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We investigate the cooling of trapped atoms by electromagnetically induced transparency under conditions
of weak confinement and beyond the Lamb-Dicke limit, i.e., the spontaneous decay width is large compared to
the trap oscillation frequency and the recoil energy is a substantial fraction of the vibrational energy spacing of
the trap. Numerical solutions of the Liouville equation for a density matrix describing states of vibrational and
electronic degrees of freedom show that vibrational cooling is feasible at even substantial values of the
Lamb-Dicke parameter and under conditions of weak confinement, a situation where sideband pumping is
inefficient. Our approach permits us to predict cooling efficiency and cooling rates under realistic experimental
conditions for neutral atoms in optical dipole traps.
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I. INTRODUCTION

A frequent goal in atomic physics is to laser-cool trapped
atoms to the lowest energy state of the trap potential. One
way to cool atoms to the ground state of a trap is via two-
photon processes, which might eventually even result in
Bose-Einstein condensation �1,2� in an all optical way �3�.
Important in this context is the Lamb-Dicke parameter �4�

�2 =
Er

��
, �1�

which describes the ratio of the recoil energy, Er, that the
atomic center-of-mass gains in atom-photon interaction and
the vibrational energy spacing, �, of the external trap. An
equivalent expression for the Lamb-Dicke parameter is in
terms of the product of the ground-state trap size and the
laser wave number, �=a0k. Also the confinement parameter,
� /�, with � being the spontaneous emission rate of the ex-
cited state is crucial in controlling vibrationally selective op-
tical pumping.

An efficient cooling mechanism in the limit of small val-
ues of the Lamb-Dicke parameter is sideband cooling �5�.
Beyond the Lamb-Dicke limit ��→0�, two techniques, origi-
nally designed to achieve subrecoil temperatures of free at-
oms �6�, have been proven to be effective, dark-state cooling
�7�, which operates with angular momentum internal transi-
tions, and Raman cooling �8�, a sequence of laser pulses
followed by a repumping process.

Standard sideband cooling for trapped two-level atoms for
�→0 consists of two stages: First, tuning one laser to the
lower motional sideband of an internal transition, �=−�.
The detuning � is defined here as �=�L−�0, where �L is
the laser frequency and �0 is the unperturbed transition fre-
quency of the two-level atom. This laser preferentially
pumps population from an internal ground-state level �n+1�
to the electronically excited state in trap level �n�. The sec-

ond stage is accomplished by spontaneous emission, which
transfers the population again to the atomic ground state with
the relaxation rate �. In the Lamb-Dicke limit spontaneous
emission occurs without changing the trap vibrational level.
Hence, by repeatedly following this process the population
would eventually assemble in the level �g ,0�, which is a dark
state in the sense that the laser is tuned to the lower motional
sideband. This condition can only be satisfied in the strong
confinement limit when ��� �9�. In weak confinement side-
band excitation is rather unselective and spontaneous emis-
sion leads to a diffusion of vibrational population over neigh-
boring �n� states.

A key to overcome this problem is to use a second laser in
a multilevel pumping scheme. In this way an effective two-
level transition with an effective decay rate �eff appears,
which is proportional to the pump beam strength �10,11�.
Therefore, by suitable choice of laser parameters the condi-
tion �eff�� can be met �12,13�. In the limit of large detun-
ing �������, the two-photon detuning �connecting the
two ground-state levels� can be made very small, such that
vibrationally diagonal optical transitions �carrier transitions�
are suppressed by electromagnetically induced transparency
�EIT�. In this situation vibrationally off-diagonal two-photon
transitions experience different transition probabilities for vi-
brational cooling and heating, their relative magnitude being
dictated by the asymmetric absorption line profile around the
dark-state resonance. The cooling rate dominates over heat-
ing when the pump laser is blue-detuned ���0� and it can
be optimized by choosing the separation between EIT mini-
mum and the ac-Stark-shifted excited state level to be equal
to the trap frequency. In order to define the meaning of de-
tuning we give the state energies as Ej =�� j with j=1,2 ,3
for a three-level 	 system, where �31=�3−�1 and the de-
tuning is �=�L1−�31 such as shown in Fig. 1. The asymme-
try in sideband transitions for cooling and heating was ana-
lyzed by Morigi et al. �14,15� in the limit of small Lamb-
Dicke parameter. In this limit only the first sideband
transition �n�→ �n
1� is of significant strength. This method
is readily realized in ion traps and indeed experiments con-
ducted in Innsbruck �7� show that this cooling scheme can
very rapidly take an ion into the ground vibrational level of a
trap.

