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We explain how a proper specification of the spatial field distribution and angular momentum content of a
twisted light beam propagating in an arbitrary direction can be made using appropriate transformations. Such
transformations are needed whenever a light beam is to be combined with other similar beams propagating in
specified directions. The transformation procedure greatly facilitates the evaluations of the radiation forces
acting on atoms subject to an arbitrary set of twisted light beams. It allows atomic trajectories in one-, two-,
and three-dimensional optical molasses configurations to be correctly evaluated. We find that multiple twisted
beams offer a flexible means of controlling the motion of atoms, but there are notable features attributable only
to the orbital optical angular momentum property of the twisted light. Under suitable conditions, atoms can be
decelerated and ultimately made to congregate in specific regions of space. The implications of this for
all-optical atomic cooling and trapping using twisted light are pointed out and discussed.
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I. INTRODUCTION

Experimental investigations on the mechanical action of
laser light on matter, especially the acceleration and the trap-
ping of micron-sized particles in optical potential wells, were
carried out by Ashkin �1�. Since then much theoretical and
experimental work has studied radiation forces and, in par-
ticular, the near-resonant interaction of laser light with atoms
and ions �2–4�.

The simplest features can be understood by considering a
two-level system, representing an atom in an electromagnetic
field. If the field is tuned such that it is at or near resonance
with the atom, the radiation force can be considered as the
sum of two distinct contributions: the dipole force associated
with the nonconformity of the field distribution and the dis-
sipative force arising from the absorption and reemission of
photons by the atom. The dipole force can be used to trap
atoms �5� and the dissipative force to cool or heat the atomic
motion �6�.

Much of the theoretical work on laser cooling and trap-
ping has assumed light modes with plane-wave fronts. In the
early 1990s, Allen et al. mathematically demonstrated that
Laguerre-Gaussian �LG� light possesses a well-defined quan-
tized orbital angular momentum l� �7� with l an integer. The
orbital angular momentum is a previously overlooked prop-
erty of light. It arises from the azimuthal phase dependence
of the field distribution and is distinct from spin angular
momentum. Circularly polarized LG light possesses a non-
zero spin as well as orbital angular momenta. Linearly polar-
ized LG modes maintain the property of orbital angular mo-
mentum.

It has been shown that light endowed with orbital angular
momentum, known as twisted light, induces a torque on par-
ticles as a result of the transfer of the orbital angular momen-
tum to the particle �8,9�. It has also been established that for
electric dipole-allowed processes a transfer of orbital angular
momentum occurs only between the light and the center-of-
mass motion. Consideration of a two-level atom in the field

of a twisted beam in the saturation limit results in a torque of
l�� being exerted on the atom, where � is the width of the
upper state �8�. LG beams also produce rotational motion on
matter in the bulk and this has led to the application of
twisted beams in optical spanners �10�, which are essentially
the rotational forms of optical tweezers �11�, and more re-
cently pattern formation in optically trapped nanoparticles
�12–14�.

In the mid 1990s Allen et al. considered atom dynamics in
multiple Laguerre-Gaussian beams �15�. This theoretical
treatment of the influence of multiple beams on atomic mo-
tion dealt with counterpropagating beams in which one of the
pair was constructed by switching the sign of the axial wave
vector k. As pointed out in Ref. �16�, the resulting forces are
thus due to the combination of a beam and its retroreflection.
There is need, however, to consider the general case in which
independent beams can be traveling in any desired direction
and so be able to determine the net forces due to any set of
multiple beams which influence atomic motion.

We determine the field distributions of each independent
beam by transforming the original beam using rigid body
transformations. In order to discuss optical molasses in one,
two, and three dimensions we apply coordinate transforma-
tions on the standard form of a twisted beam propagating in
the z direction. The total force on an atom due to a given set
of beams can therefore be determined with reference to the
beam specified in the original Cartesian axes.

