly ionized
wave packet. This also supports the finding that the electron
interaction can be neglected when doing the projection at late
times.

The good agreement between the different methods used
to extract total and differential cross sections can be under-
stood by the following argument: The full wave function
contains the electron correlation regardless of which basis it
is expressed in. The only ambiguity exists in identifying
which parts of the wave packet at time 7=7 will asymptoti-
cally correspond to the situation of interest (i.e., double ion-
ization in our case). If 7is chosen large enough, the electrons
have separated in space and their interaction energy is low
[cf. Fig. 3(c)]. This implies that the electrons will neither
significantly deflect each other nor exchange energy at later
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FIG. 5. (Color online) Comparison of different methods for ex-
tracting the triply differential cross sections (TDCS) at 42 eV pho-
ton energy, with a 4 fs sin? laser pulse. The data for Coulomb pro-
jection are obtained from Eq. (15) (at E,=2.5 eV) while the results
labeled wave packet (WP) were obtained without transforming to
momentum space [Eq. (17)]. The angularly resolved value of the
electron-electron interaction energy at the position of the wave
packet (r;,=~150 a.u.) is also shown in comparison to the total
energy of the doubly ionized wave packet (~5 eV). The vertical
gray line shows the ejection angle 6, of the first electron. The an-
gular momentum expansion used values of Ly,=4 and [} .«
=l max=9. The radial box had an extension of 400 a.u., with
FEDVR elements of 4 a.u. and order 11.
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times. Therefore, both the angular and the energy distribution
are stable, and the momenta of the electrons at time t=7
correspond to the asymptotic momenta for r— oc. Similarly,
channels where one of the electrons did not gain enough
energy to escape the Coulomb potential of the nucleus by the
time r=7 correspond to singly ionized final states, as the
electron interaction does not provide enough energy to
change this situation at later times.

D. Numerical convergence tests

In order to ensure the reliability of the calculated cross
sections, we have performed extensive numerical testing and
have found our results to be very well converged. The con-
vergence issues addressed are (i) the radial discretization, (ii)
the temporal propagation, and (iii) the angular momentum
expansion.

Convergence with respect to the radial grid (i) is easy to
achieve within the FEDVR approach. All results shown were
obtained with finite elements of 4 a.u. extension and of order
11. Results with order 13 for elements of 4 a.u. were virtu-
ally identical (within 0.02% for the total cross sections).
Convergence of the time propagation (ii) using our SIL
method is equally uncritical. Even when relaxing the conver-
gence criterion used for time propagation by two orders of
magnitude, the results do not change perceptibly from those
presented here. In addition, we also checked that our results
do not depend on the gauge used in Eq. (2). The change in
the total cross section when switching from velocity gauge to
length gauge is only 0.01%.

The final question regarding convergence concerns the
truncation of the angular momentum expansion Eq. (6). As
the total angular momentum L is conserved for the field-free
Hamiltonian (because of spherical symmetry), the expansion
does not require much higher values for L, ,, than the mini-
mum number of photons absorbed by the system. We have
indeed found that there was no noticeable difference in any
of the results between L,,,=3 or L,,,=4. Numerically, this
is especially true when using velocity gauge. At the low in-
tensities used here, the result is well converged with L.
=3 even when employing length gauge. The convergence
with respect to single particle angular momenta ([,l,),
which are mixed by the electron-electron interaction, is much
more critical. The size of the expansion in (/,,l,) strongly
influences the accuracy of the angular distribution of the
electrons and the degree of angular correlation.

While the total cross section, where all angles are inte-
grated over, shows almost no dependence on the size of the
angular momentum expansion, with variations of less than
0.3% when (I} pax.lomay) 1s increased from (3,3) to (9,9)
(Fig. 6), a different picture emerges when the two-electron
angular distribution is considered. The TDCS shows a strong
dependence on the number of included partial waves. For the
present case, convergence is reached when single electron
angular momenta up to /y .=/ max="7 are included (see Fig.
7 below). Especially the TDCS at 6,=90° (where the cross
section is very small) is very sensitive to the size of the
partial wave expansion.

