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Effect of dressing on high-order harmonic generation in vibrating H, molecules
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We develop the strong-field approximation for high-order harmonic generation in hydrogen molecules,
including the vibrational motion and the laser-induced coupling of the lowest two Born-Oppenheimer states in
the molecular ion that is created by the initial ionization of the molecule. We show that the field dressing
becomes important at long laser wavelengths (=2 um), leading to an overall reduction of harmonic generation
and modifying the ratio of harmonic signals from different isotopes.
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I. INTRODUCTION

In the high-order harmonic generation (HG) process, an
atomic or molecular system irradiated by intense laser light
emits high-frequency coherent radiation. The properties of
the emitted radiation have led to interesting applications in
the past decade. To enumerate just a few, we mention the
generation of coherent ultraviolet attosecond pulses [1-3],
the measurement of vibrational motion in molecules [4], and
tomographic reconstruction of molecular orbitals [5-7]. This
list shows that the main focus of HG has recently extended
from atomic systems (mostly rare-gas atoms) to molecules,
which possess more degrees of freedom, namely vibration
and rotation. They enrich the dynamics and provide addi-
tional control knobs for HG. By understanding the effects of
vibration and rotation on the HG spectra, one is able to ma-
nipulate the harmonic radiation.

One of the main theoretical tools in understanding HG is
the strong-field approximation (SFA), also known as the Le-
wenstein model. Originally proposed to study HG in atoms
[8], it was later extended to molecules. It is the quantum-
mechanical formulation of the three-step model [9], which
ascribes HG to a sequence of (i) ionization, (ii) acceleration
of the continuum electron, and (iii) recombination. The
three-step model has had great success in describing qualita-
tively the dynamics of harmonic generation. It also predicts
correctly the value of the cutoff energy of the emitted har-
monic radiation. Regarding the quantitative predictive power
of the Lewenstein model for HG in molecules, we note that
the model ignores the Coulomb forces acting on the active
electron in the continuum. This affects most significantly the
region of low harmonics, which is thus not accurately de-
scribed. For high-order harmonics, the absolute value of the
harmonic intensity is usually lower than the value obtained
by numerically integrating the time-dependent Schrodinger
equation (TDSE) (for atoms, see [10] where such a compari-
son is made). Nevertheless, in the case of atoms, it was
shown that the qualitative behavior of high-order harmonics
usually agrees well with the TDSE result [10]. For mol-
ecules, the extra degrees of freedom can hinder the agree-
ment with the exact results. One needs to consider different
possible formulations and gauges to decide which one fits
better the analysis of a given process. For an extended dis-
cussion about the choice of gauge and formulation in the
context of molecules, see [11,12]. For example, to describe
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the two-center interference effects [13], it is advantageous to
use the momentum formulation for the recombination step
[12]. Based on our previous results [12], we choose for this
work the length-gauge molecular Hamiltonian and the mo-
mentum formulation. More systematic, detailed quantitative
comparisons to TDSE results are waiting to be performed.

The vibration of the molecular ion, treated in the frame-
work of the Born-Oppenheimer (BO) approximation, was in-
cluded in [14,15]. Only one BO potential surface was taken
into account, since at the wavelength of the commonly used
Ti:sapphire laser (800 nm), the other potential surfaces are
expected to be irrelevant. The reason is that the laser field
does not efficiently couple the BO surfaces of the molecular
ion during the short time between ionization and recombina-
tion. At longer laser wavelengths, available, for example, at
the Advanced Laser Light Source in Canada, the electron
excursion times are longer and we expect that the inclusion
of excited BO states is important.

The physical picture we adopt is derived from the simple-
man’s model applied to molecules, the latter being directly
linked to the physical interpretation emerging from the SFA.
In this picture, after the active electron has reached the con-
tinuum, it no longer interacts with the core, until it returns to
recombine. Meanwhile, vibrational motion takes place in the
molecular ion. To describe this motion, we consider the two
lowest BO potentials in the ion, coupled by the laser field.
We investigate two different formulations: (i) the full SFA
emerging from the integral equation for the evolution opera-
tor and (ii) a simplified model analogous to the atomic
simple-man’s model, but including the vibration and dressing
of the ion. The simple semiclassical model (SM) succeeds in
reproducing the general characteristics of the full SFA, while
being much less demanding.

In terms of computational effort, the proposed SFA model
turns out to be very demanding. This is due to solving nu-
merous times the time-dependent Schrodinger equation for
the vibrational dynamics in the two coupled BO surfaces.
The intense numerical effort restricts significantly the param-
eter space one can explore. To this end, we develop a saddle-
point approximation, reducing the computational time dra-
matically, while accounting for the relevant physical
mechanisms. The implementation of this technique is de-
scribed in detail in the Appendix.