*maryam.roghani@physik.uni-freiburg.de
†helm@uni-freiburg.de

PHYSICAL REVIEW A 77, 043418 �2008�

1050-2947/2008/77�4�/043418�8� ©2008 The American Physical Society043418-1

http://dx.doi.org/10.1103/PhysRevA.77.043418


In this paper, we discuss the situation when the Lamb-
Dicke parameter is not very small, a situation frequently en-
countered in optical dipole traps for neutral atoms. Here, �
values are typically in the range ��0.1, in which case ef-
fects from higher sidebands need to be considered as well.
Equally important, the substantial strength of vibrationally
off-diagonal vibrational transitions for even small values of
� requires to explicitly account for off-diagonal transitions
for proper prediction of the absorption and dispersion rela-
tion of the atom. We do this by numerically solving the Liou-
ville equation for a density matrix describing electronic and
vibrational levels.

The paper is organized as follows. We first discuss the
density operator relations for the case of entanglement be-
tween electronic and vibrational states. We then present so-
lutions for the time-dependent development of the density
matrix as well as its stationary state for various values of �,
including a comparison with the results predicted by the
Morigi et al. model �14� �in the following referred to as the
Lamb-Dicke limit�. Finally we discuss the theoretical and
experimental limitations which arise when applying the EIT
scheme to cooling of neutral atoms in a far-red-detuned op-
tical dipole trap.

II. THEORY

We consider a three-level, 	-shaped atom trapped in a
one-dimensional harmonic oscillator �HO�. We explore the
time-dependent evolution of the density matrix for this sys-
tem by solving the Liouville equation

� �̂̃

�t
= −

i

�
�Ĥ, �̂̃� + L̂0. �2�

The density operator �̂̃ comprises contributions from both
electronic and vibrational degrees of freedom

�̂̃ = �̂̃el � �̂̃c.m. = �̂ � �̂ . �3�

The Hamiltonian Ĥ describes the motion of the atomic
center-of-mass �c.m.�, the internal electronic configuration,
and the interaction of the atom with two laser beams

Ĥ = Ĥc.m. + Ĥel + Ĥint. �4�

Here

Ĥc.m. = p���p��p� , �5�

describes the quantum mechanical HO with trap frequency �
and the Fock states �p�. The electronic configuration Hamil-
tonian is �16�

Ĥel = + ���1��1� + �� + ���2��2� , �6�

where � is the one-photon detuning between the electronic
levels �1� and �3� and  is the two-photon detuning between
levels �1� and �2�, as shown in Fig. 1,

� = �L1 − �31,

� +  = �L2 − �32. �7�

The energy differences between the respective unperturbed
electronic states are �31=�3−�1 and �32=�3−�2. The in-
teraction Hamiltonian for the two running wave laser beams
is derived from the interaction picture in the rotating-wave
approximation �17�

Ĥint =
�

2
	g1

�e−ik�1·x��1��3� + g2
�e−ik�2·x��2��3� + g1eik�1·x��3��1�

+ g2eik�2·x��3��2�
 . �8�

For solving the Liouville equation, we need the eigenbras
and kets for the atomic sample. We define them as �i ,n�
= �i� � �n�, where �i� is the representation of the electronic
levels i=1,2 ,3, and �n� is the Fock state for the atomic
center-of-mass motion. Rewriting Eq. �2� for the trapped
three-level atom we obtain

�i��n�
� �̂̃

�t
�j��m� = −

i

�
�i��n��̂ � �Ĥc.m.,�̂��j��m�

−
i

�
�i��n��Ĥel, �̂� � �̂�j��m�

−
i

�
�i��n��Ĥint, �̂ � �̂��j��m� + �i��n�R̂�j��m� ,

�9�

where the term �i��n�R̂�j��m� signifies relaxation terms. In a
more compact form we may write

�i,n�
� �̂̃

�t
�j,m� = −

i

�
�̂ij � �n��Ĥc.m.,�̂��m�

−
i

�
�i��Ĥel, �̂��j� � �̂nm

−
i

�
�i��Ĥint, �̂��j� � �n��Ĥint,�̂��m�

+ �i��n�R̂�j��m� . �10�

After substituting �5�–�8� into �10�, applying the identity op-
erator 1=�p=0

� �p��p�, and after some rearrangement we can
rewrite Eq. �10� as

Ω
�1�

�3�

�2�
∆

�

ΩL1

ΩL2

FIG. 1. Electronic configuration of the three-level atom. The
thin lines signify trap vibrational levels. For the definition of the
sign of the detunings � and  see Eq. �7�.

