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A purification procedure that simultaneously corrects the N- and S-representability main defects of a second-
order reduced density matrix �2RDM�, second-order hole reduced density matrix �2HRDM�, and second-order
G matrix is presented here. In this purifying procedure, the generalized unitarily invariant second-order matrix
decomposition �D. R. Alcoba, Int. J. Quantum Chem. 97, 776 �2004�� for the 2RDM and the 2HRDM as well
as for the G matrix is combined with the S-representability conditions. In particular, here we will focus our
attention on the RDMs corresponding to doublet states. We will thus explicitly give the S-representability
conditions that a two-body correlation matrix has to satisfy when an N-electron system is in a doublet spin-
state in the spin-component of maximum projection. Furthermore, as a consequence of the G-matrix spin
properties �which directly affect the S-representability of the 2RDM�, we show that a different contracting form
for the 2RDM is possible. The numerical results presented in this work confirm the efficiency of our purifying
procedure.
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I. INTRODUCTION

For an N-electron system with only pairwise interactions
the second-order reduced density matrix �2RDM�, corre-
sponding to the N-electron state under study holds all the
necessary information to evaluate the expectation values of
the observables. The seminal works of Husimi �2�, Löwdin
�3�, Mayer �4�, McWeeny �5�, and Coulson �6� are at the
origin of the line of research that directly aimed at determin-
ing the 2RDM instead of looking for the wave function of
the state considered �7–12�. In Ref. �13�, the different aspects
of the 2RDM theory are reviewed. An interested reader may
find in this reference a rather complete account of the bibli-
ography of the field up to 2006.

The great difficulty in directly looking for a 2RDM in-
stead of deriving it from the knowledge of the N-electron
wave function by integration over N-2 electron variables is
that, even after more than 60 years of study, we cannot claim
a complete knowledge of its mathematical-physical proper-
ties. This problem was first defined and studied by Coleman,
who denoted it as the N-representability problem �14�. This
author defined as N-representability conditions the sufficient
set of properties that a matrix, represented in a p-electron
space, must possess in order to ascertain that there exists an
N-electron wave function from which this matrix can be de-
rived by integration over the variables of N-p electrons.

The requirement that a 2RDM be N-representable is
analogous to the requirement that a well-behaved wave func-
tion should be continuous and single-valued, square-
integrable, differentiable everywhere except where the
potential becomes singular and antisymmetric under inter-
change of the coordinates of any two electrons. Therefore to
impose N-representability conditions upon a two-electron
matrix should be an obliged requirement in all the 2RDM
oriented methods. There are two such methods that are
currently investigated and applied. In the variational evalua-

tion of the energy, the N-representability conditions are im-
posed as constraints in the optimization process
�12,13,15–22�. In the iterative solution of the second-order
contracted Schrödinger equation �2CSE�, or its variants
�7,11–13,23–47�, the N-representability conditions are im-
posed upon the outcome of the equation by subsequently
applying a 2RDM purification procedure. One of the aims of
this paper—the most applicative one—consists of establish-
ing the conditions, as well as the strategy, for constructing a
2RDM purification procedure in the study of states of dou-
blet symmetry.

Several of the approaches developed in order to purify the
2RDM �40,41,43,46� have a common feature: The 2RDM is
decomposed into different matrix contributions, and the
1RDM remains fixed during the purification process while
the two-body part is corrected. Another research line, where
the developments reported here could well be proven useful,
is quantum information �48�. Indeed, the correlation matrix
that carries information about the spectrum of the system is
probably related to the two-body quantum involvement.

Since, in general, one is interested in states having
well-defined spin-quantum numbers, the spin- or
S-representability concept has been defined �49�. In a
similar way to the N-representability conditions, the
S-representability conditions are those conditions that a
2RDM must satisfy in order to be certain that it derives from
a pure spin state. In 1961, McWeeny and Mizuno �51� stud-
ied the 2RDM spin properties and in 2005 the general spin
properties of the correlation matrix were reported �43�. These
correlation matrix spin properties, which are very exacting
and directly influence the 2RDM structure, should therefore
be imposed as S-representability conditions in the 2RDM
purification procedure for a given spin symmetry.