The paper is organized as follows: In the first part of
Sec. II, we introduce the SFA model and briefly discuss the
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computational details. The second part presents the extended
SM model, giving an expression that quantifies the contribu-
tion of different electron trajectories (see [16], and references
therein) to the total HG spectrum. Section IIT discusses the
results, for three different laser wavelengths, short (800 nm),
medium (1500 nm), and long (2000 nm) wavelengths. The
HG spectra for H, and D, as well as the ratios of harmonic
intensities in the two isotopes are calculated. The character-
istics of the results can be well understood from the analysis
of the electronic trajectories in the framework of the SM
model. The 2000 nm case fully shows the importance of
taking into account more than one BO potential surface. Fi-
nally, in the last section we present our conclusions and fu-
ture perspectives. Atomic units (a.u.) are used throughout
this work, unless otherwise specified.

II. THEORY
A. Extended strong-field approximation model

We consider high-order harmonic generation in the hydro-
gen molecule, allowing for molecular vibration to take place.
The full Hamiltonian includes all Coulomb interactions be-
tween the electrons and the protons, but in our model the
Coulomb repulsion between electrons is neglected except for
using the correct ground-state energy and BO potential of
H,. The direction of the molecular axis is kept fixed. In the
presence of a linearly polarized electric field E(z), the length

gauge molecule-field interaction is given by H,(f)=H; (1)
+ﬁi2(t), with I:I,-l(t)zE(t)-rl and I:Iiz(t):E(t)-rz. Here, r,
and r, are the electron coordinates. The integral equation for
the full evolution operator ﬁ(t,O) reads as

U(1,0) = Uy(1,0) i J dr' U(t,t" [ Hy (') + Hyp(1')]U(1',0),
0

(1)

where UO is the evolution operator for the field-free Hamil-
tonian.

We calculate the total dipole acceleration a(r) as the time
derivative of the expectation value Py, of the dipole momen-
tum [15] I3dip=—(131+132). Neglecting continuum-continuum
contributions, it follows from Eq. (1):

Py(1) ~—i j dr' (@™ (D) [Py, Ue,t [ Hyy (1) + Hip(1')]
0

X |®ml(t")) + c.c. (2)

Here, ®™°!(f)=d™ exp(—iEyt) and E, are the molecular
ground state (including the vibrational coordinate) and its
energy, respectively. Assuming that only one electron can be
promoted in the continuum and neglecting the interaction of
the continuum electron with the remaining ion, Eq. (2) sim-
plifies to

t

Pgip(1) = 2lf At (@™(0)|P, U, y(1,t') Usp(t.1")
0

X Hy ()| ®™(')) + c.c., 3)
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with the evolution operators U 1v and 023 explained below.
We used also the fact that the two electrons are equivalent
and we neglected the exchange terms [7,17,18]. Within the
linear combination of atomic orbitals (LCAQ) approximation
used in this work for describing the electronic orbitals of the
initial molecule and of the molecular ion, the exchange term
gives rise to an ionization matrix element that is zero for the
transition to the electronic ground state of the ion, and non-
zero for the transition to the first excited state. The contribu-
tion of the latter is negligible compared to the contribution of
the direct term (which corresponds to transitions to the elec-
tronic ground state of the molecular ion), since the ionization
potential for ionization leading into the excited state is bigger
than that for the ground state of the molecular ion.

Since the exact propagator is unknown, one must resort to
approximations. Consequently, in Eq. (3) the full evolution
operator has been factorized in a product of two operators:

the Volkov propagator U 1y that describes the active electron
in the continuum, neglecting the influence of the binding
potential and the electron-electron interaction, and the opera-

tor (AJZB that propagates the wave function of the remaining
molecular ion. The Volkov propagator can be decomposed
spectrally, and the resulting integration over momenta is fur-
ther simplified by using the saddle-point method [8]. For the

propagator U,z we consider only the two lowest-lying BO
potential curves. The two potential curves of the molecular
ion correspond to the symmetric o, state with electronic
wave function z/fgon and to the antisymmetric o, state with
electronic wave function ¢". Including dressing means that
the two states are coupled by the external electric field via
dipole coupling. At the same time, vibrational wave packets
evolve in each BO potential. Finally, the dipole momentum
reads as

t

Pgip(1) =~ 2i f dt' exp[—iS(p,.t,1")]
0

277_ 3/2 (e
x| ———— dRxo(R) LT (R,p,,
<E+ i([—t’)) f() XO( )['rec( ps t)

XlA]ZB(t’t,)ﬁion(R’psvt,)XO(R) +c.c., (4)

with p,=—/ ;,dt”A(t”)/ (z—1") being the saddle-point momen-
tum and € a regularization parameter of the order of unity
(we use e=1). The quasiclassical action S is defined
as S(p.t,t")=[1,dt"[p+A(t")*/12+|Eo|(t—t"). Here, A(r)
=—["_dt'E(t'). The action represents the phase accumulated
by the free electron (relative to the ground state) moving
under the influence of the external field only. The vibrational
ground state of the molecule is denoted by x,(R), with R
being the internuclear distance.