IV. RESULTS

In Fig. 8, we compare the present results for the total
cross section with various published data. The calculations
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FIG. 6. (Color online) Convergence of the total cross section
with size of angular momentum expansion. The total cross section
is converged to within the accuracy of the method even for the
smallest expansion in angular momenta. The differences in the re-
sult due to different angular basis sizes are much smaller than those
observed when performing the projection at different times after the
end of the pulse (Fig. 3) (4 fs sin? pulse at 42 eV as in Fig. 1).

were performed with a box size of 240 a.u., with FEDVR
elements that span 4 a.u. and contain 11 basis functions. The
maximum angular momentum values are L, =3 for the to-
tal angular momentum and /; ;,,,x=15 max=7 for the individual
angular momenta. The laser pulse envelope had a sin” shape,
defined by

)= sin2<7—;t> 0<tr<T

0 otherwise

: (18)

with a total duration of 7=4 fs and a peak intensity of
=10'2 W/cm?. The ionization yields were extracted 1 fs after
the pulse. Following the results of Sec. III C the projection
error should not be larger than 2%.

We compare our results with data from both time-
dependent and time-independent approaches. Laulan and
Bachau [25] solved the TDSE by means of a B-spline
method and an explicit Runge-Kutta propagation scheme.
The double ionization probability was obtained by projecting
onto uncorrelated Coulomb functions. They also included
first-order correction terms in the representation of the
double continuum (thus partly taking into account radial cor-
relations). However, they found little difference with respect
to the uncorrelated functions. Hu, Colgan, and Collins [26]
solved the time-dependent close-coupling equations using
finite-difference techniques for the spatial discretization and
the real-space product formula as well as a leapfrog algo-
rithm for temporal propagation. The double ionization prob-
ability was also extracted by projection onto uncorrelated
Coulomb waves. Foumouo et al. [27] employed a spectral
method of configuration interaction type (involving
Coulomb-Sturmian functions) and an explicit Runge-Kutta
time propagation to solve the TDSE. The double continuum
was generated with the J-matrix method that should contain
angular and radial correlations to the full extent. In addition,
they also performed calculations using an uncorrelated rep-
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FIG. 7. (Color online) Convergence of the triply differential
cross section (TDCS) with the size of the angular momentum
expansion. The labels specify the maximum values
(Linax>!1.max> [2.max) Used in the angular momentum expansion. The
vertical gray line shows the ejection angle 6, of the first electron.
The TDCS converges only for relatively large values in the angular
momentum expansion (4 fs sin? pulse at 42 eV as in Fig. 1).

resentation of the two-electron continuum. The more recent
results from Ivanov and Kheifets [28] are based on the time-
dependent convergent close-coupling (CCC) method, taking
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FIG. 8. (Color online) Comparison of the total two-photon
double ionization (TPDI) cross sections, obtained from Eq. (13),
with T.=35T/128. In (a), the laser pulses had a sin® shape with a
total duration of 4 fs and a peak intensity of 10'> W/cm?. For the
results of Foumouo et al. [27], (NC) labels the results obtained by
projecting onto uncorrelated Coulomb waves, while (FC) labels the
results obtained using the J-matrix method. (b) shows the compari-
son using ten-cycle (~1 fs) pulses to other time-dependent ap-
proaches using the same pulses. Note that the results of Hu et al.
[26] were rescaled by a factor of 128/70 in order to include the
correct Tyir. For both (a) and (b), the angular momenta were allowed
to go up to L,,=3 for the total angular momentum, and [; .«
=1y max="7 for the single electron angular momenta. The radial box
had an extension of 240 a.u., with FEDVR elements of 4 a.u. and
order 11.

into account correlations in the final state to some degree.
Nikolopoulos and Lambropoulos [29] solved the TDSE us-
ing an expansion in correlated multichannel wave functions.

Within the time-independent methods, Nikolopoulos and
Lambropoulos [30] applied lowest-order nonvanishing per-
turbation theory (LOPT) to determine the generalized cross
sections. Feng and van der Hart [31] employed R-matrix Flo-
quet theory in combination with B-splines basis sets. The
data from Horner et al. [32] also result from LOPT calcula-
tions. They solved the Dalgarno-Lewis equations for two-
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photon absorption in LOPT employing exterior complex
scaling (ECS) and also account for correlation in initial, in-
termediate, and final states.

Overall, our results are in reasonable agreement with
those of [25-27,31,32] while sizable discrepancies exist in
comparison with those of [29,30] as well as those of [27] in
which corrections due to final-state correlations are included.
Clearly, the degree of convergence of the present results on
the few percent level as well as the upper bound extracted
from the radial wave packet analysis preclude any change of
cross section by a factor of 5-10, which would be necessary
to obtain values of the same magnitude as [27,29,30].