MARYAM ROGHANI AND HANSPETER HELM PHYSICAL REVIEW A 77, 043418 �2008�

043418-2



�i,n�
� �̂̃

�t
�j,m� = − i��ij�p�pmp,n − p�npp,m�

− i��i,1�1j + � + ��i,2�2j��nm

+ i��1,j�i1 + � + ��2,j�i2��nm

−
i

2 �
p=1

�

��g1
��3ji,1 + g2�2ji,3�

��n�e−i�k�1−k�2�·x��p��pm

+ �g1�1ji,3 + g2
��3ji,2��n�ei�k�1−k�2�·x��p��pm

+ �− g1
��i13,j − g2�i32,j��p�e−i�k�1−k�2�·x��m��np�

+ �− g2
��i23,j − g1�i31,j��p�ei�k�1−k�2�·x��m��np

+ Rin,jm. �11�

For the Franck-Condon factors �18� we define the abbre-
viation

�n�e
ik�q·x��p� = F�n,p, 
 �q� , �12�

where q=1,2 refers to laser 1 and 2, respectively. The pa-
rameter � is

�q =� �keff
2

2M�
, �13�

where keff= �k�q�cos �, with � being the angle between the HO
axis and the wave vector of the respective laser beam and M
being the mass of the trapped atom.

Equation �11� contains terms with �p�e
i�k�1−k�2�·x��n�, which
describe three-level atom interaction with an effective laser
wave vector k� =k�1−k�2. For a 	 system with near-degenerate
ground states �e.g., hyperfine- or Zeemann-split ground
states� k� tends to zero for copropagating laser beams, thus
effectively suppressing any motional changes in atom-laser
interaction �19�. The choice of angle between the laser beams
is thus crucially important for the cooling process, in con-
trolling the magnitude of k as well as the projection of k�
on the trap confinement axis. The latter dictates the effective
magnitude of � in two-photon transitions, thus giving the
experimenter some degree of freedom in optimization.

The factor F in Eq. �12� actually describes the atomic
center-of-mass transition matrix element between trap levels,
as an effect of atom-light interaction. In the Lamb-Dicke
limit the momentum shift operator in Eq. �12� is approxi-
mated in lowest order

e
i��â+â†� � 1 
 i��â + â†� �14�

thus allowing only the carrier transition and the first red and
blue sidebands, the latter having an absorption strength �n
+1��2 times that of the carrier transition in the Lamb-Dicke
limit.

A. Relaxation terms due to spontaneous emission

Relaxation due to spontaneous emission leads to a loss of
population in the electronically excited vibrational states

�3,n� and gain of population by the ground-state levels
�1,n�� and �2,n��, where we allow for migration of popula-
tion in the vibrational manifold of the HO by spontaneous
emission. Spontaneous emission also leads to a loss of co-
herence between different electronic and HO levels. In op-
erator language, effects of spontaneous emission can be writ-
ten by a Liouvillian operator �20�

L̂0 = −
�

2
��3��3��̂̃ + �̂̃�3��3�� + �

j=1

2

� j
−1

+1

d cos ���cos ���j�

��3��eiqjx cos ��̂̃e−iqjx cos ���3��j� . �15�

The key element in controlling laser cooling and heating is
the redistribution of population among the HO levels in op-
tical pumping as well as in spontaneous emission. The latter

is governed by the term �eiqjx cos ��̂̃e−iqjx cos �� and the inte-
gration over the angular distribution of emitted photons,
��cos ��. We simplify this term by assuming that the spon-
taneously emitted photons appear along the trap axis, as dis-
cussed in Appendix A. This assumption maximizes the effect
of diffusion between trap levels due to spontaneous emis-
sion.