The ionization and the recombination steps are described
by the transition matrix elements L., and L. (which are
vectors of ¢ numbers),
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ﬂdrldrzllfé(l”rl,f) YR )E®) -1y (R,rp.1y)

Eion(Rap’t) =

ﬂl dl’ldrzlﬁé(P,l'bl) #(Re)E) - 1y (R,x, 1)

; (5)

ﬂ drlerIﬁgml(R’rlarZ)I;l‘//V(p’rl’t)lvlfjgon(R5r2)

['rec(Rvp’t) =

In Egs. (5) and (6), ¢y(p,r,t)=exp{ilp+A(1)]-r}/(2m)3? is
the spatial part of a Volkov solution with canonical momen-
tum p of the electron, and 1,08101 is the electronic BO ground
state of H,. The physical interpretation of the matrix ele-
ments in Egs. (5) and (6) can be given in simple terms. They
quantify how much of the initial vibrational wave function
Xo 1s transferred on each of the two BO potential surfaces of
the molecular ion. The transition is made from the electronic
ground state of the molecule to the intermediate state in the
HG process via the dipole operator of the active electron.
The intermediate state is the state in which the continuum
electron is described by a Volkov state and the bound elec-
tron is in the o, or o, state of the molecular ion. The recom-
bination matrix elements describe the recombination process
of the active electron in the momentum form. We approxi-
mate the electronic ground state by I,Z)(}“’I(R,rl ,T5)
=,"(R,r))§;"(R,r,) and we use the LCAO approximation
for ¢, and ¢, (only 1s hydrogenic functions are used, see the
Appendix). In this case, the lower matrix elements in Egs.
(5) and (6) are identically zero, due to symmetry reasons.
This would not be the case if another approximation, such as
the Heitler-London wave function, was used.

The evolution operator [723 propagates the vibrational
wave packets created by ionization in the two potential sur-
faces of the molecular ion, according to the time-dependent
Schrodinger equation

L7 +V(R)

1— . =
Jt XLOH(R) Li ion
E(r) - D(R) " R +V,"(R)
XL”“(R)>
X(r;:’“(R) ’ 7

where D(R) is the transition dipole moment between the ger-
ade and ungerade electronic states in the ion, V;?';(R) are the
ionic BO energy surfaces, and m,, is the mass of one nucleus.
The transition dipole moment points along the molecular
axis. Its modulus can be well approximated [19] by

[D(R)| =0.4¢™ R+ R/2. (8)

The numerical propagation for Eq. (7) is described in detail
in [20]. At the ionization time ¢’ the initial vibrational wave

ﬂ dl'1d1'21ﬁ3101(R’1'1,1'2)131lﬂv(PJ'bf)W;n(R,rz)

(6)

packets X;"“(R) and x'*"(R) are given by the initial vibra-
tional ground state Y, multiplied by the ionization matrix
elements from Eq. (5). The propagation is carried out be-
tween the ionization time ¢’ and the recombination time # in
Eq. (3). Hereafter, we refer to the calculation that takes the
dipole coupling between the energy surfaces into account as
the two-level (2L) calculation. The case when the coupling is
neglected is referred to as the one-level calculation (1L),
analyzed in detail in [21].

For large laser wavelengths, the calculation based on Eq.
(4) becomes very time consuming. One solution is to employ
the saddle-point method to approximate the integral over the
ionization time ¢'. It gives the possibility to study a large
parameter space for the laser field, while remaining close to
the full SFA results and dramatically reducing of the compu-
tational time. The details of the saddle-point method are
given in the Appendix.

B. Simple-man’s model including vibration

In order to estimate the importance of field dressing in the
process of HG, we investigate the electronic trajectories
[22,23] in the spirit of the simple-man’s model [9]. For each
of the classical electronic trajectories, we define a weight that
assesses its contribution to the total harmonic spectrum. The
trajectories are assumed to start with zero initial velocity at
an arbitrary ionization time #;. Thereafter, the electric field of
the laser pulse accelerates the electron and at the moment f,
when it returns to the core, the return kinetic energy is cal-
culated. The return kinetic energy plus the ionization poten-
tial equals the photon energy of the emitted harmonic radia-
tion. Between ¢, and ¢, the vibrational wave packet created in
the molecular ion evolves in the two coupled potential sur-
faces (see Fig. 1). For the case when only one level is taken
into account in the molecular ion, the model was described in
[21]. There, it was shown that the prediction of the model for
the ratio of harmonics in D, and H, compares very well to
the full SFA result at 800 nm laser wavelength. The simpli-
fied model has the advantage that it is easy to implement and
it requires very little computational time compared to the full
calculation, while containing all the significant physics.

To derive the relevant equations, one relies on applying
the saddle-point approximation in Eq. (4), as done for the 1L
case in [21]. The trajectory weight is
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BO potentials (a.u.)

FIG. 1. (Color online) Schematic view of the harmonic genera-
tion process in H,. Shown are the ground-state BO potential of the
H, and the two lowest BO potentials of Hj. The three-step process
consists of (1) ionization, (2) evolution of the remaining molecular
core as prescribed by the field-dressed ionic o, and o, potential-
surfaces while the active electron is driven by the external field, and
(3) recombination into the molecular ground state.