The experimental values of Hasegawa, Nabekawa et al.
[34,35] at 41.8 ¢V and of Sorokin et al. [36] at 42.8 eV (cf.
Fig. 8) are compatible with most of the theoretical data. Due
to the experimental uncertainties (e.g., the harmonic intensity
in [34,35] or the assumptions on the pulse shape and focus-
ing conditions in [36]), the currently available data are not
sufficient to strongly support or rule out any of the theoreti-
cal results.

The present results show a more pronounced variation
with photon energy than other results obtained by direct in-
tegration of the time-dependent Schrodinger equation. This
can be easily explained by the fact that most previous work
employed ten-cycle pulses. At photon energies of 42-54 eV,
this corresponds to about 1 fs total duration, and conse-
quently, a spectral width (FWHM) of about 6 eV (for sin?
pulses). The results are therefore an average over a rather
large energy window. In contrast, we use pulses of 4 fs du-
ration with a narrower spectrum (FWHM ~1.5 eV). To fa-
cilitate the comparison with previous calculations we have
also performed a calculation for a ten-cycle pulse [Fig. 8(b)]
for which we find indeed better agreement. The pulse dura-
tion dependence becomes, in particular, critical near the
threshold for sequential ionization at 54.4 eV.

For nonsequential processes, the yield is directly propor-
tional to the duration of the pulse, so that the cross section
can be defined as the proportionality factor between the
double ionization rate and the photon flux @V, where N is the
number of photons for the direct process. On the other hand,
the (two-photon) sequential ionization yield can be written as

Pi{lzf le’lq)(t)J dt’ o, ®(1'), (19)
t

-0

where o is the one-photon cross section for single ionization
of He, and o, is the one-photon cross section for ionization
of the He* ion. Using the symmetry of the integrand yields

1 - 2 o000
Prq= olozg( f drcb(r)) == (Taaf. (20)
which is proportional to the square of the total pulse duration
T. Proceeding along the same lines as for Eq. (13) by divid-
ing the yield Pfe{] by the pulse duration results in an apparent
“cross section” that increases linearly with the pulse length,
contradicting the notion of a pulse shape and duration inde-
pendent quantity. This is not surprising since for a two step
process via on-shell intermediate states, a quadratic depen-

dence on T, [Eq. (20)] is to be expected. If one extends the
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FIG. 9. (Color online) Total two-photon double ionization
(TPDI) cross sections obtained using different pulse shapes. The
duration of the Gaussian and flat-top pulse was chosen such that the
FWHM of the spectral distribution was identical to the one for the
4 fs sin”> pulse (~1.5eV). The spectral FWHM of the ten-cycle
(~1 fs) pulse is about four times larger, i.e., ~6 eV. All other pa-
rameters were the same as for Fig. 8.

nonsequential cross section definition [Eq. (13)] into the
threshold region for the sequential process, one expects a
sudden rise whose height should be proportional to 7. and
whose width is determined by the spectral broadening of the
pulse. With the pulses we used, the spectral width of 1.5 eV
is small enough to observe the onset of this step discontinu-
ity. In order to fully resolve the threshold behavior in a time-
dependent calculation, even longer pulses with smaller band-
width would be necessary.

The region near the step discontinuity also provides a test
case for the invariance of the nonsequential double ioniza-
tion cross section under variation of the pulse shape. In ad-
dition to the 4 fs sin? pulses used for most results shown in
this paper, we also used the following pulse shapes: (i) a
Gaussian pulse envelope and (ii) a flat-top pulse envelope
with a sin? ramp on for a quarter of the pulse duration, con-
stant intensity for half the pulse duration, and a sin? ramp off
for the last quarter of the pulse. The durations of the Gauss-
ian and flat-top pulses were chosen in such a way that the
FWHM of the spectral distribution of the three pulse shapes
was identical. Although all three pulses have the same spec-
tral width, the distributions look different. Specifically, the
spectral distribution of the flat-top pulse contains significant
side lobes (ringing). In Fig. 9, we show that the results ob-
tained for the total cross section are almost identical with all
three pulse shapes, apart from close to the step discontinuity
at the threshold for sequential double ionization. Note that
T is dependent on the pulse shape and has to be taken into
account properly.