Population gain in level �j� �j=1,2� results from the
branching of spontaneous emission into the two ground
states which occurs with the rates �1+�2=�,

L0j,nj,n
= � j�

p=1

�

�F�n,p,�S��2�pp. �16�

Here we have introduced �S, the effective Lamb-Dicke pa-
rameter for spontaneous emission into level j,

�S = qj� �

2M�
, �17�

with qj = ��3−� j� /c. Equation �16� describes the population
gain in level �j ,n�,

Rjn,jn = + � j�33�
p=1

�

�F�n,p,�S��2�pp. �18�

Due to population conservation we also have

R3n,3n = − ��33�
p=1

�

�F�n,p,�S��2�pp. �19�

The second term on the right-hand side of Eq. �15� also
gives rise to coherence loss due to spontaneous emission
when n�m and contains only the coherent terms of different
vibrational levels

� j�33�n�eiqjx�̂e−iqjx�m� , �20�

where again we have assumed that spontaneous emission oc-
curs only along the trap axis,

Rjn,3m = � j�33�
p=1

�

�
o=1

�

F�n,p,�S�F�o,m,− �S��po. �21�
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Next we consider the first term on the right-hand side of
Eq. �15�. It describes loss of coherence between different
trap levels, due to spontaneous emission

R3n,3m = − ��33�nm�1 − n,m� , �22�

where the  function has been added in order to avoid count-
ing loss of population two times. The first term on the right-
hand side of Eq. �15� also describes coherence loss between
ground and excited electronic states and trap vibrational lev-
els,

R1n,3m = −
�

2
�13�nm, �23�

R2n,3m = −
�

2
�23�nm, �24�

R3n,1m = −
�

2
�31�nm, �25�

R3n,2m = −
�

2
�32�nm. �26�

B. Numerical approach

We solve Eq. �11� numerically for a fixed number of vi-
brational trap levels to obtain the time dependence of cooling
as well as stationary-state solutions. In the following we dis-
cuss the case of three electronic levels as shown in Fig. 1 and
a number of mm vibrational levels in each electronic state.
The number of coupled equations then is �3mm�2. Typically
we took mm in the range from 10–25 vibrational levels. For
simplicity we have assumed the vibrational trap spacing � to
be identical in all three electronic states, a situation not typi-
cally met in neutral atom experiments. For convenience we
have also set �S=�q. Neither of these assumptions nor the
restriction to a finite number of vibrational levels influences
our general conclusions on EIT cooling beyond the Lamb-
Dicke limit.

Convergence tests on the dependence of the stationary
solutions on the number of vibrational levels included in the
calculation showed that the results converge when the num-
ber of vibrational levels accounted for �mm� is larger than the
width over which substantial sidebands occur. The magni-
tude required for mm can be estimated by inspecting a map of
the strength of sideband transitions �21�. Examples are
shown in Fig. 2. Here we give the magnitude of the squared
Franck-Condon factors �F�n ,m ,���2 from Eq. �12� for the
lowest 30 vibrational levels �upper panel� and the sideband
spectrum for n=20 �lower panel� at two values of �. Note
that the Franck-Condon factors F�n ,m ,�� are dimensionless
and fulfill the condition �m=0

m=��F�n ,m ,���2=1.

III. RESULTS AND DISCUSSION

The aim of our study is to examine the range of validity of
EIT cooling under conditions when neither the Lamb-Dicke

parameter � nor the confinement parameter � /� are small.
To this end we examine two limiting parameter ranges, one
considered by Morigi et al. �14� in connection with ion traps.
This allows us to make a direct comparison with the predic-
tions for the Lamb-Dicke limit, and a second case which is
realistic for neutral Rb atoms in an optical dipole trap.

We begin by considering the effect of detuning � on the
imbalance of sideband transitions for cooling and heating in
Fig. 3. Here, the purely electronic two-photon detuning  is
chosen as =0. In this case the carrier transitions �they are
diagonal in vibrational quantum number� are suppressed by
the EIT minimum. The light field of the two laser beams is
however experienced in a different fashion by off-diagonal
�sideband� transitions. For sideband transitions involving a
change in vibrational quantum number by �n=−eff /�, the
EIT condition is not satisfied. In the case that ��� the
absorption line shape in sideband transitions is given by the
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FIG. 2. Absolute values of the Franck-Condon factors
�F�n ,m ,��� from Eq. �12� are shown in the upper row for two
values of �. The relative strength of sideband transitions originating
from n=20 is given in the lower row.