In the study carried out for the singlet Li2 and BeH2
�42,46� molecules using a combined 2CSE-purification
method, the improvement brought about by the inclusion of
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the purification procedure upon both the convergence of the
method and its accuracy was dramatic. Indeed, the accuracy
attained after including the purification procedure into the
process was of 10−5 hartrees. It is therefore necessary to
develop ad hoc purification procedures for higher spin mul-
tiplicities that play an important role in molecular physics.
The aim of this paper is to develop such a purification pro-
cedure for doublet states.

One of the possible ways for decomposing the 2RDM in
order to be able to keep the 1RDM fixed and to correct the
two-body contribution is the unitarily invariant decomposi-
tion proposed by Coleman in 1974 �50�. This decomposition
is at the base of Mazziotti’s 2RDM purification procedure
�40�. In order to devise a 2RDM purification procedure that
would not only impose the main N-representability condi-
tions but also the S-representability ones, Alcoba generalized
Coleman’s unitarily invariant decomposition �1� and pro-
posed a purification procedure for 2RDMs corresponding to
singlet states �46�.

In order to attain our aim of building a 2RDM purification
procedure for doublet states we start by reporting the explicit
spin conditions that must be satisfied when the state consid-
ered is a component of a doublet with Ms=1 /2. Then, due to
Alcoba’s generalization of Coleman’s matrix decomposition,
the N- and S-representability conditions of the G matrix can
be included in the purification procedure.

The basic theoretical background is summarized in the
following section. In Sec. III a set of S-representability con-
ditions for the correlation matrix corresponding to a doublet
state is explicitly given. The sequence of operations per-
formed by the purification procedure is described in Sec. IV.
The results obtained when purifying approximated 2RDMs,
corresponding to the ground, first, and fourth excited states
of the linear BeH2

+ are reported in Sec. V. The initial non-
negligible N- and S-representability defects of these three
2RDMs were smoothly and consistently corrected when the
purification procedure was applied to these 2RDMs. Some
general comments are finally given in Sec. VI.

II. BASIC THEORETICAL BACKGROUND

A. Definitions

1. Reduced density matrices

The well-known definitions of the 1RDM and 2RDM el-
ements in second quantization in the occupation number rep-
resentation are

1Di�;j�
= ���ai�

† aj�
��� �1�

and

2 ! 2Di� j��;k�l��
= ���ai�

† aj��

† al��
ak�

��� , �2�

respectively. The indices i , j ,k, and l denote the elements of
a finite basis set formed by K orthonormal orbitals. The spin
functions � and � are generically denoted by �, ��, etc. The
state being considered is represented by the symbol �. Note
that the bra and ket states may be different. When this is the
case, one has a transition reduced density matrix �TRDM�.

The matrices defined in a similar way but with the cre-
ation operators to the right of the annihilators

1D̄i�;j�
= ���aj�

ai�
† ��� �3�

and

2 ! 2D̄i� j��;k�l��
= ���al��

ak�
ai�

† aj��

† ��� �4�

are hole reduced density matrices �HRDM�, and will also
play an important role in following paragraphs.

2. Two-body correlation and G matrices

We define the elements of the second-order correlation
matrix as

Ci� j��;k�l��
= �

����

���ai�
† ak�

��������aj��

† al��
���

	 ���ai�
† ak�

P̂aj��

† al��
��� , �5�

where P̂ is the operator that projects upon the space comple-
mentary to ������. This definition arises from the following
2RDM decomposition �12,32–38,41,43,45–47�:

2 ! 2Di� j��;k�l��
= 1Di�;k�

1Dj��;l��
− ��,��� j,k

1Di�;l�

+ 2Ci� j��;k�l��
. �6�

The well-known G matrix �15,16� is formed by the same
elements as the C matrix but their ordering is different. Thus

Ci� j��;k�l��
	 Gi�k�;l��j��

. �7�

In what follows we will center our attention on the G matrix
instead of on the C matrix because G is a Hermitian positive
semidefinite matrix, while the C matrix is not.

