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Hamiltonian Encoding (HE) has been proposed as a technique for analyzing the mechanism of controlled
quantum dynamics, where mechanism is understood in terms of the set of amplitudes of the dominant path-
ways connecting the initial and final states of the system. The choice of representation for the system wave
function is often motivated by seeking simplicity for the structure of the Hamiltonian and not necessarily for
the generated dynamics. However, the mechanism revealed by HE is strongly dependent on the basis in which
the wave function is represented. The degree of mechanistic complexity is indicated by the relevant orders of
the Dyson series contributing to the dynamics. An appropriate choice of representation can yield a simpler view
of the dynamical mechanism by shifting some of the complexity into the representation itself. In this work the
choice of representation is set up as the solution to a variational optimization problem. For unconstrained basis
transformations, the optimization of the representation is formally equivalent to solving the time-dependent
Schrodinger equation; different constrained basis transformations provide distinct dynamical perspectives.
Specific constrained variational Ansdtze are compared and analyzed by performing HE on several simple
Hamiltonians with an observation of the extent to which the mechanism assessment varies with representation.
The general variational formulation for determining representation can flexibly admit other Ansdtze with the
ultimate aim of balancing the ease of determining and understanding the representation with the reduction in

mechanistic complexity.

DOLI: 10.1103/PhysRevA.77.043415

I. INTRODUCTION

The control of quantum dynamics has many potential ap-
plications in science and engineering, and a number of tech-
niques have been proposed to achieve quantum control. Op-
timal control theory (OCT) [1-4], provides a general
framework for this purpose and closed-loop techniques using
OCT are meeting with broad success in the laboratory
[5-12]. The resultant controlled dynamics can be complex in
keeping with the nature of the system and the objectives. The
control mechanisms have often remained obscure, as the ex-
periments are directed at achieving control and not towards
an assessment of the mechanism. The Hamiltonian encoding
(HE) procedure was proposed [13] as a method for organiz-
ing and understanding the dynamics created by complex con-
trol fields. HE has been used for mechanism assessment of
various problems [13-16] in the context of computer simu-
lations. This paper studies systems that can be represented by
a d-dimensional Hilbert space, where the dynamics is gov-
erned by the propagator U(z), satisfying the time-dependent
Schrodinger equation (TDSE)

idz—ft) =H(nU(1), (1)

*abhra@princeton.edu

1050-2947/2008/77(4)/043415(15)

043415-1

PACS number(s): 32.80.Qk, 02.70.—c

where # is included in the Hamiltonian H. HE organizes the
information in Eq. (1) in terms of the Dyson series for the
time evolution operator

Ui)=1+(=1i) f H(t))dt, + (—i)? f H(t,) f ZH(tl)dtldQ
0 0 0
+o (2)

It can be shown [13] that this expansion will always con-
verge for systems of finite dimension, evolving over a finite
period of time [0, 7] under a bounded control field. HE uti-
lizes this expansion to introduce the concept of control path-
ways. Section II will give further details defining the path-
ways. With HE the control mechanism is expressed in terms
of the significantly contributing control pathways, which are
specified by the integrals in Eq. (2). For simulations, the
integrals in the series expansion are computationally difficult
to evaluate, especially for high intensity fields, where the
series typically converges only after many terms. Computa-
tionally, HE evaluates the integrals in Eq. (2) by introducing
a timelike variable s and creating a family of Hamiltonians
H(t,s) parametrized by s. These parametrized Hamiltonians
have a specific encoded relation to the original Hamiltonian
H(t), including the criterion H(r)=H(t,s=0). By evaluating
U(T,s) over these Hamiltonians as a function of s, it is pos-
sible to determine the dynamical pathways in the original
system U(T)=U(T,s=0) at a chosen time T.
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On the other hand, a quantum-mechanical system may be
represented over a set of basis states, and the choice of this
basis is flexible, often dictated by convention or conve-
nience. The nature of the mechanism deduced by HE is,
however, dependent on this choice of representation. A pre-
vious work [14] studied the impact of a change of represen-
tation on mechanism in the context of systems controlled
using the STIRAP procedure [17], in which a counterintui-
tive sequence of two pulses (the Stokes pulse preceding the
pump pulse) drives the population in a three-level system.
This system had two “natural” choices of representation: ei-
ther the eigenstates of the field-free Hamiltonian H,,, or the
dressed states of the system coupled with the field. As the
control field intensity was ramped up, and the population
transfer became more adiabatic, the mechanism in the H,
representation became increasingly more complex, while in
the dressed states representation it became increasingly sim-
pler. This illustration highlighted the important role played
by the choice of representation in the mechanism analysis.

This work studies the impact of the choice of representa-
tion on mechanism in a more general manner. The remainder
of this paper is organized as follows. Section II presents a
brief review of the HE concept [13]. Section III sets up the
choice of representation as an optimization problem, and pre-
sents a simple formulation and its solution. Section IV gen-
eralizes the optimization procedure of Sec. III to cover a
larger class of representation changes. Section V illustrates
the effect of an optimal change of representation with some
numerical examples. Finally, the results are summarized
along with conclusions in Sec. VI.

II. THE HAMILTONIAN ENCODING TECHNIQUE

As the developments in this paper build on the original
HE procedure [13], a brief summary is presented in this sec-
tion. Consider the evolution of a quantum system where the
dynamics evolve in a d-dimensional state space, whose time
evolution is given by Eq. (1). The goal of HE is to under-
stand the mechanism by which H(¢) transfers amplitude from
some initial state |a> to the final state |b>; therefore, we con-
sider the relevant matrix element U,,(T). Rewriting Eq. (2)
to focus on U,,, produces

T
Upa(T) = (bla) + f (b|H(1))|a)dt,
0

d T rt,
+ f f (b|H(t2)|)I|H (t))|a)dt,dty + -+ .
=1 J0 J0
(3)

To simplify the equations we define h;,,=(I|H(t)|m) and in-
troduce the notation [13]

’l(l s f f f hbl ](t )h[ e z(tn 1)

Xhy o(ty)dty -+~ dt,_dt,, 4)

so that Eq. (3) becomes
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n=0 11,y . oy y=1

Uzgll,lz,...,ln_ﬂ. (5)

A quantum pathway is defined as a sequence of transitions
starting from |a) and ending at |b). Each pathway corre-
sponds to one of the individual integrals in the expansion of
U, (T), with the amplitude of the pathway (a—1;-*-—1,_;
—b) being UZEIII’ZZ""’I”“). The order of a pathway n is the
number of transitions made between the states |a) and |b).
The control mechanism is identified by the set of pathways
(a—1-++—1,.,—b) connecting states |a) and |b> Wthh
have amplitudes of significant magnitude |U"(ll vl | An
understanding of the mechanism involves an analysis of the
constructive and destructive interferences among the signifi-
cant complex amplitudes {U}{12~ln-1}

The integrals in Eq. (3) are computationally difficult to
evaluate directly. The HE technique circumvents the direct
evaluation of the integrals by solving a systematically de-
signed sequence of Schrodinger equations related to the
original Eq. (1). The basic operation in HE is the introduc-
tion of a new dimensionless timelike variable s, which is
used to label the modulation (encoding) of individual matrix
elements of the Hamiltonian with suitable functions {m,q(s)}
of s, such that

hig(t) = hyg(£)myy(s). (6)