3/2 ©
w(t,t,) = CXp(— %%) f dR cos(k,R cos 6/2)
2 0
. R)\ |2
X (xo(R),0) Um(r,,z,-)(x"é ) ) : 9)

where 6 is the orientation angle between the molecular axis
and the polarization direction of the electric field E(7), E, is
the energy of the molecular ground state, and %, is the return
velocity of the electron k,(z,,t;)=—/ Zdt’A(t’)/(t,—ti)+A(t,).
Equation (9) includes essentially all molecular effects on
each electron trajectory: The instantaneous ionization rate at
time #;, the motion of the vibrational wave packets on the
coupled BO surfaces in the ion, and the cos interference
term. The interference term appears due to the presence of
the two molecular sites whose contributions to the harmonic
radiation interfere. The wave packet spreading was not in-
cluded in Eq. (9), in order to obtain a weight incorporating
only the molecular effects. The vertical ionization potential
I, is defined in the Appendix.

As described in [22,23], for electrons that tunnel out dur-
ing the same optical cycle, there are two types of trajectories:
the short trajectories (that last less than about three quarters
of the optical period) and the long trajectories. As it will be
shown in the following, the influence of the molecular vibra-
tion on various trajectories is very different due to the differ-
ent trajectory durations.

III. RESULTS

As explained in the beginning, we expect that the conse-
quences of vibration and field dressing become more rel-
evant at longer laser wavelengths. To this end, we analyze
three different cases. For 800 nm laser wavelength the effects
of field dressing are shown to be negligible. In the interme-
diate regime, for a laser wavelength of 1500 nm, the field
dressing starts becoming important. Finally, at 2000 nm, the
dressing can no longer be ignored. In our calculations, the
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FIG. 2. (Color online) Harmonic generation using 800 nm laser
pulses. Left-hand column, 1L case; right-hand column, 2L case. The
upper row shows the harmonic intensities for the H, molecule. The
lower row shows the harmonic ratio D,/H, (black continuous
curve), and the ratio predicted if one takes into account the short
trajectory only (red dashed curve) or the long trajectory only (blue
dotted curve).

laser electric field has a trapezoidal envelope, with four op-
tical cycles turn-on and turn-off, and six optical cycles of
constant amplitude. The laser field is linearly polarized, and
unless specified, the molecule is oriented parallel to the laser
polarization direction (i.e., we consider aligned molecules).
The laser intensity is 5 X 10" W/cm?, unless stated other-
wise. All results in this section have been obtained using the
saddle-point approximation (see the Appendix), since for
long wavelengths, the computational times for the fully nu-
merical SFA are prohibitive. Except in the range of low har-
monics, the saddle-point 1L calculations were found in ex-
cellent agreement with the harmonic spectra calculated by
full numerical integration with the field dressing neglected;
for more details, see the Appendix. The propagation of the
vibrational wave packets has been carried out on a grid. The
grid method is slightly more accurate than the eigenfunction
decomposition method employed in [21] for the 1L SFA.

A. 800 nm laser field

Figure 2 compares the 1L and the 2L calculations. The
reader should ignore the region of harmonic orders below
=~15. In the saddle-point approximation, the electronic tra-
jectories with small travel times are not accounted for, so that
the low-order harmonics are not treated accurately (see com-
ment at the end of the Appendix).

As expected, the difference caused by the field dressing is
very small. This can be understood, since the typical travel
time in the harmonic generation process is of the order of
one optical cycle, during which the transfer of the vibrational
wave packet on the excited potential surface of the molecular
ion is negligible. A clear difference between H, and D, ap-
pears when the ratio of harmonic intensities is taken (see
bottom row). The ratio exhibits a strong variation around
harmonic order 50. Comparing to the harmonic spectrum,
this is the region where an interference minimum [13] in the
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FIG. 3. (Color online) Trajectory weights for 800 nm laser
pulses (H, only). Left-hand panel: The trajectory weights for the 1L
calculation. Right-hand panel: The trajectory weights for the 2L
calculation. The red dashed curves are used for the short trajectory
and the blue dotted curves are for the long trajectory. The black
circles correspond to the longer trajectories. The trajectories shown
by the dashed and the dotted lines are used to calculate the ratios
depicted by the same curves in Fig. 2.

harmonic emission occurs. Due to the different masses of the
isotopes causing different speeds of nuclear motion, the po-
sition of the interference minimum slightly changes from one
isotope to the other. The cutoff of the electronic trajectories
approximates well the quantum-mechanical cutoff, as ex-
pected. For the trajectories, we show only the pair of short
and long trajectories that has the biggest contribution to the
harmonic spectrum. It is evident that the short trajectory is
the one that reproduces well the exact ratio (see Fig. 2, bot-
tom row) [21]. We note that the part of the harmonic spec-
trum with frequencies below the value of the vertical ioniza-
tion potential (see the Appendix) is not accessible for the
classical trajectory analysis.

To deeper understand the role of different electron trajec-
tories in the harmonic spectrum, Fig. 3 shows their weights
[see Eq. (9)]. As it can be seen, different pairs of trajectories
contribute to different regions of the harmonic spectrum.
Each pair consists of a short and a long trajectory. The pair
with the shortest excursion time was used to calculate the
ratios shown in Fig. 3, since this pair has the biggest contri-
bution. This explains its success in reproducing satisfactorily
the exact ratio. The shorter trajectories are not strongly af-
fected by the laser coupling at this wavelength, while the
pairs with longer traveling time can be strongly affected by
the field coupling (compare the lowest pairs in the left-hand
and right-hand panel of Fig. 3). These pairs do not contribute
significantly to the total spectrum.