The rest of this paper is structured as follows. In Sec. II
we introduce the steady state forces due to a twisted beam
and consider the dipole potential due to a single beam. We
then set up a set of coordinate transformations from which a
beam propagating in an arbitrary direction can be considered
in terms of the original Cartesian axes. In Sec. III we de-
scribe the motion of a Mg+ ion subject to the combined ef-
fects of the forces due to all the counterpropagating beams.
This requires the numerical solutions of the classical equa-
tions of motion, subject to initial conditions. Our main con-
clusions are outlined in Sec. IV.
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II. FORMALISM

The essential features of a twisted beam, at a general po-
sition R= �r ,� ,z� in cylindrical polar coordinates, are the
phase �klp�R� and the Rabi frequency �klp�R�. Ignoring
beam curvature, these are written as

�klp�R� = l� + kz , �1�

�klp�R� � �0� r�2

w0
�exp�− r2/w0

2�Lp
	l	�2r2

w0
2 � , �2�

where the beam has a frequency �, axial wave vector k, and
quantum numbers l and p. These forms are obtainable from
the corresponding standard expressions for the Laguerre-
Gaussian beam in the limit z�zR where zR is the Rayleigh
range �15�, and setting w�z�=w0.

Using density matrix techniques, the steady state forces

on an atom of velocity V= Ṙ are in general found to be


Fdiss�klp = 2���klp
2 �R�� ��klp�R�

�klp
2 �R,V� + �2 + 2�klp

2 �R�� ,

�3�


Fdipole�klp = − 2���klp�R� � �klp�R�

	� �klp�R,V�
�klp

2 �R,V� + �2 + 2�klp
2 �R�� . �4�

The dissipative force 
Fdiss� represents the force due to the
absorption and reemission of the light by the atom; and the
dipole force 
Fdipole� arises from the nonconformity of the
field distribution. The dynamic detuning is defined as

�klp�R,V� = �0 − V · ��klp�R� , �5�

where �0=�−�0 is the static detuning, with ��0 the level
energy separation of the two-level atom and � the frequency
of the light. � is the half-width of the upper quantum atomic
state.

The static component of the dipole force can be derived
from a potential


U�R��klp =
��0

2
ln�1 +

2�klp
2 �R�

�0
2 + �2  �6�

such that 
Fklp
0 �=−�
U�R��klp. For red detuned light �0
0,

the potential exhibits a minimum in the high intensity region
of the beam, trapping atoms in the strong field regions. For
blue detuned light �0�0, atoms are trapped in the dark re-
gions of the beam where the intensity is low. For the
Laguerre-Gaussian mode l=1 and p=0 the potential on a
stationary atom is


U�k10 =
��0

2
ln�1 +

2�k10
2 �R�

�0
2 + �2  . �7�

At the beam waist z=0, the minimum occurs at a radial dis-
tance given by

r0 = w0/�2. �8�

For a beam propagating along the z axis the locus of poten-
tial minima in the xy plane is given by a circle whose equa-
tion is

x2 + y2 = r0
2. �9�

If we now expand the potential in powers of �r−r0� and
restrict ourselves to the parabolic approximation, then the
potential becomes


U�k10 � U0 +
1

2
�k10�r − r0�2, �10�

where the potential depth U0 is given by

U0 =
1

2
��0 ln�1 +

2�k10
2 �r0�

�0
2 + �2  �11�

and the effective elastic constant of the quasisimple har-
monic motion �k10 by

�k10 =
4�	�0	

�0
2 + 2e−1�k00

2 + �2� e−1�k00
2

w0
2 � . �12�

If the atom’s kinetic energy is less than 	U0	, then it is con-
sidered trapped. As the atom falls into the optical trap it will
oscillate about r=r0 with an angular frequency of ��k10 /M,
where M is the mass of the atom.

In order to consider multiple beams in various configura-
tions in space, it is expedient to express the forces in Carte-
sian coordinates R= �x ,y ,z�. We therefore recast Eqs. �3� and
�4� in Cartesian form


Fdiss�R,V�� + 
Fdipole�R,V�� = 
Fx�x̂ + 
Fy�ŷ + 
Fz�ẑ .

