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The model of exact trajectories involved in a semiclassical computation of �vib�rotational linewidths and
shifts is extended to the case of asymmetric top colliders. General expressions for the second-order contribu-
tions to the scattering matrix are given which define the pressure broadening and shift of the line. This
theoretical approach is tested on the particular case of the infrared �7 band linewidths of C2H4 broadened by
N2 which is frequently required for atmospheric applications. The computed linewidths compare favorably
with available experimental data.
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I. INTRODUCTION

Asymmetric top molecules such as H2O, O3, or C2H4 as-
sume an important place in the physical chemistry of the
Earth’s and planetary atmospheres. Their remote sensing by
spectroscopic techniques enables a study of complex pro-
cesses such as ozone layer depletion or greenhouse effect.
Due to low molecular symmetry, from the experimental point
of view, the spectra of these species recorded in the infrared
and microwave regions appear as dense manifolds of �vib�ro-
tational lines hardly accessible for accurate and exhaustive
measurements while, from the theoretical point of view, the
interaction potential energy surfaces are not precisely known
and quantum-mechanical approaches are not applicable. Up
to now, the most advanced computations of asymmetric-top
spectral parameters are provided by semiclassical methods
which combine the quantum-mechanical description of the
internal molecular degrees of freedom �vibrations and rota-
tions� with a simplified, classical, treatment of the relative
molecular motion �translations�. For the water molecule
semiclassical computations have been made �1–4� in the
framework of the original approach of Robert and Bonamy
�RB� �5� which improves the well-known Anderson-Tsao-
Curnutte �ATC� theory �6,7� by avoiding the unphysical cut-
off procedure for the scattering operator via the linked clus-
ter theorem �8,9�, curved parabolic trajectories governed by
the isotropic part of the intermolecular potential, and taking
into account the short-range interactions. In other works
�10–12� the fully complex implementation of the RB formal-
ism �CRB� proposed by Gamache et al. �13� has been used.
The ozone case has been considered by Hartmann et al. �14�
as well as by Bouazza et al. �15� within the RB approach of
Refs. �1–3� and also by Gamache and co-workers �see, e.g.,
Refs. �16,17�� with the CRB formulation. Semiclassical RB
computations for ethylene have been made in Refs. �18–22�
but treating this molecule as linear. All the abovementioned
authors studying asymmetric rotors obtained quite realistic

theoretical values though some molecular parameters such as
the quadrupolar moment for C2H4 �20� or atom-atom inter-
action parameters for O3-N2 and O3-O2 systems �15� were
sometimes kept free in order to get the best fit to the avail-
able experimental data. In any case, additional detailed input
information on the intermolecular potential, �vib�rotational
wave functions and energy levels was needed from indepen-
dent sources making computations much more heavy and
tedious than for linear or symmetric top rotors. Another dif-
ficulty of semiclassical computation for polyatomic �23,24�
�and diatomic �25�� molecules consists in the fact that these
methods are not free from some approximations necessary
for rototranslational decoupling and may lose their precision
for highly anisotropic colliders with strong short-range inter-
actions. The interpretation of semiclassical calculation re-
sults for asymmetric tops represents thus a quite delicate
problem since a possible disagreement with experimental
values can arise from both imprecise input parameters and
computational method itself.

A possible further improvement of semiclassical ap-
proaches lies in the trajectory model used for computations.
Instead of straight-line trajectories of the ATC theory or para-
bolic trajectories of the original RB approach, Bykov et al.
�26,27� proposed to directly employ the exact solutions of
the classical equations of motion for a particle in an isotropic
potential field �28� but did not compute linewidth. This exact
trajectory model was introduced in the RB formalism for the
line broadening of linear molecules in Ref �29�; later, an
extension was made to symmetric tops �30�. For all molecu-
lar systems considered, the new model based on exact trajec-
tories provided much more realistic theoretical values than
any previous approach using straight-line or parabolic trajec-
tories. We present in this paper a generalization of the RB
formalism with exact trajectories �RBE� to the case of asym-
metric tops completing and finalizing thus the series of our
previous works on this subject.

The theory is applied to the ethylene molecule C2H4 since
it is a nearly prolate symmetric top allowing a comparison
with the simplified “prolate top” consideration of Refs.
�18,22�. Moreover, it is one of important pollutants of the*jeanna.buldyreva@univ-fcomte.fr
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terrestrial atmosphere produced by industrial processes, au-
tomobile traffic, vegetation, forest fires �the latter are, for
example, detectable from the space owing to C2H4 presence
�31��. It is also created by photodissociation of methane in
the stratosphere of Titan �32� and outer planets �33,34� and
constitutes an important probe molecule for their atmosphere
investigation. The single frequency region relatively well
studied for this purpose lies between 800 and 1500 cm−1

�tetrad �10 /�7 /�4 /�12� �35� and is therefore worthy of being
investigated by our theoretical approach. The choice of ni-
trogen as perturber is due to the atmospheric needs as well as
to quite exhaustive information available in the literature on
its molecular parameters and existing line shape computa-
tions for C2H4-N2 system �18,22�.