Integrating the new encoded equation, of the same form as
Eq. (1), gives U,,(T,s) as a function of s, denoted as U,,(s)
where T is omitted for notational simplicity. From the struc-
ture of Egs. (4)—(6) it can be shown that [13]

B d
U, (s) = E 2 UZEJII’ZZ""’[n—l)MZ((lll’IZv'"vln—l)(s) (7)
n=11,b,....1, =1
with
N S OE my () Xmy g (s) X e Xomy (s).
(8)

Each transition p — ¢ is tagged with a characteristic function
my,(s). This implies that the pathway (a—1,—Il,— -
—1,_,—b) s associated to the encoding tags

My, (s),m 12(5) b(s) and therefore to the overall
characterlstlc functlon M" (Ul -D(g). The task now re-
duces to ﬁndlng the desired pathway amplitudes
U”(l1 l2--li-1) by extracting the components of U,,(s) associ-
ated with each basis function M”(l1 l-+li-1)(5). The criterion
for choosing the encoding functlons {mpq(s)} is that they pro-
duce a unique s1gnature function M”(l' b l-)(g) for each
amplitude U”(/1 l--lie1) i Eq. (8). Many choices of encoding
functions {mpq(s)} will satisfy this criterion, however, com-
plex exponentials n1,,(s)=exp(iy,,s) are simple and attrac-
tive. Complex exponentials form a set of orthogonal func-
tions, and products of complex exponentials in Eq. (8) yield
other complex exponentials. Each function in Eq. (8) be-
comes
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My e (s) = explisyy, ) X explisy, ;)
X - Xexp{isy of

= expfisy' vz V) )

By an appropriate choice of the dimensionless real frequen-
cies {7}, it is possible to ensure that each distinct pathway
(with some exceptions [13]) oscillates at a unique frequency
Yy li-1) a5 s is scanned. The extraction of the pathway
amplitudes requires solving Schrodinger’s equation for
U,,(s) over a sufficient number of s points to permit per-
forming a Fourier transform of U,,(s). The resultant ampli-
tude of the spectral line at the frequency y*‘1-2--~h-1) may be
quantitatively identified as Uzyl’lZ"“’l"*I).

In some cases the total number of pathways connecting
the initial and final states can become very large, and the
number of solutions of Schrodinger’s equation needed for
extracting the amplitude of each individual pathway will be-
come correspondingly large. This is typically the case at high
field intensities. In such cases by a suitable choice of the
frequencies {7,,} it is possible to attain a reduced mechanism
by combining pathways into well defined physical pathway
classes, and thereby find the net contribution of each path-
way class rather than the contribution of each individual
pathway. For example, the simplest choice vy,,=vy Vp,q col-
lects all pathways of the same order together independent of
the particular intermediate transitions involved. This choice
of frequencies gives an estimate of the number of photons
involved in producing the overall transfer, and the relative
importance of the different orders of perturbation in the
population transfer. Finding the relevant orders of perturba-
tion contributing to the dynamics provides a quick snapshot
of the mechanistic complexity of the dynamics. This path-
way class will be exploited in this work, although other
classes of pathways (e.g., composite pathways [13-15])
could be used as well.

III. CHOICE OF REPRESENTATION
AS AN OPTIMIZATION PROBLEM

A. General formalism

Mechanism identification by HE has been utilized to un-
derstand the dynamics of controlled quantum mechanical
systems [13—-16], where “mechanism” is taken to be a knowl-
edge of the significant pathways connecting an initial and
final state, along with their associated amplitudes. Its imple-
mentation requires a choice of representation or set of basis
states, as pathways are described in terms of transitions be-
tween these basis states. In previous work the wave function
was expressed in terms of the eigenstates of the field-free
Hamiltonian in the interaction representation [13-15], or in
terms of the “dressed states” of the system with the interact-
ing field [14]. The revealed perspectives on the mechanism
can differ vastly from one representation to another [14].
This is not a matter of right or wrong, as mechanism will
always be understood in terms of some chosen reference
(i.e., representation) for comparative analysis. Therefore,
mechanism analysis of controlled dynamics involves two
distinct steps: (i) choosing a basis to represent the system
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and (ii) finding the mechanism in that representation. This
section starts with the Hamiltonian in an arbitrary represen-
tation and develops a framework for identifying a new rep-
resentation where the dynamics (and hence the mechanism)
is simpler, as characterized by a quantitative measure of
complexity.

Consider a system evolving under the Schrodinger equa-
tion (1). Once a choice of basis states {|1),]2),...,|d)} has
been made, the operators H(7) and U(r) can be represented as
time varying dXd square matrices with elements H,,, ()
=(l|H(t)|m) and U,,(t)={l|U(¢)|m). We assume that this
choice of basis is physically well understood (e.g., the eigen-
states of the field-free, time independent Hamiltonian H,).
Now consider a change of representation to a new set of
basis states {|¢;(1)),|d,(1)),....,|b4(1))}, where the ¢ indi-
cates that these basis states may, in general, be functions of
time. This change of representation corresponds to a time
varying unitary transformation R(z) of the original system
with the elements of R(f) given by R,,,(1)={¢,(t)|m).

The dynamical equation for the time evolution operator
Wk in this representation is

d% =—i[R(VH(OR (1) + iRO)RT (1) [Wi(r),  (10)

where the overdot implies a time derivative. Therefore the
matrix form of the Hamiltonian in this new representation is
related to the old representation by the equation

Hi(1) =R(OH(OR (1) + iR(DR' (7). (11)

The time evolution operator U(z) in the old representation is
related to Wx(7) by the equation U(t)=R"(1)Wx(1)R(0). All
transformations considered in this work shall use R(0)=1,
therefore the equation becomes

U(t) =R (1)) Wg(2). (12)

In the case that R(f)=U"(¢), then we have Wg(r)=I. Inserting
R(1)=U'(t) into Eq. (11) gives Hg(t)=0. Therefore, in this
limiting case all the dynamical complexity has been ab-
sorbed into the change of representation, leading to a dy-
namical equation for Wy in Eq. (10) that is trivial. At the
other extreme, the original dynamics correspond to R(r)=1
and Wi=U. A familiar choice is R(r) =exp(iHt) for a Hamil-
tonian of the general form H=H,+V(t), where H, is time
dependent and V(¢) is an external potential (e.g., a control
term). In this case Hz(t)=R(t)V(t)R'(¢) from Eq. (11), which
is the standard interaction representation.

From the viewpoint of Eq. (12), the choice of an optimal
representation involves balancing a tradeoff between the
complexity of R(z) and Wg(r). Two natural extremes may be
considered: (i) a representation where the basis {|I)} is well
understood, Wg=U and R(¢)=1, but the dynamics of Wy can
be complex and (ii) a representation where the basis
{U(#)|)} can be difficult to interpret but with trivial new
dynamics Wg(t)=1. In (i) Wgx=U holds all the dynamics and
in (ii) R=U" does. Both systems provide the same level of
dynamical complexity expressed in terms of U. This section
develops a formalism to strike a balance between the two
extremes, thus providing an opportunity for finding a repre-
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sentation which is not too difficult to interpret, yet the dy-
namical complexity is reduced. This paper provides a sys-
tematic means to determine different forms for R(¢) with the
mechanism understood to lie in Wg(r). However, from an-
other perspective, the original, complex mechanism residing
in U() is now dispersed between R(r) and Wy(¢) in Eq. (12).