B. 1500 nm laser field

Due to the longer duration of an optical cycle for 1500 nm
wavelength, one expects to see stronger signatures of the
field dressing in the harmonic spectra. This is indeed evident
in the results shown in Fig. 4. Comparing the ratio of the
harmonic signal (bottom row of Fig. 4) for the 1L calculation
and the 2L calculation, the short trajectory is again able to
reproduce quantitatively the full results. In the 2L case, the
ratio exhibits a somewhat smoother variation with the har-
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FIG. 4. (Color online) Harmonic generation using 1500 nm laser
pulses. Left-hand column, 1L case; right-hand column, 2L case. The
upper row shows the harmonic intensities for the H, molecule. The
lower row shows the harmonic ratio D,/H, (black continuous
curve), and the ratio predicted if one takes into account the short
trajectory only (red dashed curve) or the long trajectory only (blue
dotted curve).

monic order. We understand this by analyzing the behavior
of the trajectory weights in Fig. 5. Here, there is a significant
influence of the field dressing on the trajectories. Namely,
when the field coupling is included, the short trajectory is the
one least affected, while the long one and the remaining
less-contributing pairs become strongly damped. In such a
case, the quantum interference effects between trajectories
[22,23] have a smaller impact on the HG spectrum, so that
the ratio becomes smoother. Again, note the strong variation
of the ratio below harmonic order 150, which is related to the
position of the interference minimum [13], as discussed
above.

Trajectory weight (arb. units)

0 100 200 300 400
Harmonic order

0 100 200 300 400
Harmonic order

FIG. 5. (Color online) Trajectory weights for 1500 nm wave-
length (H, only). Left-hand panel: The trajectory weights for the 1L
calculation. Right-hand panel: The trajectory weights for the 2L
calculation. The red dashed curves are used for the short trajectory
and the blue dotted curves are used for the long trajectory. The
black circles correspond to the longer trajectories. The trajectories
shown by the dashed and the dotted lines are used to calculate the
ratios depicted by the same curves in Fig. 4.
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FIG. 6. (Color online) Harmonic generation using 2000 nm laser

pulse with 2.5 X 10'* W/cm? intensity. Left-hand column, 1L case;

right-hand column, 2L case. The upper row shows the harmonic

intensities for the H, molecule. The lower row shows the harmonic

ratio D,/H, (black continuous curve), and the ratio predicted if one

takes into account the short trajectory only (red dashed curve) or the
long trajectory only (blue dotted curve).

C. 2000 nm laser field

Finally, we study the case when the laser wavelength is
large enough to allow the field dressing effects to fully mani-
fest themselves. We show results for two laser intensities, in
order to assess the influence of the field strength on the cou-
pling of the BO surfaces.

For the laser intensity /=2.5 X 10'* W/cm?, Fig. 6 com-
pares the HG spectra for the 1L and the 2L case (top row).
The reduction in the harmonic intensity is clearly visible on
the scale of the graphs. Thus, one concludes that the field
coupling cannot be neglected at long wavelengths.

The HG spectrum for the 2L case shows less trajectories
interference and hence a smoother shape of the spectrum
envelope. This feature is explained by the simple-man’s
analysis (Fig. 7), which shows that the contribution of the
longer trajectories to the HG spectrum is strongly attenuated
due to the larger time the electrons spends in the continuum.
For the same reason, the SFA harmonic ratio for the 2L case
(bottom-right-hand panel of Fig. 6) agrees with the SM ratio
much better than for the 1L case (bottom-left-hand panel of
Fig. 6). In the 1L case (left-hand panel of Fig. 7), the long
trajectories with duration more than one cycle contribute sig-
nificantly to the spectrum, at least for photon energies below
the =~400th harmonic order. At higher harmonic orders, there
is only one trajectory pair that contributes to the HG spec-
trum. Consequently, the SM model succeeds in reproducing
well the full SFA ratio (bottom-left-hand panel of Fig. 6).

Both the 1L and the 2L HG spectra show a minimum
around the 120th harmonic order. As discussed above, this
minimum is caused by the interference of the emitted har-
monic radiation from the two molecular sites in D, [13].
Noticeably, the minimum appears clearly in both the full
SFA and the SM harmonic ratios. The presence of the cosine
interference term in the expression for the trajectory weight
given by Eq. (9) is essential for reproducing this minimum.
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FIG. 7. (Color online) Trajectory weights for 2000 nm wave-
length and 2.5 X 10'* W/cm? intensity (H, only). Left-hand panel:
The trajectory weights for the 1L calculation. Right-hand panel: The
trajectory weights for the 2L calculation. The red dashed curves are
used for the short trajectory and the blue dotted curves are for the
long trajectory. The black circles correspond to the longer trajecto-
ries. The trajectories shown by the dashed and the dotted lines are
used to calculate the ratios depicted by the same curves in Fig. 6.

The effects of field coupling become even more apparent
at higher laser intensity. In the following, we employ the
value I=5X%X 10" W/cm?, used also for the shorter laser
wavelengths. From Fig. 8, by comparing the HG spectra for
the 1L and the 2L cases, the difference between the 1L and
the 2L results is noticeable.