The paper is organized as follows. The next section out-
lines the key points of the RB formalism with exact trajec-
tories and details its extension to the asymmetric top collid-
ers. Particular attention is paid to the expansion of the
intermolecular potential on the rotational invariants and to
the representation of the rotational wave functions. Section
III contains an application of the theoretical approach to the
case of ethylene infrared lines broadened by nitrogen at room
temperature. The molecular and spectroscopic features of the
ethylene molecule are recalled for completeness. The behav-
ior of computed linewidths as a function of various quantum
and pseudoquantum numbers is analyzed and compared with
a number of available experimental data as well as with other
existing theoretical estimates. The concluding remarks and
some perspectives of application are summarized in the final
section.

II. THEORETICAL CONSIDERATIONS

A. RB formalism with exact trajectories

The basic expression of the original RB formalism �5�
gives the half-width on the half of height �HWHH� � fi of a
�vib�rotational spectral line corresponding to the radiative
transition f ← i �in cm−1� as

� fi =
nb

2�c
�
J2

�J2�
0

�

vf�v�dv�
0

�

2�bdb

��1 − �1 − S2,f2i2
�L� �e�−�S2,f2+S2,i2+S2,f2i2

�C� ��� �1�

�inelastic vibrational contributions and noncommutativity of
the interaction potential in the interaction representation are
neglected�. In this equation nb is the number density of per-
turbing particles and �J2

is their thermal population in the
�ground-state� rotation levels J2. Instead of the averaging
with the Maxwell-Boltzmann distribution of velocities f�v�,
the mean thermal velocity v̄=�8kBT / ��m�� �kB is the Boltz-
mann constant, T is the temperature, and m� is the reduced
mass of the molecular pair� is commonly used in order to
minimize the CPU time without a noticeable loss of preci-
sion. Furthermore, the integration over the impact parameter
b can be rewritten as the integration over the distance of the
closest approach rc which are related via the energy and mo-
mentum conservation condition b /rc= �1−Viso

� �rc��1/2, where
Viso

� denotes the reduced value of the isotropic part of the
interaction potential Viso defined by Viso

� =2Viso / �m�v2�. The
second-order contributions to the scattering matrix are given
by the matrix elements of the anisotropic part Vaniso in the
basis of molecular system wave functions integrated over the
collision duration �5�

S2,i2 =
�−2

2�2Ji + 1��2J2 + 1� �
�i�	Ji�Mi��2�	J2�M2�

MiM2


�
−�

�

dtei	�i	Ji�2	J2,�i�	Ji��2�	J2�
t��i	JiMi�2	J2M2�Vaniso�r��t����i�	Ji�Mi��2�	J2�M2�

2

, �2�

S2,f2i2
�C� = �

J2�

S2,f2�i2�
J2�J2
, S2,f2i2

�L� = �
J2��J2

S2,f2�i2�, �3�

where

S2,f2�i2� = −
�−2

�2Ji + 1��2J2 + 1� �
MiMi�MfMf�

M2M2�M

CJfMf��
JiMi C

JfMf���

JiMi� �
−�

�

dtei	�2�	J2��2	J2
t��f	JfMf��2�	J2�M2��Vaniso�r��t����f	JfMf�2	J2M2


��
−�

�

dt�ei	�2	J2�2�	J2�
t���i	JiMi�2	J2M2�Vaniso�r��t�����i	JiMi��2�	J2�M2�
 . �4�

In Eqs. �2�–�4� the primes mark the values after collision and
�i	 ��f	� and �2	 in the wave functions stand for other than
rotational and magnetic quantum numbers of the active mol-
ecule in the initial �final� state and of the perturbing mol-
ecule, respectively. The S2,f2 contribution for the final state is

given simply by changing i into f in Eq. �2�. The frequency

denoted by 	�i	Ji�2	J2,�i�	Ji��2�	J2�
in Eq. �2� is the sum of two

frequencies 	�i	Ji,�i�	Ji�
and 	�2	J2,�2�	J2�

of the transitions in-

duced by collision in the active and perturbing molecules.
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The Clebsch-Gordan coefficients CJfMf��
JiMi and C

JfMf���

JiMi� in Eq.

�4� describe the coupling between the active molecule and
the external field �tensorial order �=0 for the isotropic Ra-
man scattering, �=1 for the electric dipolar absorption and
�=2 for the anisotropic Raman scattering�.

The computation of the second-order contributions by
Eqs. �2�–�4� requires a specification of the trajectory model
�integrals over time� as well as the interaction potential and
the wave functions �matrix elements�. Since the relative
translational motion is decoupled from molecular vibrations
and rotations, the time dependence of Vaniso is completely
contained in the intermolecular distance vector r�. The latter
is governed by Viso and describes a plane trajectory whose
radial r�t� and angular ��t� parts are defined by the trajec-
tory model chosen. The integration over time t in Eqs. �2�
and �4� can be therefore replaced by the integration over the
intermolecular distance r. When the parabolic trajectory, a
Lennard-Jones form of the isotropic potential as well as an
analytical model for Vaniso are employed in the framework of
the traditional RB formalism, the S2 terms appear as analyti-
cal functions of molecular parameters; moreover, the vari-
able change in the integral over b in Eq. �1� is straightfor-
ward:

bdb = rcdrc�vc�

v
�2

�5�

�vc� is the apparent velocity defined by v, rc and Lennard-
Jones parameters� �5�. The model of exact trajectories gives t
and � as functions of r �28�:

t = �
rc

r dr�
�2�E − Viso�r���/m� − M2/�m�2r�2�

+ c1, �6�

� = �
rc

r M/r�2dr�

�2m��E − Viso�r��� − M2/r�2
+ c2, �7�

where E=m�v2 /2 and M=m�bv are, respectively, the energy
and angular momentum of the colliding pair. The integration
constants c1 and c2 vanish if the collision takes place in the
plane XOY, so that at t=0, r=rc, and �=0. This model is not
limited to a preselected mathematical form of the isotropic
potential and evaluates the time integrals in Eqs. �2� and �4�
by a numerical integration over r through

dt = dr/�2�E − Viso�r��/m� − M2/�m�2r2� �8�

�the second-order contributions cannot anymore be written
analytically�. The corresponding integration over the impact
parameter is performed using the relation �36�

bdb = rcdrc�1 − Viso
� �rc� −

rc

2
Viso

���rc�� , �9�

where a numerical differentiation of Viso
� �denoted by the

prime� is needed.

In the framework of semiclassical approaches the molecu-
lar wave functions are proper to the internal molecular de-
grees of freedom and are consequently not affected by the
trajectory model. For pure rotational motion of linear mol-
ecules they are given by ordinary spherical harmonics tied to
the orientation of the molecular axis in the laboratory-fixed
frame

�JM
 = YJM�
,�� �10�

�J is the quantum number for the total angular momentum J�

and M is its projection on the laboratory Z axis�. For sym-
metric rotors they are proportional to the rotational
D-matrices �Wigner matrices� �37�:

�JKM
 = �2J + 1

8�2 �1/2

D−K,−M
J ��,
,�� , �11�

where the additional quantum number K stands for the pro-

jection of J� on the molecular z axis �� axis� and �� ,
 ,�� are
the Euler angles of the principal-axes molecular system rela-
tive to the space-fixed laboratory axes. We underline that the
rotational matrix in this equation contains the arguments �
and � in reversed order and can be related to the correspond-
ing D matrix with usual order by �38�

DKM
J ��,
,�� = �− 1�K−MDMK

J ��,
,�� . �12�

When using the exact trajectories, the expansion of the inter-
action potential has to be made in the laboratory-fixed frame.
For linear molecules this potential is easily written as a
simple series of spherical harmonics tied to the orientations
of both molecular axes �Yl1m1

��1� and Yl2m2
��2�� and of the

intermolecular distance vector r� �Ylm���� �25,39,40�:

V�r�� = �
l1l2l

Vl1l2l�r� �
m1m2m

Cl1m1l2m2

lm

� Yl1m1
��1�Yl2m2

��2�Ylm����. �13�

Here �x denotes the polar angles of the molecule x �x
=1,2� while � stands for the polar angles of r� and the as-
terisk means the complex conjugation. For colliders of arbi-
trary symmetry two first spherical harmonics are replaced by
rotational Wigner matrices �25,39,40�

V�r�� = �
l1l2l

�
k1k2

Vl1l2l
k1k2�r� �

m1m2m

Cl1m1l2m2

lm

� Dm1k1

l1 ��1��Dm2k2

l2 ��2��Ylm����, �14�

where the arguments �x correspond now to the complete sets
of Euler angles �x ,
x ,�x. �Another rotationally invariant ex-
pansion of V�r�� into series of D matrices with reversed argu-
ments can be found in Ref. �38�.�

B. Case of asymmetric rotors

A molecule having three different principal moments of
inertia is an asymmetric top. These moments of inertia Ia, Ib,
and Ic tied, respectively, to the rotations about a, b, and c
axes �Ia� Ib� Ic� determine the corresponding rotational
constants A, B, C �A�B�C� �41�. The asymmetry is char-
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acterized by the coefficient �= �2B−A−C� / �A−C� which
takes values between −1 and +1. The low-limit value �
=−1 corresponds to the prolate symmetric top �B=C�, the
high-limit value �=1 refers to the oblate symmetric top
�A=B� and �=0 gives the most asymmetric top.