�10 �6 �2 2 6 10
0

2

4

∆eff � Ω

A
bs

or
pt

io
n
�a

rb
.u

ni
ts
�

��2 MHz

�10 �6 �2 2 6 10
0

2

4

∆eff � Ω

A
bs

or
pt

io
n
�a

rb
.u

ni
ts
�

��10 MHz

FIG. 3. The imbalance between sideband cooling �eff /��0�
and sideband heating �eff /��0� is shown for two values of the
detuning �. The full line gives the three-level EIT line shape. The
bars indicate the strength of sideband transitions �summed over the
lowest 100 vibrational levels of the HO� which are active when the
two-photon detuning is set to =0, the EIT minimum. ��=0.25,
�=2��6 MHz, g1=2��1.4 MHz, and g2=2��0.1 MHz�.
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standard three-level absorption line shape at the effective de-
tuning eff=�n�. This line shape is shown by the full curve
in Fig. 3. The relative strength of individual sideband transi-
tions is of course dictated by the Franck-Condon factors
�F�n ,m ,���, the spread of significant sideband transitions be-
ing governed by the magnitude of � �compare with Fig. 2�.
The asymmetry in the absorption profile in the vicinity of the
EIT minimum increases with increasing value of � and so
does the imbalance between cooling transitions ��n�0� and
heating transitions ��n�0�. The imbalance is in favor of
cooling when ��0. In Fig. 3 the Rabi frequency of the
pump laser was chosen such that the absorption peak from
the ac-Stark-shifted resonance falls on the first cooling side-
band eff /�= +1. This is the optimal condition for EIT cool-
ing in the Lamb-Dicke limit when only one sideband is ac-
tive.

In the following we compare the predictions of our model
with those in the Lamb-Dicke limit by examining the sensi-
tivity of the mean vibrational level �n� in the stationary
population to the parameters of pump detuning �, pump
Rabi frequency g1, and trap-level frequency �. The results in
Figs. 4 and 5 show that the cooling degrades somewhat as
the value of � increases. This is not unexpected as—in
general—the preference for cooling transitions diminishes
with increasing � at fixed values of the detuning � and the
Rabi frequency g1. This is due to the fact that the width of
the ac-Stark-shifted resonance mimics that of the EIT mini-
mum and hence can cover only a limited number of side-
bands for cooling.

On the other hand, the number of sidebands for heating
transitions is practically unlimited as heating transitions may
experience the entire natural width of the excitation profile,
to the red of the EIT minimum. However, we see that even
for relatively high values of � cooling is still efficient, albeit
not to a nearly pure translational ground state, �n��0. Also
apparent from the right-hand side of Fig. 5 is the appearance
of several additional minima as � is increased. These are due
to the beneficial ac-Stark shifting of the absorption peak to
the second and third higher sideband transitions when these
gain strength at increasing values of �.

Figure 6 gives the dependence of cooling on the trap fre-
quency � in comparison to the Lamb-Dicke limit. Again the

appearance of additional minima points to the favorable ac-
Stark shifting to higher sideband transitions. At a given value
of g1 �meaning a given separation between the EIT minimum
and the ac-Stark-shifted resonance� this is accomplished at
decreasing values of �. All of these results underscore the
importance of higher sidebands at even relatively low values
of �. Note that the parameters used in the simulations in
Figs. 4–6 are optimized for EIT cooling in the Lamb-Dicke
limit rather than the specific parameter values of � used here,
in order to facilitate comparison with the predictions in the
Lamb-Dicke limit �14�. Beyond the Lamb-Dicke limit the
separation between the EIT minimum and the ac-Stark-
shifted resonance is more optimally chosen to be several
times the trap energy—in order to cover several of the cool-
ing sidebands—as will be shown below.