In the 1L case, the ratio is not well reproduced by the
short trajectory, except beyond the 700th harmonic. The rea-
son is analogous to the lower-intensity case, as becomes
clear when one analyzes the trajectories weights shown in
the left-hand panel of Fig. 9. As more trajectories contribute
to harmonic orders below 700, quantum interference takes
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FIG. 8. (Color online) Harmonic generation using 2000 nm laser
pulses with 5X 10'% W/cm? intensity. Left-hand column, 1L case;
right-hand column, 2L case. The upper row shows the harmonic
intensities for the H, molecule. The lower row shows the harmonic
ratio D,/H, (black continuous curve), and the ratio predicted if one
takes into account the short trajectory only (red dashed curve) or the
long trajectory only (blue dotted curve).
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FIG. 9. (Color online) Trajectory weights for 2000 nm wave-
length and 5% 10'* W/cm? intensity. Left-hand panel: The trajec-
tory weights for the 1L calculation. Right-hand panel: The trajec-
tory weights for the 2L calculation. The red dashed curves are used
for the short trajectory and the blue dotted curves are for the long
trajectory. The black circles correspond to the longer trajectories.
The trajectories shown by the dashed and the dotted lines are used
to calculate the ratios depicted by the same curves in Fig. 8.

place. Consequently, one single trajectory is not enough to
describe accurately the HG spectrum. In contrast, for har-
monics of order higher than 700, there is only one short
trajectory that dominates the HG spectrum. This clearly ex-
plains the agreement between the full result and the predic-
tions of the SM model in this region. We have checked that
these findings remains valid when additional factors due to
wave-packet spreading are taken into account.

The situation for the 2L case is strikingly different from
the 1L case. Namely, the ratio is much smoother, with re-
duced signs of interference. Such behavior is caused by the
fact that most of the trajectories that would normally contrib-
ute to the spectrum become less important. The classical
analysis shows that this is indeed the case (see Fig. 9). The
SM analysis shows that even the short trajectories are af-
fected strongly by the field coupling. As a general character-
istic of large wavelengths, the harmonic spectra tend the be
smoothed out by the field dressing (i.e., less interferences).
In the 1L case, for an extended part of the spectrum, there are
many trajectories that contribute with comparable weights,
so that the trajectory interference in the harmonic signal is
strong. This makes the SM model inapplicable to explain the
ratio. When the field dressing is included, the long trajecto-
ries are damped, hence the interference is almost absent. This
reveals an important feature of the harmonic ratio, namely a
maximum around harmonic order 600, which is due to
second-order destructive two-center interference in H,.

In the remaining part of this section we consider the
case when the molecule is perpendicular to the laser polar-
ization direction (0#=90°). The laser intensity is the 5
X 10" W/cm? as in Fig. 8. For this orientation, both dress-
ing and two-center interference [13] are absent. This is con-
firmed by the flat HG spectrum (lower part of Fig. 10). The
top row of Fig. 10 shows the harmonic ratio obtained from
the SFA compared to the SM ratio (left-hand panel), and the
trajectory weights (right-hand panel). The SM model ap-
proximates the harmonic ratio well for harmonic orders
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FIG. 10. (Color online) Harmonic generation using 2000 nm
laser with 5X 10'* W/cm? interacting with molecules perpendicu-
lar to the laser polarization direction (=90°). Top row: Harmonic
ratio D,/H, compared to the SM ratios for shortest trajectories
(left-hand panel) and the trajectory weights for H, from the simple-
man’s model (right-hand panel). The red dashed curves are used for
the short trajectory and the blue dotted curves are for the long
trajectory. The black circles in the top-right-hand panel correspond
to the longer trajectories. Bottom row: Harmonic spectrum for H,.

higher than 700 for the same reason as in the 1L case for
parallel alignment (see trajectory weights in the upper-right-
hand panel of Fig. 10).

An important observation is that the shortest electron tra-
jectory pair does not have the highest weight for the lower
harmonics (upper-right-hand panel of Fig. 10). We have
found numerically that the weight of the shortest pair in-
creases with decreasing wavelength and becomes dominant
at wavelengths lower than =1300 nm. This behavior is re-
lated directly to the temporal shape of the vibrational auto-
correlation function [15]. It has a maximum at the time of the
vibrational period of the ion, giving increased weight to long
trajectories with suitable duration. Our results show that this
effect plays a role only when the dressing is absent.

IV. CONCLUSIONS

In this work, we have analyzed the possibility to include
field dressing in the strong-field approximation for harmonic
generation in H, molecules. Previously, the vibration of the
molecular ion formed upon ionization was considered to take
place on the lowest BO potential surface only [21]. Here, we
take into account two potential surfaces, coupled by the ex-
ternal field via the dipole interaction. Such a modification
proves to be essential at long laser wavelengths.

To study the effect of field dressing, we use an extension
of the Lewenstein model which includes fully quantum-
mechanical vibrational motion of the molecular ion in the
field-coupled lowest two BO surfaces. The resulting expres-
sion for the electronic dipole momentum turns out to become
numerically demanding even at the moderate wavelength
of 800 nm. The reason is that a large number of one-
dimensional time-dependent Schrodinger equations must be
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solved. At longer wavelengths, the calculation becomes seri-
ously prohibitive. Therefore, we applied the saddle-point
method successfully, replacing the time integration by a sum
over a few relevant terms.