The qualitative picture of the asymmetric top energy lev-
els represents consequently an intermediate case between the
energy level manifolds of prolate and oblate symmetric tops.
�Appropriate diagrams for the correlation of the asymmetric
top energy levels with those of prolate and oblate symmetric
tops can be found, for instance, in Refs. �41,42�.� In the
asymmetric top each value of rotational quantum number J
gives rise to 2J+1 different energy levels �due to the re-
moval of the double degeneracy on quantum number K when
passing from the symmetric to the asymmetric top�. There is,
however, no meaningful quantum number to distinguish
these 2J+1 energy levels. They are simply labeled by an
index � varying from −J to J as the energy increases. At the
same time, each J� level, starting from the zeroth one, may
be sequentially and univocally connected to one prolate-top
level �J ,K−1� and one oblate-top level �J ,K1� �41,42� so that
instead of � the pair of indices K−1 and K1 can be used. Since
for the prolate top the quantum number K corresponds to the
projection on the least-moment-of-inertia axis a, K−1 is often
called Ka in the literature. For the oblate symmetric top K
means the projection on the largest-moment-of-inertia axis c
and the notation Kc is used instead of K1 . The indices
K−1 ,K1 �or Ka ,Kc� characterizing the asymmetric tops are
sometimes referred to as “pseudoquantum” numbers since
they are good quantum numbers only in the limit of prolate
and oblate symmetric tops. Both indices vary from 0 to J but
while K−1 increases with increasing energy levels, K1 varies
in the opposite direction. The energy levels of the asymmet-
ric top cannot be represented by explicit formulae, and ap-
proximate expressions or a numerical solution for the eigen-
values of the rotational Hamiltonian are employed. The
numerical solution is possible since for any asymmetric top
molecule the Hamiltonian matrix tied to a particular J value
is split into four submatrices corresponding to four irreduc-
ible representations of the group D2 with the basic functions
given in Table V of Ref. �38�.

The rotational wave functions of the asymmetric top com-
monly denoted by �J�M
 may be expressed in terms of sym-
metric top wave functions �JKM
 as �38�

�J�M
 = �
K

aK
J��JKM
 , �15�

where the coefficients aK
J� depend on the chosen form of the

rotational Hamiltonian and are obtained simultaneously with
the rotational energies during a numerical diagonalization
procedure. The calculation of matrix elements with the rota-
tional functions of asymmetric top reduces therefore to the
evaluation of the same operator in the basis of symmetric top
wave functions using the relation �38�

�JKM�Dkm
l �J�K�M�
 =�2J� + 1

2J + 1
CJ�K�l−k

JK CJ�M�l−m
JM .

�16�

The interaction potential for two asymmetric rotors, contrary
to the case of linear molecules, depends not only on the
orientations of the molecular axis of each partner in the labo-
ratory frame but also on the rotation of each molecule about
this axis �radial components depend additionally on the pro-
jections k1, k2�. The computations with exact trajectories use
therefore the potential expansion on spherical harmonics in-
troduced in Eq. �14�.

C. Interaction potential for asymmetric tops

In order to specify the radial components Vl1l2l
k1k2�r� a poten-

tial model has to be chosen. Since for polyatomic molecules
there is, in general, no numerical potential computed by
quantum-mechanical methods, we adopt here the commonly
used atom-atom model for the short-range forces to which
the long-range electrostatic interactions are added:

V = Vaa + Vel. �17�

For molecules of arbitrary symmetry, including the asymmet-
ric top ones, the potential energy of the long-range electro-
static interactions �for which l= l1+ l2� can be expressed in
terms of spherical harmonics �40�

Vel�r�� = �
l1l2l

�
k1k2

Al1l2

Ql1k1
Ql2k2

rl+1 
l,l1+l2 �
m1m2m

Cl1m1l2m2

lm

� Dm1k1

l1 ��1��Dm2k2

l2 ��2��Ylm����, �18�

where Qlxkx
represent the spherical multipole components in

the molecular frame and the coefficients Al1l2
are given by

Al1l2
=

�− 1�l2

2l + 1
� �4��3�2l + 1�!

�2l1 + 1� ! �2l2 + 1�!�1/2

. �19�

The potential energy of atom-atom interactions approxi-
mated by Lennard-Jones dependences reads �43�

Vaa = �
i,j
� dij

r1i,2j
12 −

eij

r1i,2j
6 � , �20�

where dij and eij are the atomic pair energy parameters and
r1i,2j is the distance between the ith atom of the first mol-
ecule and the jth atom of the second molecule. In order to
put Eq. �20� into the form of Eq. �14� the two-center expan-
sion of the function r1i,2j

−n �in the nonoverlapping region r
�r1i+r2j� has to be made �44,45�:

r1i,2j
−n = �

l1l2l

f l1l2l
n �r1i,r2j,r� �

m1m2m

Cl1m1l2m2

lm

� Yl1m1
��1i�Yl2m2

��2j�Ylm���� �21�

with
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f l1l2l
n �r1i,r2j,r� �

�− 1�l2

rn � �4��3�2l1 + 1��2l2 + 1�
�2l + 1� �1/2

Cl10l20
l0

��
p,q

� r1i

r
�p� r2j

r
�q �n + p + q − l − 3� ! ! �n + p + q + l − 2� !!

�n − 2� ! �p − l1� !! �p + l1 + 1� !! �q − l2� !! �q + l2 + 1� !!
�1 + 
n1�
pl1


ql2

p+q,l − 1�� ,

�22�

p= l1 , l1+2 , l1+4 , . . ., and q= l2 , l2+2 , l2+4 , . . .. In Eq. �21�
�1i and �2j represent the orientations of r1i

� and r2j
� vectors in

the laboratory-fixed frame. Since for polyatomic molecules
the atoms i , j may be located out of the molecular axes de-
scribed by �1 and �2 �see Eq. �14��, the spherical harmonics
Yl1m1

��1i� and Yl2m2
��2j� must be rewritten as functions of

�1 and �2 �40�:

Ylxmx
��xi� = �

kx

Dmxkx

lx ��x��Ylxkx
��xi� � , �23�

where �xi� is the orientation of the ith atom of the xth mol-
ecule in the molecular frame.