We now turn to the situation encountered for neutral Rb
atoms in typical optical dipole traps, using the experimental
parameters �=2��6 MHz, Er=2��3.6 kHz. The trap pa-
rameters �, �, and the Rabi frequencies are considered to be
adjustable to the specific experimental situation. We first
consider cooling rates. The time development of populations
in the electronic state �2� is shown in Fig. 7. This state carries
the dominant population when g1�g2. The populations �11
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FIG. 4. Predictions for stationary vibrational population in EIT
cooling limit at various values of � as a function of detuning � /�.
Parameters are �=� /10, g1=�, g2=� /10.
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FIG. 5. Predictions for stationary vibrational population in EIT
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son with the prediction in the Lamb-Dicke limit. Parameters are
�=15 MHz, �=6 MHz, g1=1.4 MHz, g2=100 kHz.
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are roughly g1 /g2 times smaller than those of �22, the popu-
lations �33 always stay at a level below 10−5 at the param-
eters used in Fig. 7. The initial conditions for the two simu-
lations in Fig. 7 are that initially all ground-state levels are
evenly populated. Regardless of the initial population distri-
bution the simulations show that the same final stationary
result is reached albeit at slightly different cooling time.

The cooling rates turn out to be comparable to those pre-
dicted in the Morigi et al. model �14�. Note that in the Lamb-
Dicke limit the cooling rate increases as � increases since the
strength of sideband transitions increase with the order
O��2�. As � becomes too large, cooling is still active, how-
ever it reaches an equilibrium over an ever broader distribu-
tion of low vibrational levels as � increases. In choosing the
laser parameters for the simulations in Fig. 7 we have
roughly optimized the ratio of heating-to-cooling sidebands
�see Fig. 3� by choosing the Rabi frequency g1 in such a way
that the ac-Stark-shifted resonance peaks at the second vibra-
tional sideband for �=0.25 and at the third vibrational side-
band for �=0.55. Also a slightly positive two-photon detun-
ing  has been assumed for reasons which become clear from
the results shown in Fig. 8.

The results in Fig. 8 show the sensitivity of the stationary
vibrational populations on the two-photon detuning . It is
apparent that for efficient cooling, the two-photon detuning
must be kept stable to a value better than the trap frequency
� in order to exploit the benefits of EIT cooling. These re-
sults also show that optimal cooling is achieved at small
positive detunings  unless � is very small ���0.1�.

A primary conclusion from these results is that EIT cool-
ing can indeed work at elevated values of the Lamb-Dicke
parameter. Limitations appear when � reaches well above
�0.5 when the width of heating sidebands overwhelms the
necessarily restricted cooling wing of the EIT line shape.
Some degree of selectivity in the effective value of � comes
from the choice of angle between the two lasers and between
the effective k vector k� =k�1−k�2.

For any experimental realization it is important to con-
sider the dependence of the efficiency of the cooling process

on the laser frequency stability. We have so far silently con-
sidered the case of perfectly stabilized lasers. For nearly all
EIT effects the magnitude of the stability of the difference
frequency of the two lasers matters, rather than the stability
of each individual laser �22�. In EIT cooling the effects of
laser stability are twofold, for one the window of efficiency
for cooling is of the order of or smaller than the vibrational
trap frequency �see Fig. 8� and second the suppression of
carrier transitions relative to the absorption at the ac-Stark-
shifted resonance diminishes proportional to the magnitude
of  /�. Hence, the prerequisite for EIT cooling is a stability
and controllability of the laser-frequency difference to a pre-
cision better than the trap frequency. Similar demands hold
for the ground-state energy difference �12, thus placing strin-
gent requirements on an EIT cooling experiment when trap
frequencies are low.

In real world applications to clouds of trapped atoms,
phase-changing collisions will place a lower limit on the
dark-state lifetime and hence the EIT width. This restricts
atom densities that one can achieve with EIT cooling, as the
dark state lifetime must exceed the vibrational time scale,
2� /�, in order for EIT cooling to become effective. Reab-
sorption of spontaneous photons from the very weakly popu-
lated excited level will pose an additional cooling limit for a
dense atom cloud.