Most quantum dynamics studies are performed in repre-
sentations that are “well understood,” implying that the basis
states have a clear meaning (e.g., the eigenstates of the op-
erator H,). Both time-independent and time varying states
have been considered. For instance, in the dressed-state rep-
resentation, given a time varying Hamiltonian H(), the sys-
tem is rotated by R(¢) such that R(£)H(1)R'(¢) is diagonal. In
situations where RR' is negligible, the Hamiltonian, being
diagonal, permits a significant simplification of the dynam-
ics, as there are no transitions between the basis states in
such a representation. Mechanism analysis in the dressed
state picture was studied previously [14]. While the dressed
state picture is not always appropriate, it illustrates the con-
cept of moving to a better set of basis states to understand
the dynamics. A key goal in changing the basis is to “under-
stand” the new basis states. As dressed states have been ex-
ploited extensively, the use of such basis states is now
readily accepted, with an understanding of the states coming
from familiarity. In this work we shall introduce the concept
of picking basis states with some degree of “optimality” and
setting up the choice of a suitable transformation R(¢) as an
optimization problem. The notion of “understanding” the
new basis states shall subsequently be addressed by restrict-
ing the choice of representations to classes that are amenable
to interpretation. However, additional work and exploration
into flexible representations will surely be needed to attain a
good level of understanding.

Consider now the formulation for deducing an optimal
transformation. In general, given the Hamiltonian H(¢) in an
initial suboptimal representation, we define the functional J

J=C(R,R,H) + kD(R,R). (13)

Here C is a functional that measures the mechanistic com-
plexity of the dynamics after applying a transformation R(z),
and D is a functional that measures the complexity of the
transformation; k is a heuristically determined weight, with
low values corresponding to an emphasis on minimizing the
dynamical complexity, and high values corresponding to an
emphasis on using simple transformations. The goal is to find
the transformation R(¢) that minimizes this cost functional. In
this paper we shall utilize the specific cost function

T
JIR(),R(1)] = f {IHz )P + KIR)|*dt, (14)
0

where the first term is a special case of C(R,R.H), expressed
as the integrated norm squared of the Hamiltonian trans-
formed under R(z) in Eq. (11). The second term is a particu-

lar choice for D(R,R) that seeks to minimize the norm of the
rate of variation of R(z). The most appropriate measure of
dynamical mechanism complexity would be obtained from
identifying the highest contributing pathway order in the new
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representation. However, using such a measure would be a
computationally intensive task. In order to achieve the goal
of minimizing Eq. (13) in a practical fashion it is important
that C not actually require an explicit knowledge of the
mechanism. While subsequent results show that the norm of
Hg(t) is only an approximate measure of dynamical mecha-
nism complexity, it is sufficient to set up simple optimization
schemes to determine transformations R(r) that permit cap-
turing all or part of the dynamics in the representation as
desired. The Frobenius norm [A|*=Z,,,|a;,|*=Tr(AA") will
be utilized in this work. While this will be the norm of
choice, other choices could be utilized, for example, mini-
mizing the norm of all off-diagonal elements instead of the
entire matrix (as the diagonal elements do not induce state-
to-state transformations). The first term in the integrand of
Eq. (14) can be expanded as

Tr(RHR'RHR") — iTr(RHR'RR")
+iTr(RR'RHR") + Tr(RR'RRY), (15)

where the time dependence has been omitted for brevity. The
first term equals Tr(H?) and using the cyclic invariance of

the trace operator along with RRT=1 (implying RR"=-RR?"),
the second and third terms may be combined as 2iTr(RHRY).

Finally, the last term in Eq. (15) reduces to Tr(RR'). There-
fore, the cost functional becomes

T
J= f {Tr(H?) + 2iTe(RHR") + (1 + k) Tr(RR)}d1.
0

(16)

The first term integrated over time is simply the norm of the
original Hamiltonian and is independent of R(r); therefore
we shall drop it from the cost function. Writing k' =1+k, we
arrive at the final cost functional

T
JIR(1),R()] = f {2iTr(RHR") + k' Tr(RR")}dr.  (17)
0

In principle, this functional can be numerically minimized
for a given k' to find the optimal unconstrained transforma-
tion R(r). In the limiting case of k' =1 the variational prob-
lem is equivalent to solving the original time-dependent
Schrédinger equation, since the optimal solution is R(7)
=U'(¢). In order to obtain a practical procedure to minimize
J, it is necessary to constrain R() to obey a suitable dynami-
cal equation of motion. There is wide freedom in utilizing
constrained forms for R(z), and the cases considered in this
work should be viewed as a means to illustrate the varia-
tional formulation rather than necessarily an optimal choice
for practical purposes. Here we will choose R(r) to satisfy the
equation of motion

R() = iALF()IR(), (18)

where AD?(t)] is a Hermitian matrix which depends on a

vector of n time dependent parameters f(t). Substituting Eq.
(18) into the cost functional in Eq. (17) yields

043415-4



UNDERSTANDING THE ROLE OF RESPRESENTATION IN ...

T
JIR(),R()] = f {2iTr(iA[f]RHR")
0
+ k' Tr(A[fIRR' (- iAT[f] )}dr
T
- f {Tr(= 2A[fIRHR") + k' Tr(AX[f])}dt.
0

(19)
The goal is to find the optimal vector f(t) that minimizes

the cost J in Eq. (19), subject to the constraint of Eq. (18).

The vector of parameters f(t) can be viewed as the “control
knobs” thereby reducing the identification of the transforma-
tion R(z) to a special type of optimal control problem. In
order to solve the optimization problem we introduce the
augmented cost functional

T
J[R(1),R(t),\(1)]= f [~ 2Tr(A[f]RHR")
0

+ K TH{ALAATT (0]}
+ Tr(N{R(1) — iALFIR}
+ (R +iRTA[fDN)d1], (20)

where \(7) is a Lagrange multiplier matrix. Considering the
variation with respect to R, we obtain

T
&) = f Tr{— 2ARHGSR" + SR'\ + iSRTA[fI\}dr.  (21)
0

Integrating the term SR by parts produces

T
& = f Tr{- 2ARHR" — SR\ + i6RTAN}dt + [ 6R™\]].
0

(22)

Setting the variation in SR to zero, we obtain the differential
equation for A

N =—-2ARH + iA\ (23)
with the boundary conditions
[6R\]{=0. (24)

We shall show later that the value of J is invariant to replac-
ing R(z) with KR(t), where K is any arbitrary (constant) uni-
tary operator. Therefore, given a solution R(z), we can pick
K=R'(0) to ensure that R(0)=1. As a result, we get from Eq.
(24) the conditions R(0)=I and \(7)=0. Finally, setting the
variation of each element f; of f to zero in Eq. (20) yields the
algebraic equations

26A[f . SAYf]l LAA[f L SA[f
—mRHR‘—k’ mﬂw [f]R—iR‘ mx:o,
of; of; of of
I=1,....n. (25)

Equations (18), (23), and (25) are the working variational
equations along with R(0)=I and \(T)=0. In practical imple-
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mentations of the optimization procedure it can be conve-
nient to further constrain the transformation to a suitable
functional form. Certain transformation forms can lead to
equations that may be simpler to solve numerically, produce
simpler interpretations, or have other helpful features with-
out explicitly employing the general procedure developed
above. The treatment that follows is an initial step in this
direction.