�13�

A twisted beam propagating in a general direction can then
be constructed by considering a rotation in the xz plane about
the y axis by an angle  and then a further rotation about x by
an angle �. This leads to the transformation matrix

T�,�� = � cos�� 0 sin��
− sin��sin��� cos��� cos��sin���
− sin��cos��� − sin��� cos��cos���

� ,

�14�

which is employed to transform the original coordinates into
our new frame of reference.

The procedure described above can be utilized by a suit-
able choice of the angles  and � to obtain the force distri-
bution due to a twisted light beam propagating in any chosen
direction. The obvious applications to be considered are
those corresponding to the conventional geometric arrange-
ments, specifically those involving one-dimensional �1D�,
two-dimensional �2D�, and three-dimensional �3D� twisted
beam optical molasses.
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III. ORTHOGONAL COUNTERPROPAGATING
TWISTED LIGHT BEAMS

We have determined the motion of magnesium ions Mg+

in the fields of counterpropagating twisted light beams in
three configurations. Mg+ has a suitable transition that can
be closely tuned to the frequency of the light. The Mg+ mass
is M =4.0	10−26 kg, the transition wavelength is �
=280.1 nm, and its half-width is �=2.7	108 s−1.

We consider red detuned light to induce trapping in areas
of high intensity �0=−�. The full dynamic detuning given in
Eq. �5� is used in the model. The Laguerre-Gaussian “dough-
nut” mode l= �1 and p=0 is used throughout. The equation
of motion for the Mg+ ion is

M
d2

dt2R�t� = �
i

�
Fdiss� + 
Fdipole��i, �15�

where the summation accounts for the individual radiation
force contributions from the beams present.

A. 1D twisted optical molasses

We begin by considering the simple one-dimensional �1D�
configuration in which a pair of counterpropagating LG
beams is set up propagating along the z axis. One of the
beams is specified in the negative z direction using the trans-
formation matrix �14� with =� and �=0. It can be checked
that the resulting equations are not those due to a mirror
reflection of the original beam.

Figure 1 shows the trajectory of the Mg+ ion in the field of
two counterpropagating beams, beam 1 propagating in the
positive z direction and beam 2 in the negative z direction,
with l1= l2=1. The Mg+ ion is initially at the radial position
r=10� with an initial velocity of V�0�=5 m s−1 ẑ. The du-
ration of the trajectory is 5	105�−1. It can be seen that the
atom slows down to a halt in the z direction, corresponding
to the axial cooling, while in its in-plane motion the ion is
attracted toward the region of high beam intensity located at
a radius r0=w0 /�2. Initially the ion exhibits a quasiharmonic

vibrational motion in its in-plane motion, which is rapidly
dampened until the atom falls into the bottom of the potential
well. For the two beams in this configuration the effective
elastic constant is twice that of the one beam case given in
Eq. �12�, which implies that the vibrational frequency of the
1D configuration here is

� =
1

2�
� 8�	�0	e−1�k00

2

Mw0
2��0

2 + 2e−1�k00
2 + �2�

�1/2

. �16�

This yields ��1.2	104� using the above parameters, which
is in agreement with the frequency of the oscillations de-
duced from the in-plane motion.

Clearly, once the Mg+ ion is trapped axially it rotates
clockwise about the common beam axis with a constant an-
gular velocity. Therefore, there is zero net torque in this case.
This can be easily understood if we consider the combined
torques in the saturation limit for the two beams 	
T�	
� l1��− l2��=0. Inverting the signs of the azimuthal indices
such that l1= l2=−1 causes the circular in-plane motion to be
anticlockwise.