The final expression for the radial components of the full
interaction potential in form of Eq. �14� is given therefore by

Vl1l2l
k1k2�r� = Al1l2

Ql1k1
Ql2k2

rl+1 
l,l1+l2
+ �

ij

�dijf l1l2l
12 �r1i,r2j,r�

− eij f l1l2l
6 �r1i,r2j,r��Yl1k1

��1i� �Yl2k2
��2j� � . �24�

Since the exact trajectory approach involves a numerical in-
tegration of the radial potential components Vl1l2l

k1k2�r� over r,
these components are also computed numerically. In addi-
tion, this numerical computation enables a test of conver-
gence with respect to p and q parameters of the two-center
expansion.

D. Calculation of second-order contributions
for asymmetric tops

The general form of Eq. �14� for the interaction potential
leads to the matrix elements

�Ji�iMiJ2�2M2�Vaniso�r��t���Ji��i�Mi�J2��2�M2�
 = �
l1l2l

�
k1k2

Vl1l2l
k1k2�r�t�� �

m1m2m

Cl1m1l2m2

lm Ylm���t���

� �Ji�iMi�Dm1k1

l1 ��1���Ji��i�Mi�
�J2�2M2�Dm2k2

l2 ��2���J2��2�M2�
 , �25�

where

�Ji�iMi�Dm1k1

l1 ��1���Ji��i�Mi�
 =�2Ji� + 1

2Ji + 1 �
KiKi�

aKi

Ji�i�a
Ki�
Ji��i�CJi�Ki�l1k1

JiKi CJi�Mi�l1m1

JiMi , �26�

and

�J2�2M2�Dm2k2

l2 ��2���J2��2�M2�
 =�2J2� + 1

2J2 + 1 �
K2K2�

aK2

J2�2�a
K2�
J2��2�CJ2�K2�l2k2

J2K2 CJ2�M2�l2m2

J2M2 , �27�

in accordance with Eqs. �15� and �16�.
Introducing the notations

Xk1

l1 �Ji�iJi��i�� � �
KiKi�

aKi

Ji�i�a
Ki�
Ji��i�CJiKil1k1

Ji�Ki� , Xk2

l2 �J2�2J2��2�� � �
K2K2�

aK2

J2�2�a
K2�
J2��2�CJ2K2l2k2

J2�K2� , �28�

and

Il1l2lm
k1k2 �	� � �

−�

�

dtei	tVl1l2l
k1k2�r�t��Ylm���t��� �29�

we can write the S2,i2 term of Eq. �2� and S2,f2�i2� term of Eq. �4� as

S2,i2 =
1

2�2 �
Ji��i�J2��2�

�
l1l2l

1

�2l1 + 1��2l2 + 1��m 
�
k1k2

�− 1�k1+k2X−k1

l1 �Ji�iJi��i��X−k2

l2 �J2�2J2��2��Il1l2lm
k1k2 �	i2,i�2��
2

, �30�
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S2,f2�i2� = −
�− 1�Ji+Jf+J2+J2�+�

�2 ��2J2� + 1��2Ji + 1��2Jf + 1�
�2J2 + 1� �

l1l2l

�− 1�l2+lW�JiJfJiJf ;�l1�
�2l1 + 1��2l2 + 1�

��
m
��

k1k2

�− 1�k1+k2X−k1

l1 �Jf� fJf� f�X−k2

l2 �J2��2�J2�2�Il1l2lm
k1k2 �	2�2��

�� �
�1�2

�− 1��1+�2X−�1

l1 �Ji�iJi�i�X−�2

l2 �J2�2J2��2��Il1l2lm
k1k2 �	22��� �31�

where W�JiJfJiJf ;�l1� is a Racah coefficient.
The integral of Eq. �29� can be further simplified using

the trajectory symmetry and the properties of the spherical
harmonics

Ylm�
,��� = ��2l + 1��l − m� ! /�4��/�l + m�!�1/2

�e−im�Pl
m�cos 
�

�46� for the chosen orientation of the laboratory frame (the
collision takes place in the plane XOY so that �= �� /2,��
and the associated Legendre polynomials

Pl
m�0� = �− 1��l+m�/2�l + m� ! /��l − m�/2� ! /��l + m�/2�!

do not vanish only when l+m is even):

Il1l2lm
k1k2 �	� = 2

�− 1��l+m�/2��l − m� ! �l + m�!
2l��l − m�/2� ! ��l + m�/2�!

��
0

�

dt cos�	t − m��t��Ṽl1l2l
k1k2�r�t�� , �32�

where the radial potential components Ṽl1l2l
k1k2 = ��2l

+1� / �4���1/2Vl1l2l
k1k2. Replacing further the integration over t by

the integration over r with the exact trajectory formulas
�6�–�8� and introducing the dimensionless integration vari-
able y=r /rc give

Il1l2lm
k1k2 �	� =

2rc

v

�− 1��l+m�/2��l − m� ! �l + m�!
2l��l − m�/2� ! ��l + m�/2�!