B. Closed-form optimization for constrained changes
of representation: One-point optimization procedure

There are many ways to constrain and parameterize the
change of representation given by R(r) based on mathemati-
cally desired properties or physical motivation. The simplest
transformation would be a time independent operator R.
However, this change of representation does not simplify the
dynamical mechanism, as defined in Sec. II. This can be
established by inserting R(1)=R, R(1)=0,V ¢ in Eq. (16) to
obtain

T
JIR] = f Tr(H?)dt, (26)
0

which is exactly the cost in the original representation.
Therefore, under the cost measure defined in Eq. (14), time-
independent transformations will not reduce mechanistic
complexity. In order to better understand this behavior, con-
sider, for example, a typical integral in the Dyson series ex-
pansion

(-i)? f H(1,) f 2 H(t)dt,dt,. (27)
0 0

Under a transformation H(z) — RH(f)R" with R=0,V ¢, the
Frobenius norm of this integral will remain unchanged. A
similar argument can be made for all other integrals in the
Dyson series. Hence for time-independent transformations,
the number of significant terms in the expansion for Wy can-
not change, and only the dominant pathways within a given
order may vary [e.g., the separate contributions within the
second order terms of Eq. (27)]. Therefore, we do not further
consider time independent changes of representation in this
work.

A natural next step is to consider a simple time dependent
transformation matrix, given by

R(t) = expliAb(1)], (28)

where A is a time-independent Hermitian matrix and b(z) is a
scalar function. Equation (28) is a special case of the general
transformation embodied in Eq. (18). The structure of this
constrained transformation simplifies the optimization func-
tional allowing for closed-form equations for the optimal
representation. Equation (28) is related to various approxi-
mate solutions of the Schrodinger equation. The treatment in
Sec. IV will consider general representation changes as a
time-ordered product of transformations of the form given in
Eq. (28), valid for N successive time intervals, which in the
limit of N— o gives an unconstrained form for the change of
representation.
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From Eq. (28), R=iAbR, and substitution into Eq. (17)
gives

T
J[b(1),A]= f {2iTt{iAb(t)RHR']
0

+k'TiiAb(ORR (- D)ATD(1) [}dr.  (29)

The form of R(¢) in Eq. (28) implies that R commutes with A
at all times, thereby reducing J to

T
J[b(1),A] = f {=2b(t)T[AH(1)] + k' b(2)*Tr(AAT) }dsr.
0

(30)

This is a function of A and b, not b(z), so b(z) is only deter-
mined up to an arbitrary constant. The goal is to find A and b
that minimize J in Eq. (30). First consider optimization for b
by setting the first order variations in b to zero,

Tr[AH(1)]

b() = k' Tr(AAT)”

31)
Since A is Hermitian, we treat the upper half of its matrix
elements a,, (with p=g) as independent variables. The di-
agonal elements are real, while the off-diagonal are in gen-
eral complex. In terms of the elements a,, in the upper half
of A, and similarly £,,,(t) of H(z), the cost function becomes

T
J= f {-2b(r)[2a,,ph,,p(t)+ >

0 )4 P:q4>p

Aphy,(t) + c.c.]

P.q=>p

+ kfb(;)z[E Ay +2 2 apqa:q] }dt. (32)
p

Setting the partial derivatives of each of the independent
variables a,,, of A to zero yields

T
J b(1)H(1)dt,
0

A= (33)

f k'b(1)%dt.

0

The system of equations given by Egs. (31) and (33) can be

solved by iteration to find b() and A.
Consider now an arbitrary unitary matrix K used to re-
place R(z) in Eq. (17) with KR(¢) to obtain

T
JIKR(t),KR(1)] = f {2iTr(iKRHR'K") + k' Tt KRR K }ds.
0

(34)

Using the cyclic invariance of the trace operator and KK’
=1, it follows that J is invariant to K. Therefore, if J is
optimized for exp[iAb(r)], it will also be optimized for
K exp[iAb(t)]. Replacing b(t) with b(f)+c, where ¢ is con-
stant, is a special case of K=exp(icA), which leaves the cost
J unchanged. Therefore, b(¢) is only determined up to an
arbitrary constant which can be chosen as b(0)=0, in keep-
ing with R(0)=1. The new representation therefore coincides
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with the original one at r=0. We also note that if A and b(z)
optimize J, then A/c’ and ¢'b(r) for any real constant ¢’
#0 is also a solution. The results are normalized by setting

the maximum value of b to 1/k'.

In the case of k'=1 or k=0 the optimization goal in Eq.
(14) is to find the transformation which minimizes the norm
of Hg(t). As shown earlier, the unconstrained representation
R(1) that minimizes the norm of Hg(z) is U'(¢). Minimizing
the cost in Eq. (30) corresponds to finding R(z) of the form
expliAb(1)] which is the best approximation to U'(z).
Equivalently R'() will be the closest approximation to U(#),
capturing the dynamics induced by the Hamiltonian in the
original representation. Also, if A and b(t) optimize J for
k'=1, then A and b(r)/k’ optimize J for all other values of
k'. Therefore, solving the optimization problem for k'=1
automatically generates the solution for all other values of
k'

The interpretation of the transformation R(¢) can be seen
from the following special case where the Hamiltonian has
the form H(z)=g(t)H'. Then the time evolution is given by

U(r) = expl— iH’ftg(u)du] , (35)

0

which exactly matches R¥(z) with H' =A and g(r)=b(r). This
result may be verified by observing that A=H' and b(r)
=g(r) satisfy Egs. (31) and (33). Hamiltonians of this simple
form can arise in the context of controlled systems governed
by the rotating wave approximation (RWA). Consider a sys-
tem of the form

H=Ho~ pelt), (36)

where H, is the field free Hamiltonian, w is the dipole op-
erator, and &(7) is the control field. In the interaction repre-
sentation, the time evolution becomes

W e (37)

dt
with w,(r)=exp(iHyt) s exp(—iHyt). As a special case, we
consider systems where the control field is of the form

d 1

5(1‘) = Zg(t)z E blm Cos(wlmt + ¢lm)’ (38)

=1 m=1

where g(¢) is a slowly varying envelope function over the
range [0, 1], and each frequency wy, is resonant with only
one transition |I) — |m). Then in the RWA [18], the time evo-
lution becomes

du

e ing(U. (39)
In practice, when such a system is propagated using the in-
teraction equation [Eq. (37)], although the long term dynam-
ics follows the RWA, there are significant short term fluctua-
tions which are lost. The short term fluctuations can be
removed by the smoothing procedure of replacing H(r) by its
average value over an interval [1—8/2,1+ 6/2]. This smooth-
ing procedure acts as a low pass filter on H(¢), characterized
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by the small parameter &, that removes the short term fluc-
tuations.