The model simulations presented here assume identical
vibrational frequencies in the three electronic states. This is
an excellent assumption for trapped ions as the trap depth is
only very weakly modified by the electronic-state-dependent
Stark effect. The situation is different for neutral atoms in
optical dipole traps for which the state-dependent polariz-
ability dictates the trap depth. As a result the trap frequencies
will in general be different for each of the three electronic
states involved in an EIT scheme, unless a situation of a
magic wavelength �23� for the dipole-trap laser can be found.
If not it appears best to choose a trap-laser wavelength well
red of the lowest energy excited state transition. In this far-
red-detuning regime the polarizabilities are not greatly dif-
ferent �24,25� and the excited electronic state is indeed
bound in the dipole trap. In this case and when the trapping
frequencies are much smaller than the detuning �, the re-
quirement of blue detuning can be met for even high side-
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FIG. 7. Temporal development of cooling for �=0.25 �left-hand
side� and �=0.55 �right-hand side�. The full lines give the popula-
tion in n=0, the dashed lines in n=1, while the dotted lines give the
sum of populations in vibrational levels n�2. Parameters are �
=20 MHz, �=6 MHz, g2=100 kHz, and �left-hand side� �
=58 kHz, g1=3.2 MHz, =58 kHz and �right-hand side� �
=12 kHz, g1=1.5 MHz, =6 kHz.
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=0.25, the plot on the right-hand side is for �=0.55. The full lines
give the population in n=0, the dashed lines in n=1, while the
dotted lines give the sum of populations in vibrational levels n
�2. Parameters are the same as those in Fig. 7.

MARYAM ROGHANI AND HANSPETER HELM PHYSICAL REVIEW A 77, 043418 �2008�

043418-6



band transitions and the requirements for EIT cooling can be
fulfilled.

IV. CONCLUSIONS

We have studied a three-level atom trapped in a one-
dimensional harmonic oscillator, interacting with two laser
beams. Preparing the condition of electromagnetically in-
duced transparency leads to a cancellation of the carrier tran-
sitions �vibrationally diagonal transitions� which are a source
of heating when spontaneous emission is involved. In addi-
tion, when choosing blue detuning of the pump laser and a
suitable ac-Stark shift induced by this laser, two-photon side-
band transitions which cool can occur at a higher rate than
those which heat. We show here that this miracle of cooling
via EIT can be realized even in the case that higher-order
sidebands are active. Our approach allows for the optimiza-
tion of cooling in realistic trap environments.

APPENDIX A: ANGULAR DISTRIBUTION IN
SPONTANEOUS EMISSION

In the spontaneous emission process, the atomic center-
of-mass can gain a recoil from the spontaneously emitted
photon. Such a momentum change is described by the mo-
mentum shift operator exp�−ik� ·r��, which acts on the atomic
center-of-mass state vector as �20�

e−ik�·r��p�� = �p� − �k�� , �A1�

where �p�� is a momentum eigenstate.
The wave vector of the emitted photon can be written as

k� =kn̂, where n̂ is the direction of the spontaneously emitted
photon. With �A1� we can relate initial and final states

��� f = e−ik�·r����i = e−ikn̂·r����i, �A2�

and as density matrix element

�̂̃ = ��� f f��� = e−ikn̂·r����ii���eikn̂·r�. �A3�

Denoting the spatial distribution of the spontaneous photons
as ��n̂�, the probability of scattering photons into the solid
angle d� with the rate of � is ���n̂�d�. The rate of popu-
lating the ground state in spontaneous emission is then

���n̂�d�e−ikn̂·r̂���ii���eikn̂·r�, �A4�

where ���i= �e� � �n�i, the initial atomic center-of-mass state
being �n�i. In this way the probability of populating a ground-
state vibrational level �n� j is

���n̂�e−ikn̂·r̂�3� � �n�ii�n� � �3�eikn̂·r�d�

= ���n̂��33e
−ikn̂·r̂�̂eikn̂·r�d� . �A5�

This term needs to be integrated over the angular distribution
of spontaneous photons. If � j is the rate of spontaneous
emission into the ground-state level j we obtain for its prob-
ability

�̃ jn,jn = � j ��n̂��j��3�e−ik�̂n̂·r̂�̂eikn̂·r��j��3�d� . �A6�

Assuming that spontaneous emission is always along the HO
axis, we can omit integration and obtain for the second term
on the right-hand side of Eq. �15�,