Ĩl1l2lm
k1k2 �	� ,

�33�

where

Ĩl1l2lm
k1k2 �	�

� �
1

� dyyṼl1l2l
k1k2�yrc�cos�kcA0�y� − m�1 − Viso

� �rc�A2�y��

�y2 − 1 + Viso
� �rc� − y2Viso

� �yrc�
,

�34�

An�y� = �
1

y dz

zn−1�z2 − 1 + Viso
� �rc� − z2Viso

� �zrc�
, �35�

and kc=	rc /v is the resonance parameter. To compute the
terms S2 further, a precise specification of the interacting
molecules is needed.

III. APPLICATION TO C2H4-N2

For a linear perturbing molecule �N2� k2=K2=K2�=0 so

that the corresponding X0
l2 function is equal to CJ20l20

J2�0 and the
second-order contributions reduce to

S2,i2 =
2rc

2

�2v2 �
Ji��i�J2�

�
l1l2l

�CJ20l20
J2�0 �2

�2l1 + 1��2l2 + 1��m
�l − m� ! �l + m�!

22l��l − m�/2�!2��l + m�/2�!2
�
k1

�− 1�k1X−k1

l1 �Ji�iJi��i��Ĩl1l2lm
k10 �	i2,i�2��
2

, �36�

S2,f2�i2� = −
4rc

2�− 1�Ji+Jf+J2+J2�+�

�2v2
��2Ji + 1��2Jf + 1��

l1l2l

�− 1�lW�JiJfJiJf ;�l1�
�2l1 + 1��2l2 + 1�

�CJ20l20
J2�0 �2�

m

�l − m� ! �l + m�!
22l��l − m�/2�!2��l + m�/2�!2

���
k1

�− 1�k1X−k1

l1 �Jf� fJf� f�Ĩl1l2lm
k10 �	2�2����

�1

�− 1��1X−�1

l1 �Ji�iJi�i�Ĩl1l2lm
�10 �	22��� . �37�

For the long-range part of the interaction potential we re-

tained only the principle quadrupole-quadrupole contribution

with the spherical nonvanishing components in the principle-

axes molecular frame �40�

Q20 =� 5

4�
Qzz, Q22 = Q2,−2 =� 5

24�
�Qxx − Qyy� . �38�

The Cartesian components Qxx, Qyy, Qzz corresponding to the
molecular frame presented in Fig. 1 are listed in Table I.

JEANNA BULDYREVA AND LINH NGUYEN PHYSICAL REVIEW A 77, 042720 �2008�

042720-6



For the atom-atom contributions we included the Vl1l2l
k1k2

terms with l1l2l=022, 202, 220, 222, and 224; the necessary
molecular parameters are also given in Table I. It is worthy
of note that among the data of this table the quadrupole
moment components are quite well known whereas the pair
atom-atom parameters are calculated by the usual combina-
tion rules from the homonuclear atom-atom parameters opti-
mized in Ref. �47� by fitting of second virial coefficients to
their experimental values. These atom-atom parameters have
an important impact on the linewidth computation since in
addition to the contribution to the anisotropic part of the
intermolecular potential they define its isotropic part which
governs the relative trajectory. The energy levels and the
coefficients of the C2H4 wave functions expansion following
Eq. �15� are taken from Ref. �48�. The �ground-state v=0�
rotational constant value B0

N2 =1.989622 �22� is used to com-
pute the rotational energies of the perturbing molecule N2.
The integration over exact trajectories is performed with the
mean thermal velocity �which excludes the orbiting colli-
sions� as in the original RB approach �5�.

The plane molecule C2H4 is a nearly prolate top ��
=−0.9143 in the ground state�. It belongs to the point group
D2h and possesses therefore twelve normal vibration modes.
For our theoretical analysis we retained the well studied ex-
perimentally �7 band ��=−0.9149 �18�� corresponding to the
symmetry type B1u. According to the active molecule geom-
etry �Fig. 1� the normal vibration �7 gives rise to a dipolar
moment �c along the principle symmetry axis c. For the
quantum number J we have thus the usual selection rule for
radiative transitions in asymmetric tops

�J = 0, � 1 �39�

�Q, R, and P branches, respectively� completed by the selec-
tion rule for the alternating dipole moment lying in the axis
of the largest moment of inertia

+ + ↔ + − ;− + ↔ − − �40�

which refers to the symmetry of the rotational eigenfunction
�41�. The allowed changes of the pseudoquantum numbers
Ka ,Kc follow the particular rules for �c �42�:

�Ka = � 1, � 3, � 5, . . . ;�Kc = 0, � 2, � 4, . . . �41�

which are additionally limited by the allowed changes of
Ka+Kc for each �J value and for J+� even or odd �see Table
II�. The collision-induced transitions in the active molecule

are determined by the Clebsch-Gordan coefficient CJiKil1k1

Ji�Ki�

which imposes Ji− l1�Ji��Ji+ l1 and Ki�=Ki+k1. For our
computations, similar to Refs. �18,22�, we accounted gener-
ally only for �Ka=0 since including other cases made the
computations too time consuming. For the linear and cen-
trosymmetric perturbing molecule l2 takes only even values
�l2=0 ,2 ,4 , . . .� and nonvanishing Clebsch-Gordan coeffi-

cients CJ20l20
J2�0 appear for J2�+J2 even, so that the collisional

transitions in the perturbing molecule occur with J2�=J2
− l2 ,J2− l2+2 , . . . ,J2 , . . . ,J2+ l2−2 ,J2+ l2.