C. Closed-form optimization for constrained changes
of representation: Two-point optimization procedure

HE seeks to understand the mechanism induced by the
control £(f) acting over a time interval [0,7]. For example,
in the original representation, one may consider two basis
states, say |a) and |b), and subject the element U,,(7) to
mechanism analysis. After making a representation change,
transitions occur between basis states |¢,) and |¢,), which
are given by R'(¢)|a) and R7(r)|b), and then a mechanism
analysis would be performed on Wg, o (7). While the new
basis states coincide with |a) and |b) at t=0, in general they
will be different states at r=7. However, despite the repre-
sentation change, we may still desire to analyze the mecha-
nism between the states |a) and |b). In this case we may
introduce a new, optimal representation which is constrained
to match the original representation at times 0 and T [i.e.,
R(0)=R(T)=I]. Then |a) and |p) will remain as the basis
states at both the initial and final times, and from Eq. (12)
W¢b,¢a(T) = U,,(T), although the mechanism will reflect the
presence of the change of representation. For the constrained
case of Eq. (28), this corresponds to optimizing the cost
functional in Eq. (30) with the constraints 5(0)=b(T)=0, or
equivalently, optimizing the augmented cost functional

T
Jy= J {=2b()THAH(t)] + k' b(1)*Tr(AA)}dt
0

+0,6(0) + \,b(T). (40)

Setting the variations in b to be zero
T
= f {=28b(NTHAH®t)] + 2k’ Sb(1)b(t) Tr(AAT) Yt
0

+ 7\, 6b(0) + N\, 6b(T) (41)

and integrating by parts yields
T
= f {28b(t) TH[AH(1)] - 2k’ 8b(1)b(£) Tr(AAT)}dt
0

+{26b(t)TI[AH (1) [} + [2k' 8b(1)b(1) Tr(AA") Y
+ N, 8b(0) + N\, 8b(T). (42)

The boundary terms can be used to compute the values of the
Lagrange multipliers A and \,, but their values are not im-
portant here. From Eq. (42), b(z) satisfies

THAH()] - k' b(1)Tr(AAT) = 0, (43)

which may be solved with the boundary conditions b(0)
=b(T)=0 to give

1 t
b(r) = m{fo Ti{AH(7)]dT- ct:| (44)

with
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1 (7
c:—f Tr[AH(7)]dT. (45)
T,

The optimization for A, given b(¢) in Eq. (44), remains ex-
actly the same as before, producing Eq. (33). This particular
form of the optimization problem shall be referred to later as
the two-point optimization procedure.

IV. GENERALIZED REPRESENTATION CHANGES

The previous section developed an optimization proce-
dure to find a quantum-mechanical representation. We now
present two flexible generalizations that go beyond the con-
strained transformation R(z)=exp[iAb(z)] in Eq. (28). The
first procedure involves dividing the Hamiltonian into
smaller time intervals and optimizing the representation for
each time piece separately, and is referred to as optimization
by time division. The second approach involves iteratively
repeating the procedure of Sec. III until the desired represen-
tation is achieved. This is referred to as optimization by it-
eration.

A. Optimization by time division

The first generalization of the procedure of Sec. III in-
volves dividing H(r) into time intervals and applying the
optimization procedure based on the constrained form of Eq.
(28) to each individual interval. First consider dividing H(r)
over a time interval [0,7] into two parts H,(r)=H(t) for t
e€[0,7/2], H,(t)=0 otherwise, and H,(t)=H(z) for ¢
e[T/2,T], Hy(t)=0 otherwise. Then we use the optimizing
equations [Egs. (31) and (33)] for H,(z) over the interval

[0,7/2] to get A, and b,(7) as

TeAH(1)]

bi(t) = k' Tr(A2)

for t € [0,7/2] (46)

and
RGO
fguk/bl(f)2

Applying the same procedure for H,() over the interval
[T/2,T] gives

(47)

- TiAH®@)]
b,(t) = —k’Tr(Ag) for t € [T/2,T] (48)

and

0
f b,(t)H(1)dt
WL (49)

T .
f k'by(1)?
2

These equations are solved with the respective initial condi-
tions b,(0)=0 and b,(T/2)=0. Then the overall transforma-
tion to use for H(z) is R,(r)=expliAb,(z)] for 1 €[0,T/2],
and R,(t)=expliA,b,(t)] for t €[T/2,T]. However, Sec. III
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showed that R,(r)=K exp[iA,b,(¢)] would also be an optimal
solution over the range [7/2,T] for any arbitrary unitary K.
Therefore, to ensure that R(¢) is continuous over the whole
range [0,7], we choose K=exp[iA,b,(T/2)] and write
R,(t)=expliAb,(T/2)]exp[iA,b,(t)], which will guarantee
continuity such that R (T/2)=R,(T/2).

This procedure may be generalized in a simple fashion.
If the control is nonzero over the time interval [0,7] then

p
expliAb,(2)] for t € [0,T/P],

PHYSICAL REVIEW A 77, 043415 (2008)

we divide the interval T into P vparts: [0,7/P],
[T/P,2T/P],...,[(P-1)T/P,T] and perform the optimiza-
tion of Sec. III on each of the separate Hamiltonian pieces.
This will generate the sets {A;} and {b;(r)} for each of the
corresponding sub-Hamiltonians, with the initial conditions
b[(i-1)T/P]=0,i=1,2,...,P. Then R(t) will be continuous
on [0,7] and composed from these individual transforma-
tions as

expliA b, (T/P)]lexpliA,b,(t)] for t € [T/P,2T/P],

R(t) = expliA,b,(T/P)]expliA,b,(2T/P)lexp[iAsb5(t)] for t € [2T/P,3T/P], (50)

>

In this case R(7) can be viewed as arising from the dynam-
ics induced by evolution under a Hamiltonian given by

A,b, (1) for t e [0,T/P],
HR(I) — A2b2(f) fort e [T/P,ZT/P], (51)

b}

Apbp(t) fort e [(P-1)T/P,T].

In practice this procedure may be stopped at any value of
P=1, and the goal is to seek a transformation that reduces
the complexity of the mechanism in Wg(T) to an acceptable
level. Notwithstanding this goal, in the limit of P— oo, the
original Hamiltonian H(z) will be broken into an infinite
number of time intervals with time-independent sub-
Hamiltonians, in which the dynamics can be perfectly cap-
tured by exp[iAb(r)] with b(z) being linear in time. For k’
=1 the procedure yields a R(r) which is a time-ordered prod-
uct of transformations that should converge to U'(t) as P
— 0, corresponding to one of the standard numerical proce-
dures for solving the Schrodinger equation. This behavior
makes clear how any choice for P will strike a managed
balance in transforming some of the dynamics into the sys-
tem representation R with the remainder residing in Wpg.

B. Optimization by iteration

This section develops an alternative generalization of the
procedure of Sec. III. Instead of dividing the Hamiltonian
into time intervals, the Hamiltonian in the current represen-
tation is iteratively taken as input into the next level of the
optimization procedure. Consider the new Hamiltonian H(r)
generated by applying R,(f)=exp[iA,b,(t)] on the original
Hamiltonian H(z), where A, and b,(¢) would be obtained by
solving Eq. (31) and (33) for H(r)

\exp[iAlb,(T/P)] -~ expliAp_1bp_ (P = 1)T/TlexpliApbp(t)] for t € [(P - 1)T/P,T].