We have investigated three different laser wavelengths,
800, 1500, and 2000 nm. For the 800 nm laser field, the
effects of the laser dressing can be safely neglected. At 1500
nm wavelength and more strongly at 2000 wavelength, the
effects of the field dressing manifest themselves in the har-
monic spectrum, and more prominently in the ratio of har-
monic intensities for D, and H,. The field coupling has the
effect of smoothing the interferences in the harmonic spec-
trum, by lowering dramatically the contribution of the long
trajectories to the HG spectrum. Consequently, only the
shortest trajectory contributes significantly to the spectrum.
At 2000 nm, we found that this effect leads to a much clearer
observation of two-center interference in the ratio D, vs H,.

The proposed model could prove its usefulness in inter-
preting the experimental data available from the use of the
recently available long laser-wavelength sources and for un-
covering new properties of the harmonic radiation in mo-
lecular systems.
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APPENDIX: SADDLE-POINT APPROXIMATION

The saddle-point method for the study of harmonic gen-
eration has been successfully applied in the context of the
strong-field approximation (e.g., for atoms see [22], and for
nonvibrating molecules see [24]), due to the strongly oscil-
lating phase factor exp(—iS) in the expression of the dipole
moment [see Eq. (4)]. In the present work, we apply the
saddle-point method to approximate the integral over the
ionization time ¢’ in Eq. (4). Compared to atoms and nonvi-
brating molecules, one encounters the additional problem
that the part of the integrand which describes the molecular
vibration can also oscillate with the integration variable. This
oscillation cannot be calculated analytically. If the oscillatory
vibrational part was known analytically, one could calculate
the saddle points exactly. Based on our previous analysis of
the 1L case [21], we concluded that it is possible to isolate
the desired oscillatory part. In order to do this, we make use
of the fact that the main contribution to the electronic dipole
moment comes from transitions between the electronic
ground state of the initial molecule and that of the molecular
ion. Consequently, we subtract from the energy curves of the

molecular ion the quantity 6V= V;""(I?), with R the average
internuclear distance in the vibrational ground state of the
neutral molecule. This means that, the propagation in Eq. (7)
is done with the energy curves redefined as Vi, =V;",— 6V,
while a term (z—¢')SV must be added to the action in Egq.
(4). Combined with the ground-state energy E, of the mol-
ecule, an effective vertical ionization potential Ip=|EO|+6V
appears in the semiclassical action. With this slight modifi-
cation, the main oscillatory behavior is now concentrated in
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the redefined semiclassical action, and one can safely apply
the saddle-point method. There is still one difficulty: The
LCAO approximation used to approximate the electronic
states in both the molecule and the ion gives rise to ioniza-
tion matrix elements in Eq. (5) that have a pole close to the
saddle point, since the upper ionization matrix element from
Eq. (5) is proportional to

E()-R ([p+A(t)]'R>([p+A(t)]2 Zz)‘2
sin +

2 > ; -
+2E(1) - [p+ A(t)]COS<W)

+AW)? 72\
><([p (0] +_> . (A1)
2 2
While for a given time ¢ at which the electronic dipole mo-
ment is to be calculated, the equation for the saddle point ¢,
reads as

[py(t) + A1) T

— 5 +1,=0, (A2)
the equation for the pole t[’, in the ionization matrix element
corresponding to the transition to the gerade state of the ion
[see Eq. (Al)] is

! ! 2 2

(i) +AG)F 2, .
2 2
The parameter Z in Eq. (A3) is the nuclear charge of the
hydrogenic orbitals used in the LCAO approximation. We
use Z=1. The corresponding value for Z?/2=0.5 in Eq. (A3)
is close to and smaller than the value of 7,=0.59 in Eq. (A2).
As a consequence, the two critical points are very close to
each other, with the pole having a smaller imaginary part
than the saddle point. In this case, the usual saddle-point
formula must be modified accordingly to take into account
the presence of the pole. For clarity, let us calculate the con-
tribution of one saddle point x, and one paired pole x,, to the
integral,

1= f dx f(x)e_ig(x), (A4)
0

such that §’'(x,)=0 and f(x) has a pole of order 3 in X,
[According to Eq. (A1), one has also a second-order pole. Its
treatment is entirely similar to that of the third-order pole.]