�
j=1

2

� j�j��3��eiqjx�̂̃e−iqjx��3��j� . �A7�

APPENDIX B: TRANSITION MATRIX ELEMENTS

In Eq. �12� we have used the momentum shift operator
exp�
ik� ·x��, where k� is the laser beam wave vector and x� is
the position of atomic center-of-mass in Cartesian coordi-
nates. The term k� ·x� can be rewritten, using the inner product,
as

k� · x�̂ = �k��x�cos�k� · x�̂� = �k��x�cos��� . �B1�

The center-of-mass position in the quantum mechanical har-
monic oscillator is defined in terms of annihilation and cre-
ation operators,

x�̂ =� �

2M�
�â + â†� . �B2�

Introducing the Lamb-Dicke parameter

� = �k�� �

2M�
cos��� , �B3�

and applying the Baker-Campbell-Haussdorf relation �16� we
may write

e
i��â+â†� = e−�2/2�
l=0

�
�i�â†�l

l! �
l�=0

�
�i�â�l�

l�!
. �B4�

Taking into account the relations

�â†�l�n� =��n + l�!
n!

�n + l� , �B5�

�â�l��n� =� n!

�n − l��!
�n − l�� , �B6�

and using the expansion �B4� our Franck-Condon factor �12�
can be written as
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F�n,m,�� = e−�2/2�
l=0

�

�
l�=0

�
�i��l+l�

l ! l�!

�m ! �m − l� + l�!
�m − l��!

n,m−l�+l.

�B7�

The products from the double sum are zero except when l
=n−m+ l�. Hence, the possible l� values range from l�=0 to
l�=m when n�m, while the range is from l�=m−n to l�

=m when n�m. This leaves us with the single sum

F�n,m,�� = e−�2/2 �
l�=lmin�

m
�i��2l�+n−m

l� ! �l� + n − m�!

�m ! n!

�m − l��!
,

�B8�

with lmin� =Max�0,m−n�.

�1� M. H. Anderson et al., Science 269, 198 �1995�.
�2� K. B. Davis et al., Phys. Rev. Lett. 75, 3969 �1995�.
�3� M. Lewenstein and L. You, Adv. At. Mol. Phys. 36, 221

�1996�.
�4� J. Javanainen and S. Stenholm, Appl. Phys. 24, 151 �1981�.
�5� W. Neuhauser, M. Hohenstatt, P. Toschek, and H. Dehmelt,

Phys. Rev. Lett. 41, 233 �1978�; D. J. Wineland, R. E. Drul-
linger, and F. L. Walls, ibid. 40, 1639 �1978�.

�6� A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C.
Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 �1988�.

�7� F. Schmidt-Kaler et al., Appl. Phys. B: Lasers Opt. 73, 807
�2001�.

�8� M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 �1992�.
�9� F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland,

Phys. Rev. Lett. 62, 403 �1989�.
�10� J. Javanainen and M. Lindenberg, J. Opt. Soc. Am. B 3, 1008

�1986�.
�11� C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-

Photon Interactions �Wiley, New York, 1992�.
�12� I. Marzoli et al., Phys. Rev. A 49, 2771 �1994�.
�13� G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller, Europhys.

Lett. 39, 13 �1997�.
�14� G. Morigi, J. Eschner, and C. H. Keitel, Phys. Rev. Lett. 85,

4458 �2000�.
�15� G. Morigi, Phys. Rev. A 67, 033402 �2003�.
�16� M. Orszag, Quantum Optics �Springer, Berlin, 2000�, pp. 276–

281.
�17� B. Karl, Density Matrix Theory and Applications �Plenum,

New York, 1981�.
�18� L. You, M. Lewenstein, and J. Cooper, Phys. Rev. A 51, 4712

�1995�.
�19� This is the origin for Doppler-free EIT line shapes in thermal

atoms, see, for example, �22�.
�20� P. Meystre, Atom Optics �Springer, New York, 2001�.
�21� Typically mm=10 for �=0.1, increasing to mm=25 for �=0.5.
�22� M. Erhard and H. Helm, Phys. Rev. A 63, 043813 �2001�.
�23� J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H. C.

Nagerl, D. M. Stamper-Kurn, and H. J. Kimble, Phys. Rev.
Lett. 90, 133602 �2003�.

�24� C. Krenn et al., Z. Phys. D 41, 229 �1997�.
�25� For rubidium the dc polarizabilities of ground and excited

states differ by about a factor of 2.7 �24�.

MARYAM ROGHANI AND HANSPETER HELM PHYSICAL REVIEW A 77, 043418 �2008�

043418-8