H\(1)=R,HR} +iR\R}. (52)

Now starting with H;(¢), we apply the same optimization
procedure to generate R,(r)=exp[iA,b,(z)] by solving Egs.
(31) and (33) for H,(z), forming

Hy(1) = R,H R} + iR,R}. (53)
Inserting H,(r) [Eq. (52)] in the above expression gives
Hy(1) = Ro[R\HoR] + iR\ R{IR} + iR,R}
=R,R HyR R} + iR,R\RIR} + iR,R\RIR}, (54)

where the identity operator Rl(t)R'{'(t) has been inserted in
the last term. Finally, this expression can be rewritten as

. d
Hy(t) = RoR\ HoR R + i TRoR RIS, (55)

which corresponds to applying the transformation
R,(t)R, (1) =exp[iA,b,(t)]expliA;b;(r)] on the Hamiltonian
H(t) in the original representation. H,(z) can similarly be
transformed again, and this process extended iteratively as
often as desired, generating a sequence of representations for
the Hamiltonian {H,,()}.

This iterative procedure can be naturally extended to the
two point optimal representation case of Sec. III C, where
the initial and final transformation are constrained to be the
identity. For example, if R,(0)=R,(T)=R,(0)=R,(T)=1, then
the composition of two transformations R,(#)R;(¢) also satis-
fies R,(0)R,(0)=R,(T)R,(T)=1. Hence the two point optimi-
zation can also be iterated.

The two generalizations developed in this section allow
for effectively choosing optimal rotations for general sys-
tems, where the control field is not constrained to fit any
functional form. The trade off between complexity in repre-
sentation and mechanism was made in the choice of P or N,
the number of time divisions and iterations, respectively.
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Finally, an analysis of Egs. (31) and (33) shows that they
will generally not be satisfied by the interaction representa-
tion transformation R(f)=exp(iHt) for a Hamiltonian of the
form of Eq. (36). This behavior points out the distinction
between seeking a transformation for mechanism simplifica-
tion versus that of isolating the dynamics of the external field
in the standard interaction representation.

V. NUMERICAL ILLUSTRATIONS

This section illustrates the formalism developed in Secs.
IIT and IV on several numerical examples. We first consider
simple systems whose dynamics are fully captured by trans-
formations of the form exp[iAb(z)] as an initial testing
ground and means to present the concepts before considering
more general systems. In all cases where HE is employed to
reveal the mechanism, the modulation is applied to the ele-
ments of the transformed Hamiltonian Hg(z) in Eq. (11) fol-
lowing the procedure of Sec. II to reveal the mechanism of
the transformed time evolution in Eq. (10).

A. Systems within the RWA

The first illustration is a four-level system A with Hamil-
tonian of the form H(t)=g(t)H', where H'=Z,. h;|k)Xl|
with h{,=1.653, h;=1.054, h{,=1.600, h5,=0.914, h},=0
and h3,=0.790 (hj;=h/) and g(1)=2 exp[—(t=500)%/1507].
The dynamics are followed from =0 to 7=1000 (the results
of all the examples are expressed in arbitrary dimensionless
units). For system A, the time evolution is exactly expressed
by Eq. (35), and as expected, the optimization procedure of
Sec. Il with k'=1 exactly identified R(t)=U"(f). As a nu-
merical test, the cost functional J of Eq. (30) in the original
representation R(f)=1 is 17.9, and the cost function was re-
duced to 1.2 1077 after minimization. The numerically de-

termined function b(r) was essentially identical to g(¢) (not
shown here). Thus, R(f) is a representation that rotates the
system such that the norm of H(z) is essentially zero.

This simple example clearly illustrates the interpretation
of the transformation R(r)=exp[iAb(t)] as the dynamics of a

quantum system with the Hamiltonian Hz=-Ab(z). The
transformation R(z) can be understood as the dynamics of
this simple Hamiltonian, and the time evolution operator in
the new transformation Wg(z) and its associated mechanism
can be viewed as the deviation from the dynamics of the
simplified Hamiltonian. In this particular case Hg(r)=0 and
Wr(#)=1, resulting in a trivial mechanism, as expected, since
the representation captures the full dynamics of the system.
In general, the optimization routine aims to generate a
(simple) Hamiltonian H which produces the best match for
the underlying system dynamics. &’ can be interpreted as a
limiting factor on the dynamical complexity that the optimi-
zation routine is permitted to use. For k'=1 (no cost on the
dynamics of the transformed system), the optimization seeks
the H that generates the closest match to the system dynam-
ics.

As a second illustration we generate system B, a
four level system with the Hamiltonian H=H,—ué&(1),
where H,=3,E|i)(i| with E =0, E,=0.811, E;=3.026,
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FIG. 1. |U;,(#)| and |U3,(z)| for the optimally controlled system
C. The optimal control target was to maximize |Us(T)|* at
T=100.

E4=10.534, and u=H' of system A. The control field is
E(1)=0.1 exp[—(—500)?/150* ]2 cos(w;,,t), where w,,=(E,
—E,,). This system satisfies the RWA rather well (not shown
here). The norm J of the original Hamiltonian H(7) with
k'=1 in Eq. (14) was found to be 0.70, and upon transfor-
mation by the optimal representation procedure of Sec. III to
Hg(t), the norm was reduced to 0.47. In this case the change
of basis has a modest effect as measured by the norm of the
original and transformed Hamiltonians. It was found that the
value of the norms can be reduced by the filtering method
discussed in Sec. III. The desired population transfer (|1)
—|4)) in this case is little influenced by reasonable filtering
with 8 up to 100 for 7=1000, as the system B satisfies the
RWA. The example also illustrates that the Hamiltonian
norm J is not a perfect measure of transformation perfor-
mance. However, further examples will illustrate that mini-
mization of J can nevertheless be very effective.

B. More general systems

We now consider Hamiltonians where the RWA is gener-
ally not valid, and the control field is of free form, deter-
mined by optimal control theory [1] without the constrained
form of Eq. (38). Consider the new system C, whose param-
eters are chosen as E;=0, E,=1.711, E3=3.026, E,=4.134
and M12=1.653, ,U/13=0.254, ,LL14=1.5, ILL23=0.814, Moq
=0.025, and u34=0.79 (m;;=p;;). The optimal pulse maxi-
mized |Us,(T)> at T=100 to produce |1)— |3) population
transfer of 0.99. Figure 1 shows the transfer process by plot-
ting |U,,(1)| and |Us,(¢)|, and Table I lists the amplitudes of
some of the pathways contributing to the population transfer.
Significant high order pathways contribute to the mechanism
in the reference interaction representation of H,. The system
C was rotated into an optimal representation using Eq. (28)
of Sec. III B. The reduction in norm, from J=3.83 to 2.98 is
relatively small. In order to find more effective representa-
tions we will apply the procedures outlined in Sec. IV.

For the time division technique of Sec. IV A. Figure 2
shows the optimal value of the Hamiltonian norm J as
a function of the number of time intervals P, where P=0
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TABLE I. A portion of the mechanism for the population trans-
fer |1)—|3) of the system C in the original representation. While
pathways up to third order are shown here, significant higher order
pathways contribute as well.