We studied first �Fig. 2� the general J dependence of the
Q-branch linewidths �four transitions of the PQ�J ,1� sub-
branch, one transition of the PQ�J ,3� sub-branch, and one
transition of the PQ�J ,4� sub-branch; for all �Kc=0� with
the single electrostatic quadrupole-quadrupole contribution
with a double goal: to verify the statement of Ref. �22� that
the electrostatic contributions alone lead to results underes-
timated by up to 70% and to test the role of collision-induced
transitions with �Ka�0 neglected in this reference. As can
be seen from this figure, the electrostatic contribution com-
puted as in Ref. �22� with �Ka=0 only �open circles� does
give the linewidths underestimated by about 70–80 %.
When the corresponding atom-atom contributions are added
�filled circles� this discrepancy decreases to 10–20 % show-
ing thus the extreme importance of these particular atom-
atom terms. Taking then into account the other possible �Ka
values �solid squares� yields a further improvement of the
computed linewidths which now either coincide completely
with the measurements or differ by about 5% only; we must
conclude thus that the collisional transitions with �Ka�0

TABLE I. Molecular parameters for C2H4-N2 system.

dij
a eij

a �rxi�
b Q c

10−7 erg Å12 10−10 erg Å6 Å 10−26 esu

dCN=0.3230 eCN=0.2920 �r1C�=0.6765 Qxx
C2H4 =−3.25

dHN=0.0570 eHN=0.0803 �r1H�=1.5265 Qyy
C2H4 =1.62

HCĤ=119°55� Qzz
C2H4 =1.63

�r2N�=0.550 Qzz
N2 =−1.4

aComputed with data of Ref. �47�.
bReference �41� for C2H4 and Ref. �22� for N2.
cReference �40�.

a
z

CC

H

H

H

H

y b

x c

FIG. 1. Geometry of C2H4.

TABLE II. Selection rules for Ka ,Kc indices of C2H4 for the
radiative transitions of �7 band.

�Ka, �Kc

�J J+� �Ka+�Kc included in computation

1 even/odd 1 �Ka=1, �Kc=0

�Ka=−1, �Kc=2

0 even 1 �Ka=1, �Kc=0

�Ka=−1, �Kc=2

odd −1 �Ka=−1, �Kc=0

�Ka=1, �Kc=−2

−1 even/odd −1 �Ka=−1, �Kc=0

�Ka=1, �Kc=−2
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have an observable impact on the line broadening computa-
tion. �In further computations we were obliged, however, to
limit the collisional transitions to �Ka=0 because of the too
high CPU cost.�

In order to be sure of the linewidth convergence with
respect to l1, l2, l values accounted for in our computation we
carried out additional tests whose results for the transitions
with �J=0, �Ka=−1, �Kc=0 �313→303, 414→404, . . .�
are presented in Fig. 3. Starting from 224 contributions �both
electrostatic and atom-atom: filled circles�, we added pro-
gressively the atom-atom contributions 222 �solid triangles�,
220 �solid diamonds�, 202 �crosses�, and 022 �solid squares�.
We can see, for example, that the contribution 202 appears to
be quite significant in the line broadening, as it must be for
the interaction of the quite anisotropic C2H4 molecule with
the almost isotropic molecule N2. At the same time, the “iso-
tropic part” of C2H4 �l1=0� and the “anisotropic l2=2 part”
of N2 are not expected to interact strongly, and we can ob-

serve in the figure that, indeed, the last contribution l1=0,
l2=2 gives almost negligible changing in the linewidth value.