Inverting the sign of the azimuthal index of one of the
beams, i.e., l1=−l2=1, results in a nonzero torque. The com-
bined torques in the saturation limit for the two beams in this
case give 	
T�	� l1��− l2��=2��. The trajectory of the
magnesium ion in this setup is shown in Fig. 2. The duration
of the trajectory is 5	104�−1. As before, the Mg+ ion is
trapped axially between the two beams and it rotates clock-
wise about the common beam axis. Once more, the atom’s
in-plane motion is attracted toward the region of high beam
intensity. However, due to the net torque and the velocity
dependence of the potential it is seen that the motion does
not follow a path defined by the regions where the potential
is a minimum. The long-time behavior constitutes a uniform
circular motion, as can be deduced from Fig. 3, exhibiting
the evolution of the velocity components. The cooling in the
axial direction is evident in the rapid decrease of the axial
velocity component and the uniform circular motion is evi-
dent in the near equality �after a long time has elapsed� of the
two in-plane velocity components.

Where there is circular motion of the Mg+ ion of radius r0
this constitutes an electric current source of micron size. For
orientation as to orders of magnitude, we have a current i
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FIG. 1. The trajectory of a Mg+ ion in 1D counterpropagating
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FIG. 2. As in Fig. 1 but with l1=−l2=1 and p1= p2=0.
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�e /�, where �=2�r0 /vs, with vs�10 m s−1the long-time
speed and r0�w0=35�. A straightforward evaluation leads
to a current of the order of pA if a single ion is involved and
a nA for 103 ions and to a mA for 106 ions. The Mg+ ions are
assumed to be precooled with a distribution of velocities.
Once the LG beams are switched on, a large fraction of the
ions can be made to proceed toward the optical well which is
set up by the twisted molasses beams. Once trapped they will
continue to revolve in the circular orbit, as described above.
There would also an associated magnetic field whose mag-
nitude and distribution can be easily evaluated, as for the
case of a standard circular current loop.

B. 2D twisted optical molasses

A two-dimensional �2D� twisted molasses configuration is
now constructed by the introduction of a second pair of
twisted beams perpendicular to the original pair. The pairs
could have different width parameters w0 and w0�. In addition

to this difference, this configuration corresponds to the con-
ventional two-dimensional molasses configuration, but here
the four beams are all twisted.

For this setup the potential minima are situated along the
locus of spatial points defined simultaneously by two equa-
tions x2+y2=w0

2 /2 and y2+z2=w0�
2 /2. The locus of spatial

points where the dipole potential is minimum can be de-
scribed by the parametric equations �18�

x�u� = �w0�/�2�cos u, y�u� = �w0�/�2�sin u ,

z�u� = � �w0
2/2 − �w0�/2�sin2 u . �17�

For w0�=w0 the equations describe two orthogonal oblique
circles representing the intersection curves of two cylinders
of radii w0 /�2. In this configuration trapping of the Mg+ ions
will occur at points lying on one of the two oblique circles as
determined by the initial conditions. An ensemble of Mg+

ions with a distribution of initial positions and velocities will
populate the two circles, producing two orthogonal, essen-
tially static Mg+ ion loops �see Fig. 4�. Associated with this
system of charges would be a Coulomb field whose spatial
distribution for ions uniformly distributed in the rings can be
easily evaluated.
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ion in 1D counterpropagating twisted beams with l1=−l2=1 and
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For w0��w0 then the locus of spatial points where the
dipole potential is minimum becomes two circular loops
separated from one another. Figure 5 shows the trajectory of
two Mg+ ions in a 2D configuration where w0=25� and w0�
=35�, the two loops representing the loci of potential
minima. As in the case of w0=w0�, ions populate the two
loops resulting in two separate Mg+ ion loops. Changing the
magnitudes of l has a similar effect to varying the value of
w0 for the pairs of beams.

We now consider the 2D case where one or both of the
pairs of beams generates a torque. The simplest configuration
to be considered here is the one in which the pair of beams
along the z axis provide a net torque, with l1=−l2=1, and the
pair along x provide zero net torque, with l3= l4=1. Figure 6
displays the trajectory of a Mg+ ion, initially at the radial
position r=10� and with an initial velocity Vz�0�=5 m s−1,
projected on the xy plane. As in the previous cases, the ion is
axially cooled along the z direction, becoming trapped in the
xy plane. However, the in-plane motion is more complex
than before with its trajectory tracing out a path that re-
sembles a hysteresis figure. The ion seeks to follow a trajec-
tory in the region of potential minima, while responding to
the torque arising from the beams along the z axis which
causes the ion to be displaced from the potential minimum in
a sling-shot-like motion.