We turn now to the TDCS at 42 eV, the quantity most
sensitive to the level of the underlying approximations. The
present results show qualitative agreement with some of the
published data [26,28], but there are pronounced quantitative
differences. While the prominent back-to-back emission lobe
(anti-)parallel to the laser polarization direction is well repro-
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FIG. 10. (Color online) Comparison of triply differential cross
sections (TDCS) at 42 eV photon energy. Our data are obtained
from Eq. (15) (at E;=2.5 eV), with a 4 fs sin’ laser pulse. In com-
parison, the results of Hu et al. [26] and Ivanov and Kheifets [28]
are shown. The vertical gray line shows the ejection angle 6, of the
first electron. The angular momentum expansion used values of
Liax=4 and [} 10x=15 nax=9. The radial box had an extension of
400 a.u., with FEDVR elements of 4 a.u. and order 11.

duced in most calculations (Fig. 10), the angular distribution
for less favored emission directions (e.g., 6;=90°) differs
significantly from other calculations. One reason is the sen-
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sitivity to the partial-wave expansion. In contrast to the fotal
cross section, the TDCS needs a larger number of angular
momentum combinations (L,l;,l;) in the expansion of the
wave function to converge. In order to resolve angular cor-
relations, i.e., for the triply differential cross section (TDCS),
it is necessary to use relatively large expansions in single
electron angular momenta. More specifically, good conver-
gence of the TDCS is only reached for values as high as
i max=lo.max=7 (cf. Fig. 7), which exceeds the angular mo-
mentum content of most other calculations. As discussed in
Sec. I C, we have alternatively determined the TDCS by
directly analyzing the angular distribution of the wave packet
for equal energy sharing by a radial integral constrained to
equal radii. We find remarkably close agreement with the
Coulomb projection method (Fig. 5). The residual small de-
viations can be taken as an estimate for the uncertainty of the
extraction method of the TDCS by Coulomb projection.

Ivanov and Kheifets [28] take correlation in the final
states into account using a convergent close-coupling (CCC)
method. While the magnitude of their results is similar to
those presented here, the shape differs considerably. In par-
ticular, they find significant probability for emission of both
electrons in the same direction (6,=6,), where the mutual
repulsion of the electrons should be strongest. In a very re-
cent publication, Foumouo et al. [33] calculated the TDCS
for equal energy sharing at 45 eV photon energy using two
different methods. The results obtained by projecting the fi-
nal wave function on products of Coulomb waves resemble
ours (not shown here for 45 eV, but the behavior is similar as
for 42 eV). However, when correlation in the final state is
taken into account using a J-matrix method, the results are
much larger in magnitude (as for the total cross section, cf.
Fig. 8) and display a shape reminiscent of the one obtained
by Ivanov and Kheifets [28].

V. SUMMARY

We have determined well-converged results for the total
and triply differential (generalized) cross sections for nonse-
quential two-photon double ionization of helium. The total
cross sections agree reasonably well with a number of re-
cently published papers [26,28,31,32], but disagree with
[29,30]. While the uncorrelated results of [27] fit well with
our data, the J-matrix results that account for correlation,
also presented in [27], are larger by almost an order of mag-
nitude. In our approach, the inclusion of correlation in the
final double continuum states is bypassed by waiting long
enough after the end of the pulse before performing the pro-
jection onto uncorrelated final states.

We have also presented approximate methods to extract
both triply differential cross sections (TDCS) and total cross
sections for nonsequential double ionization directly from
the wave packet in coordinate space, thereby completely
avoiding projection onto uncorrelated final states. We
achieve excellent agreement between these complementary
methods providing thereby a measure for the reliability and
accuracy of the calculated cross sections.
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Additionally, we have analyzed the pulse length depen-
dence of the cross sections. In most of the previous time-
dependent approaches ten-cycle pulses have been employed
for the generalized cross sections extracted from the ioniza-
tion yields. The resulting broad spectral width of the short
pulse then influences the form of the cross section. This be-
comes evident from our calculations with considerably
longer pulses. This is especially true at photon energies
above ~50eV near the threshold for sequential ionization
(at 54.4 e€V). Our own results for ten-cycle pulses, where
these variations are smeared out, agree very well with the
uncorrelated data from [27] and the results from [26]. We are
also aware of a recent approach by Guan et al. [49], who
obtain similar values for ten-cycle pulses as well.
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