Pathway Amplitude
(1—3) —0.81+0.25i
(1—-2-3) —0.92+0.54i
(1—-4—-3) —0.24+0.12i
(1—=2—1-=3) 0.32-0.10

corresponds to the initial representation (R=1I). The Hamil-
tonian norm diminishes rapidly as P increases, showing that
most of the dynamics is captured by R(r). For P=0 all the
complexity resides in the dynamics U(z), while for P— oo all
the complexity is shifted to the representation R(z). Figure 3
illustrates the new basis states {|¢,)=R'(¢)|n)}, n=1,2,3,4
for the intermediate case of P=16, where R'(f) has captured
part of the system dynamics. The transformation components
reflect complex dynamical behavior for |¢,,>, n=1,2,3. The
behavior of |¢,)=|4) indicates that this representation re-
tains essentially the original character of state |4) reflecting

;
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FIG. 2. Hamiltonian norm for system C as a function of the
number P of intervals in which the dynamics is divided following
the optimization by the time division procedure in Sec. IV A. As P
increases, the complexity of the mechanism of Wy is reduced.

its reduced role in the mechanism. From another perspective,
Fig. 4 presents R'{'l(t) and R;l(t) for the cases of P=16 and
P =064, and comparison to Fig. 1, shows how the dynamics in
R'(t) begins to approach U(f) as P increases.
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FIG. 3. {j|[R'(t)|i)=|¢;) for i=1,2,3,4 using the time division algorithm with P=16 for system C. These plots show the basis states of

the new representation in terms of the eigenstates of H,.

043415-10



UNDERSTANDING THE ROLE OF RESPRESENTATION IN ...

16 Divisions

0.8 r 1

0.6 j

Amplitude

O 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Time

64 Divisions

Amplitude

0.4 1

0.2 r 1

O 1 1 1 1 1 1 1 1 1
0O 10 20 30 40 50 60 70 80 90 100

Time

FIG. 4. |R],()| and |R},(1)| for the time division procedure,
when the Hamiltonian of system C has been divided into 16 and 64
divisions. On comparing to Fig. 1, the representation begins to
clearly resemble the original dynamics as P increases.

Figure 2 shows that the norm of the transformed Hamil-
tonian in the case P=512 is very small, which means that
R(1) has almost completely captured all of the dynamics. The
case P=64 is interesting, as Fig. 2 shows that the Hamil-
tonian Hy has a fairly large norm, yet Fig. 4 shows that the
dynamics of R},(T) are very similar to that in the original
representation. This result means that the remaining structure
in Hg (i.e., the Hamiltonian in the transformed basis at P
=64) does not lead to any significant dynamics. The P=16
case shows an intermediate situation in which the represen-
tation change has only partially captured the dynamics.

The trade off between the complexity of the representa-
tion and the complexity of the system dynamical mechanism
in Wy is illustrated in Fig. 5. A mechanism analysis was done
on the transformed time evolution operator Wg(T), by encod-
ing its underlying Hamiltonian Hy and Fig. 5 shows the mag-
nitude of the amplitudes of different orders of the Dyson
expansion contributing to W¢3,¢I(T) in the new representa-
tion. For example, the amplitude corresponding to n=1 is the
magnitude of the contribution of the direct transition |¢b,)
— |¢3) connecting the initial state |¢;) to the final state |¢s),
the second order term is the norm of the sum of the second
order transitions |¢) — |¢hy) —|d3) and |d)) — |bs) —|b3),
etc. As can be seen, the less complex transformation R(r; P
=16) leaves some higher orders moderately contributing to
the transfer process. When the Hamiltonian undergoes the
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FIG. 5. This figure compares the contributions of different or-
ders of mechanistic pathways for system C in the original represen-
tation Us(7) to those of W, 4 for P=16 and P=64, following the
procedure in Sec. IV A. As P increases the complexity of the
mechanism in Wy is reduced.

R(r; P=64) transformation, the mechanism shows only first
order terms.

A full HE mechanism analysis on W%(,,I(T) for the
Hamiltonian in the new representations was done and the
results are shown in Table II. As can be seen, there is very
little dynamical behavior in the case of P=64, and even in
the P=16 case, the dynamics are significantly simpler than in
the original representation. Therefore, for the time division
method with k'=1 one can choose a particular value of P
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TABLE II. Comparing the mechanisms of W, 4 () for system
C in terms of the pathway amplitudes for two optimal representa-
tions, obtained by splitting H(¢) into P=16 and 64 parts. For P
=16 the dynamics is already considerably simpler than in the initial
representation, and for P=64 the dynamics is given almost totally
by a small first order term.

Pathway W, 4,(T:P=16) W, (T P=64)
(¢1— ) —0.61+0.23i —0.12+0.08i
(¢1— dr— ¢3) —0.05+0.04i -0.01

(1= bps— &3) —0.09+0.04¢ 0

(p1— pr— 1 — b3) 0.01-0.01i 0.01

where the trade off between representation and mechanistic
complexity is deemed appropriate. This trade off also poses
the need to “understand” the representation R(z), which itself
can be complex. Importantly, the algorithm provides a means
to systematically balance the correlated tasks of understand-
ing mechanism captured in W(¢) in reference to an under-
standing of the representation R(z).

We now consider the application of the iterative proce-
dure of Sec. IV B on system C. Fig. 6 shows the value of the
Hamiltonian norm after each iteration. As can be seen, the
dynamics are effectively transferred to R(r) within a few it-
erations and the convergence properties of this procedure are
much faster than in the time-interval splitting technique. Im-
portantly, the iteration procedure can be halted at an appro-
priate trade off point between the dynamical complexity in
Wg(t) and the representation complexity R(7). Table III
shows the mechanism of W¢3’ ¢1(T) in the new representation
after five and eight iterations, and Fig. 7 shows the contribu-
tions of different mechanistic orders to W¢37¢1(T). After five
iterations the dynamics of the transformed system are almost
first order, and after eight iterations, even the first order term
has decreased. These two levels of iteration represent differ-
ent balances between the complexity of the representation
change R and the dynamics in the evolution Wy under Hg(z).
By 30 iterations all the dynamics is shifted to the represen-
tation and the Hamiltonian in the new representation shows

10
1t 4
£
o
z 01 1
c
8
c
2 0.01 t 1
z .
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0.0001

5 10 15 20 25 30
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FIG. 6. Hamiltonian norm for system C as a function of the
number of iterations following the optimization procedure of Sec.
IV B.
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TABLE III. Mechanism analysis of W, 4 (T) for system C in
two optimal representations, obtained from transformation of H(t)
after N=5 and N=38 iterations.

Pathway Wo, 0, (T;n=5) Wy s, (T;n=38)
(¢1— 3) —0.56+0.24i -0.30+0.07i
(¢p1— br— h3) 0.02-0.01i 0.03-0.05i
(1= ds— b3) 0.01+0.02i —0.02i

(¢1— pr— 1 — b3) 0.01-0.02i 0

little dynamical behavior. Figure 8 shows |R],(¢)| and |RY,(z)|
for the cases of 5, 8, and 30 iterations. Comparison to Fig. 1
shows that they, respectively, resemble |U;,(¢)| and |Us, ()]
more as the number of iterations increase, indicating that
R'(t) is capturing more of the system dynamics.

System C was also subjected to the two point optimiza-
tion procedure detailed in Sec. III C. The procedure needs to
be applied a number of times in order to significantly reduce
the Hamiltonian norm as defined in Eq. (14). Figure 9 shows
the Hamiltonian norm J as a function of the number of itera-
tions of the procedure. The two point optimization cannot
drive the dynamics of Hg(r) to zero [i.e., to lie fully in the
representation transformation R(f)], because the new basis
and the old basis are forced to coincide at the times =0 and
t=T. Therefore, U(T)=Wg(T), and consequently population
transfer in the old and new representations must be the same.
As a result, the Hamiltonian norm converges to some non-
zero value as the number of iterations increases. It was found
that the mechanistic complexity for Wg(T) was not signifi-
cantly reduced. This means that the transformation was ef-
fective in reducing the Hamiltonian norm, but less effective
in reducing dynamical complexity.