If both pairs of beams generate a torque, then the resulting
trajectory shape resembles a hysteresis figure in a fixed in-

clined plane, as seen in Fig. 7. The ion is responding to the
combined effects of orthogonal torques and axial cooling
forces.

C. 3D twisted optical molasses

The final case considered here is the three-dimensional
�3D� configuration in which a third pair of counterpropagat-
ing beams is added to the 2D configuration, orthogonal to the
plane containing the original beams. All six beams have an
azimuthal index l=1. In this case, the deepest potential
minima are located at eight discrete points defined by the
coordinates: x= � �w0 /2�, y= � �w0 /2�, z= � �w0 /2�. These
coincide with the eight corners of a cube of side w0, centered
at the origin of coordinates.

Figure 8 shows the trajectory of eight Mg+ ions positioned
at different initial positions, each with an initial velocity
Vz�0�=1 m s−1, in the 3D case. Each ion is seen to end up at
one of the eight discrete points where the dipole potential is
minimum, where it remains essentially motionless. There is
no net torque on this system.

As in the cases of 1D and 2D configurations we have
found that when each counterpropagating pair in the 3D con-
figuration provides a nonzero torque resulting in a nonzero
net torque on the system the atom is trapped within a loop in
which it moves. This can be seen in Fig. 9 where each pair
consists of a l=1 beam and a l=−1 beam. As in the 2D case
the ion seeks to follow a trajectory in the region of potential
minima, while responding to the torque arising from the
pairs of counterpropagating beams along each axis, which
causes the ion to be perturbed from the potential minimum in
a sling-shot-like motion.

IV. CONCLUSIONS

Ordinarily, optical molasses cannot be used as an atom
trap. If we consider a one-dimensional configuration of two
coaxial plane waves propagating in opposite directions to
one another, then it is not possible to trap an atom in all
directions between the two beams. If the atom is displaced
from the center there is no restoring radial force to keep the
atom trapped.
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For optical molasses using twisted beams such as
Laguerre-Gaussian light it is possible to completely trap at-
oms. Unlike Gaussian beams, Laguerre-Gaussian light has a
radial force which can be employed to keep an atom trapped
within the field of the beams.

We have shown that using twisted beams it is possible, in
principle, to trap atoms in well defined regions of space.
Using various configurations we have shown that by all-
optical means it is possible to create nanoscale atomic and
ionic rings that may either be static or in motion. These rings
will produce highly localized electric and magnetic fields.
The positioning and scale of the rings can be controlled by
varying the parameters l and w0 of the beams.

Using a 3D configuration we have shown that it is pos-
sible to trap atoms in eight discrete points that form the eight
corners of a cube whose dimensions represent the width of
the beams in the configuration. We suggest that by using a
suitable repetition of the twisted molasses arrangement a
larger lattice could be constructed. This lattice could then be
usefully exploited in the study of coupled Bose-Einstein con-
densates and in quantum information processing. A system of
cold atoms entering the twisted optical molasses region
would automatically become trapped in the eight corners of

the cube, as shown in Fig. 8. Evaporative cooling techniques
can then be followed to produce the BECs �17�. Progres-
sively stronger coupling between trapped BECs is achievable
by a reduction in the value of w0. The twisted beam environ-
ment offers flexibility in that one can choose at will various
parameters, for example, controlling the distances between
the trapping sites, while the depth of the confining potential
is controlled by the light intensity and the detuning. There
are also possibilities, as in plane wave optical lattices, for
trapping a single atom at each site, in which case the arrange-
ment could be used for quantum information processing �19�.
The procedure for quantum protocols would be the same as
that for conventional ion traps where quantum information
processes have been studied in some depth �20�. The main
advantage here is that the trapping as well as processing
would be all optical.
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