The general J dependence of the line broadening coeffi-
cients in the P, Q, and R branches is shown in Fig. 4. For the
rotational quantum numbers with few Ka observed experi-
mentally �for instance, J=19 in the R branch has Ka
=0,2 ,3 ,4� the detailed analysis of these dependences is hard
to be made because of a strong overlapping of the corre-
sponding symbols. In order to resolve this problem, we have
chosen a specific representation, with the abscissa incre-
mented by 0.2Ka. The factor of 0.2 was chosen since for any
considered transition Ka�4 and all linewidths referring to
the same J value have their abscissae between J and J+0.8,
without interference with the abscissa interval for the next
value of the rotational quantum number J+1. The RBE-
computed linewidths are plotted together with the experi-
mental and theoretical RB values of Refs. �18,22�. In the P
branch, in comparison with the traditional RB estimation of
linewidths �22�, clearly better results are obtained for middle
J values. In the Q branch, our computed values are closer to
the experimental data for some J values but are, however,
more distant for other ones. In the R branch, the agreement
of our theoretical values with measurements is almost perfect
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FIG. 2. Study of electrostatic and atom-atom 224 contributions
with various selection rules for collisional transitions; experimental
values from Ref. �22� are shown for Voigt profile model �VP� and
Rautian profile model �RP�.
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FIG. 3. Test of linewidth convergence for the accounted values
of l1l2l in the interaction potential.
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FIG. 4. Linewidth dependence on the rotational quantum num-
ber for P, Q, and R branches. Experimental results of Refs. �18,22�:
�, Voigt profile, �, Rautian profile. Theoretical results: �, tradi-
tional RB approach �22�, �, RBE approach �this work�.
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�except for J=19� whereas the linewidths obtained by the
traditional RB approach �22� are clearly overestimated or
underestimated. This latter branch allows us to equally look
at the Ka dependences of the line broadening coefficients
since for J=19 three transitions are experimentally available
for the sub-branch RR�19,Ka� with Ka=0,2 ,3 and �Kc=0.
For this particular J value, however, our theoretical values
are not satisfactory for Ka=0,2 and the experimentally ob-
served �with large error bars� linewidth increasing with Ka
increasing is not reproduced; it is, however, well predicted
by the traditional RB approach of Ref. �22�. At the same
time, the theoretical linewidth of this reference for the tran-
sition 203,17←194,15 is almost out of the experimental error
bar whereas our approach yields a value exactly correspond-
ing to the measurement with a Voigt profile.

The overall comparison with experimental values of P
and R branches is therefore more favorable for RBE line-
widths �one point for P branch and two points for the R
branch outside the experimental error bars instead of respec-
tively five and three points for the RB values�. In addition,
since the interaction potential is almost identical in both
works �the 70% underestimation of linewidths retrieved in
our computation with the quadrupole-quadrupole contribu-
tions only testifies the negligible role of the higher-order
multipole terms included in the interaction potential of Ref.
�22��, our better values for the linewidths prove the impor-
tance of the correct treatment of C2H4 molecule as asymmet-
ric top and the advantage of the exact trajectory model.

The discrepancies still observed between our theoretical
results and experimental values can be attributed, from the
one hand, to the approximate character of the available inter-
action potential: a precise theoretical approach needs a re-
fined potential whereas a rough theoretical model can mask
the potential imperfections. More reliable atom-atom param-
eters could improve therefore our theoretical predictions.
�For the high J values of the Q branch the neglected because
of CPU cost collisional transitions with �Ka�0 are possibly
also important.� From the other hand, the polyatomic active
molecule C2H4 is quite anisotropic, so that the decoupling of
its rotational and translational motions becomes questionable
at small values of the intermolecular distance. Since the
model of exact trajectories brings a more precise, with re-
spect to parabolic or straight-line trajectories, description of
this region, the nonvalidity of the rototranslational decou-
pling can induce worse values of the line broadening param-
eters. For a really pertinent comparison of RB and RBE ap-
proaches in the case of asymmetric tops, the active molecule,

from one side, must be quite isotropic and interact with the
perturber principally by the long-range forces �in order that
the rototranslational decoupling be valid� and, from the other
side, must have observable short-range contributions in the
interaction potential �in order that the short-range difference
between the trajectory models can be tested�. It seems, how-
ever, difficult to satisfy both requirements simultaneously for
real molecular pairs.

IV. CONCLUSION

In the present work we have generalized the semiclassical
approach of Robert and Bonamy with exact trajectories to
the case of asymmetric top molecules. The second-order con-
tributions to the scattering matrix which define the line
broadening and shift coefficients are expressed as functions
of the radial anisotropic potential components integrated
over exact isotropic trajectories and weighted by the coeffi-
cients of the asymmetric-top wave function expansion over
the wave functions of symmetric top. In comparison with the
traditional RB formalism for asymmetric tops, our RBE ap-
proach deals with arbitrary �numerical� form of the interac-
tion potential, which allows an easy test of the radial poten-
tial components convergence with respect to the parameters
of two-center expansion �e.g., the CRB formalism is limited
to the eighth order� and avoids the errors induced by fitting
of the isotropic potential to analytical Lennard-Jones depen-
dences. Formally, it yields the most precise trajectory de-
scription possible in the semiclassical framework. The gen-
eral formulas are detailed for the particular case of the
asymmetric-top C2H4 molecule colliding with the cen-
trosymmetric linear molecule N2 which is of great impor-
tance for atmospheric applications.

Comparison of the computed linewidths with the avail-
able experimental data and the theoretical values found from
a simplified treatment of C2H4 as a prolate top in the frame-
work of the traditional parabolic-trajectory RB approach has
revealed the importance of the exact asymmetric-top treat-
ment of this molecule, the non-negligible character of colli-
sional transitions with �Ka�0 as well as a general improve-
ment of the line broadening prediction with exact classical
trajectories. The scarce experimental data have not allowed
to draw a definite conclusion on the Ka dependences of the
linewidths which appear to be quite different for the two
theoretical approaches considered. New measurements are
therefore needed to address this point. Other perturbing mol-
ecules are also worthy of study.
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