To this end, we rewrite the integral as

e—i§(x)

I= J dxf(x)—
0

(x—x,,)3’ (45)

with f(x)=f(x) (x—xp)3 bounded at the pole. According to the
method described in [25,26], the first-order asymptotic con-
tribution of the pair of critical points is
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§H
~ w ]7 J? eXP(‘ Es(x_xs)z)
[~ 5 J dx(fp +=—L(x- xp)) 3 .
_Dc Xy =X, (x—xp)‘
. o (A6)
The integrals appearing in Eq. (A6) are of the form

” -x2
J dxexp( x*/2)

(x = xo)* -

where xo=x,-x,, Im(xy) <0, and k is an integer. Equation
(A7) is adapted from the case with Im(x,)>0 appearing in
[27]. In Eq. (A7), D,(x) is the parabolic cylinder function,
for which highly accurate numerical routines are available
[28]. Thus, to calculate the dipole momentum from Eq. (4) at
a given time ¢, one needs to find all saddle points and poles
with the real part smaller than r and positive imaginary part,
and calculate their contribution according to the above. In
addition, the contribution from the pole must be added, ac-
cording to the Cauchy’s theorem. The residue in the pole x,
is most simply calculated using directly the simplified ex-
pression in Eq. (A6), which holds in the vicinity of the
saddle point (where the pole is situated).

The accuracy of the approximation can be seen in Fig. 11,
for various wavelengths. The saddle-point method gives
more accurate results, the higher the laser wavelength, which
can be seen from the figure. The comparison between exact
and saddle-point calculation was carried out for the 1L case
using the eigenvalue decomposition [21] for numerical
propagation of the vibrational wave packets, since in this
case the calculation is much faster. The eigenvalue decom-
position, which can be used only for the 1L case, has been
applied only for the purpose of this comparison, while in the
rest of this work we use numerical grids. For one laser wave-
length, we also checked that the agreement with the saddle-
point approximation holds as well for the 2L case (800 nm,

(_ 1 )k\/;Te—x(z)/%ikﬂ-/ZD_k(ixO) , (A7)
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FIG. 11. (Color online) Comparison between the full calculation
(black curves) based on Eq. (4) and by using the saddle-point ap-
proximation (red dotted curves). The calculations are for the 1L
case.

not shown here). The harmonic-energy region where the
agreement should be sought does not include the low-
frequency harmonics. The reason is that all of the saddle
points close to the end point ¢ of the time integration interval
are ignored in our approach. This is because their contribu-
tion to the integral can no longer be described by the above
procedure. On the other hand, the critical points that are
close to the recombination time ¢ will contribute only to the
low-frequency part of the harmonic spectrum, which is not
the focus of this work. In practice, we ignore the saddle
points for which Re(¢— #,) <T,/10, with T} the period of one
optical cycle. With this in mind, the saddle-point method
gives very accurate results for the high-energy part of the
harmonic spectrum, while reducing significantly the compu-
tational time (e.g., for a laser wavelength of 1500 nm, by
a factor of 20).

[1] G. Sansone er al., Science 314, 443 (2006).
[2] J. J. Carrera, X. M. Tong, and Shih-I Chu, Phys. Rev. A 74,
023404 (2006).
[3] W. Cao, P. Lu, P. Lan, W. Hong, and X. Wang, J. Phys. B 40,
869 (2007).
[4] S. Baker et al., Science 312, 424 (2006).
[5] J. Itatani et al., Nature (London) 432, 867 (2004).
[6] R. Torres et al., Phys. Rev. Lett. 98, 203007 (2007).
[7] S. Patchkovskii, Z. Zhao, T. Brabec, and D. M. Villeneuve, J.
Chem. Phys. 126, 114306 (2007).
[8] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P.
B. Corkum, Phys. Rev. A 49, 2117 (1994).
[9] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[10] C. C. Chirila, C. J. Joachain, N. J. Kylstra, and R. M. Potv-
liege, Laser Phys. 14, 190 (2004).
[11] C. C. Chirild and M. Lein, Phys. Rev. A 73, 023410 (2006).
[12] C. C. Chirild and M. Lein, J. Mod. Opt. 54, 1039 (2007).
[13] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L. Knight,
Phys. Rev. Lett. 88, 183903 (2002); Phys. Rev. A 66, 023805
(2002).
[14] M. Lein, Phys. Rev. Lett. 94, 053004 (2005).

[15] C. C. Chirila and M. Lein, J. Mod. Opt. 53, 113 (2006).

[16] P. Salieres et al., Science 292, 902 (2001).

[17] S. Patchkovskii, Z. Zhao, T. Brabec, and D. M. Villeneuve,
Phys. Rev. Lett. 97, 123003 (2006).

[18] R. Santra and A. Gordon, Phys. Rev. Lett. 96, 073906 (2006).

[19] F. V. Bunkin and 1. I. Tugov, Phys. Rev. A 8, 601 (1973).

[20] P. Schwendner, F. Seyl, and R. Schinke, Chem. Phys. 217, 233
(1997).

[21] C. C. Chirild and M. Lein, J. Phys. B 39, S437 (2006).

[22] D. B. Milosevi¢ and W. Becker, Phys. Rev. A 66, 063417
(2002).

[23] G. Sansone, C. Vozzi, S. Stagira, and M. Nisoli, Phys. Rev. A
70, 013411 (2004).

[24] C. Figueira de Morisson Faria, Phys. Rev. A 76, 043407
(2007).

[25] N. Bleistein, J. Math. Mech. 17, 533 (1967).

[26] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of
Integrals (Dover, New York, 1986).

[27] N. M. Temme, J. Inst. Math. Appl. 22, 215 (1978).

[28] S. Zhang and J. Jin, Computation of Special Functions (Wiley-
Interscience, New York, 1996).

043403-9