In order to understand how the latter behavior is tied to
features of the system dynamics, a new system D was cre-
ated for the two point algorithm, retaining the control field
and H, from system C, but with a new dipole matrix u. The
nonzero elements of w are w,=1.653, pu3=1.054, p14,=1.6,
13=0914, and u3,=0.79 (w;=pm;). Figure 10 shows the
amplitudes of different mechanistic orders of Uj,(T) in the
original representation, and of W¢3’¢1(T) for the transforma-
tions corresponding to 5 and 30 iterations. The case of
U;,(T) for system D in Fig. 10 should be compared to that of
system C in Fig. 7, where it is evident that system D has a
more elaborate, higher order mechanism. The population
transfer |1)—|3) in the representation of the eigenstates of
H, yields significant contributions up to ninth order. On the
other hand, in the optimized representation after 30 itera-
tions, the same transfer |¢,)— |¢3;) involves only up to fifth
order terms. Figure 11 shows |¢;)=R(¢)|1) for the case of
30 iterations. As the transformation is constrained to return
to the identity at =T, the transformed and original basis are
the same at the beginning and end points. Some illustrative
pathways of the mechanism in the original representation
and for 30 iterations are listed in Table IV. The mechanism
in the new representation is significantly simpler than that in
the original one. Once again, there is a choice to be made in
the number of iterations, representing the trade off between
representation complexity and Hamiltonian dynamical com-
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FIG. 7. This figure compares the contributions of different or-
ders of interaction for system C in the original representation
[U3(T)] to those of Wy, 4, for N=5 and N=8, following the pro-
cedure in Sec. IV B. As for the case of Fig. 5, the magnitudes of
higher order interactions diminish as N is increased, indicating that
the mechanism contained in W gets simpler.

plexity. The reason that system D showed a significant sim-
plification of its mechanism as compared to system C ap-
pears to arise from the dynamics induced in system D being
more complex, thereby permitting more opportunities for
mechanism reduction by iterative representation changes.

VI. CONCLUSION

The dynamical mechanism of controlled quantum me-
chanical system can depend on the choice of representation

PHYSICAL REVIEW A 77, 043415 (2008)
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FIG. 8. |R](r)| and |RY,(1)| for system C when the Hamiltonian
has been iteratively transformed 5, 8, and 30 times. Comparison to
Fig. 1 shows how the transformation increasingly captures the dy-
namics of the original Hamiltonian.

of the system. Although observable expectation values are
invariant to the representation, the formulation and under-
standing of the mechanism, particularly in terms of the am-
plitudes of significantly contributing quantum pathways, is
dependent on the choice of basis states in which the dynam-
ics are followed. The analysis of controlled quantum dynam-
ics first entails a choice of representation and an expression
of the Hamiltonian in that representation, followed by an
identification of the significantly contributing quantum path-
ways. An appropriate choice of representation can yield a
simpler dynamical picture for the time evolution. In this
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FIG. 9. Hamiltonian norm J of system C as a function of the
number of iterations in the two-point, iterative optimal representa-
tion procedure outlined in Sec. IV B. For N>20 the norm con-
verges to approximately 0.07.

work, the criterion of simplicity was quantified in terms of
the order of terms contributing to the dynamics within the
Dyson expansion. Traditional choices of representation in-
clude the eigenstates of the field free Hamiltonian H,, or the
dressed states of the system coupled to the control field. In
this work the selection of the representation was set up as an
optimization problem. The goal of the optimization is to find
a balance between choosing a simple representation for the
system and minimizing the dynamical complexity. The struc-
ture of the proposed optimization functional was guided by

PHYSICAL REVIEW A 77, 043415 (2008)
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FIG. 11. R'(t)[1)=|¢,) for the two point algorithm. Since the
transformation is constrained to be identity at t=T, |¢#,(0))

=|¢1(D)=|1).

the criterion of achieving a minimal norm for the Hamil-
tonian, but other criteria could perhaps be used as well.
This paper started with a general variational formulation
in Eq. (13) seeking the representation transformation R(z).
The actual operational procedure calls for making a varia-
tional Ansatz, and as an illustration, all of the techniques in
this paper were built around the form in Eq. (28). The ulti-
mate guide is to seek an Ansatz that is effective in reducing
the norm of Hg(¢) while producing an easy means to deter-
mine R(f) and ideally admitting a ready physical interpreta-
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FIG. 10. Mechanistic com-
plexity in Us; for system D at dif-
ferent numbers of iterations using
the two-point iterative optimal
representation procedure of Sec.
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III C. The procedure transforms
the Hamiltonian to a representa-
tion where the contribution of
higher order terms is reduced as
more of the dynamics is contained
in the representation. However,
since in this case W¢3,¢](T)
=Us,(T), the basis cannot be ro-
tated to be identical to the evolved
state in order to capture all the
dynamics.
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TABLE IV. Mechanism analysis after the two-point iterative optimal representation procedure applied
with n=30 iterations for system D. Some of the contributing pathways for Wy, s, (T;n=30) are listed. For
comparison, the amplitudes of the corresponding pathways in the original, unoptimized representation (eigen-
states of Hy) are also shown. Although they follow the same transition |1)— |3) over the time interval [0,T],
the corresponding amplitudes in the original representation are much higher.

Pathway W, 4, (T:n=30) Pathway U (T)

(¢1— ¢3) 0.91-0.66i (1—3) -3.37+1.03i
(¢1— dr— ¢h3) -0.03-0.02i (1-2—-3) 1.03-0.60i
(¢1— dbs— oh3) 0 (1-4—-3) 0.26-0.13i
(1= d3— b1 — ¢3) -0.31+0.30i (1-3—1—3) 7.03-2.19i

tion for R(¢). The challenge is clear and the variational for-
mulation provides a solid basis for testing various choices.

A procedure was set up to solve the optimization problem.
As a simple test, this formalism was shown to be effective in
capturing the dynamics of systems obeying the RWA. The
method was generalized in order to treat the dynamics of
more complex systems. Two procedures were developed
which generated a sequence of representation changes of in-
creasing complexity, which captured more of the system dy-
namics in the representation itself, and yielded increasingly
simpler mechanisms. The procedures allowed for choosing
an appropriate balance between the representation and the
dynamical complexity. Additionally, an extension of these
procedures was introduced to fix the representation at initial
and final times, taking into account typical constraints in
optimal control experiments, where the final state may be of
paramount interest, carrying with it a particularly desired
representation.

As the different examples of this paper show, the choice
of representation for HE can give alternative perspectives to
the meaning of control mechanism. Previous work on

mechanism analysis helped to generate an understanding of
the dynamics by grouping pathways into classes, such as
composite pathways [13]. In a complementary fashion, this
work shows that the system may be rotated into a represen-
tation where the dynamics are simple enough to be captured
in a few pathways. Finally, the ability to find representations
of reduced dynamical control complexity suggests that sim-
plified models may exist to describe controlled dynamics.
The development of the latter topic is also linked to finding
representations that are amenable to “simple understanding.”
The flexibility of the variational formulation opens up a
means to determining such models.
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