A very important property of either of these two matrices,
which describe the correlation information carried by the
2RDM, is that they also appear when decomposing the
2HRDM �32�. Thus

2 ! 2D̄i� j��;k�l��
= 1D̄i�;k�

1D̄j��;l��
− ��,���i,l

1D̄j�;k�

+ 2Ci� j��;k�l��
. �8�

The fact that the G matrix is a common part of both the
2RDM and the 2HRDM will be used later on.

B. Basic N-representability conditions

The ensemble N-representability problem for the 1RDM
was solved by Coleman �14� by establishing that it must be a
Hermitian, positive semidefinite matrix whose eigenvalues
are less than one. This theorem applies also to the 1HRDM.
This is seen by realizing that

1Di�;j�
+ 1D̄i�;j�

= �i,j �9�

The solution given by Coleman �52� for the
N-representability of the 2RDM is unfortunately not feasible
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�53�. However, in practice, there is a set of necessary condi-
tions, which have been found to yield matrices, that are very
close to N-representable ones. This set of conditions is as
follows �7–12�.

�1� The 2RDM, 2HRDM, and the G matrix are Hermitian
matrices.

�2� While the 2RDM and 2HRDM are antisymmetric un-
der permutation of indices within a given row or column, the
G matrix is not antisymmetric. For instance, the permutation
of two indices leads to the following relation:

Gi�l��;k� j��
= 1Di�;k�

1D̄j��;l��
+ ��,��

1Di�;l�
1D̄j�;k�

− Gi�k�;l��j��
.

�10�

�3� The D N-representability condition states that the
2RDM is a positive semidefinite matrix.

�4� The 2HRDM can be expressed in terms of the 1- and
2-RDMs as

2 ! 2D̄i� j��;k�l��
= 2 ! 2Di� j��;k�l

��
+ �i;k� j;l − �i;l� j;k��;��

− 1Dj��;l��
�i;k − 1Di�;k�

� j;l + ��;���i;l
1Dj�;k�

+ ��;��� j;k
1Di�;l�

. �11�

The Q N-representability condition states that the 2HRDM is
a positive semidefinite matrix.

�5� The G N-representability condition states that the G
matrix is a positive semidefinite matrix. This is a very im-
portant property, which is why in what follows we will cen-
ter the attention upon this matrix, preferably instead of the
C-matrix, in spite of the fact that the row and column labels
of the 2RDM and the C matrix are the same.

�6� The 2RDM, 2HRDM, and G matrix contract according
to

�
j

2 ! 2Di� j��;k� j��
= 1Di�;l�

�N�� − ��,��� , �12�

�
j

2 ! 2D̄i� j��;k� j��
= 1D̄i�;l�

�K − N�� + ��,��� , �13�

�
k

Ci�k��j�k��
= 0 = �

k

Gi� j�;k��k��
, �14�

�
l

Gi�l��;j�l��
= �K − N�� + ��,���

1Di�;j�
− �1D2�i�;j�

��,��,

�15�

�
l

Gl�i��;l� j�� = N�
1D̄i��;j��

+ �1Di��;j��
− �1D2�i�;j�

���,��.

�16�

These are standard contractions but, as will be seen later on,
when the adequate spin conditions are taken into account,
other types of important contractions arise.

C. General form of the unitarily invariant second-order
matrix decomposition

In 1974 Coleman reported a unitarily invariant second-
order matrix decomposition that could be applied to the
2RDM �50�. When one wishes to apply the same decompo-
sition to the 2RDM, 2HRDM, and G matrices, Coleman’s
decomposition cannot be applied, this is because the G ma-
trix is not antisymmetric with respect to permutation of the
row or column indices. Alcoba �1� proposed a generalized
unitarily invariant decomposition that may be applied to
these three matrices. In this section we describe this gener-
alized decomposition while paying special attention to the
points more directly affected by the spin properties of the
state considered.

Let us represent by M the second-order matrix that is
decomposed into three matrices 0M, 1M, and 2M that have a
zero-, one-, and two-electron dependence, respectively

M = 0M + 1M + 2M . �17�

Since the symmetry under permutation of indices of the M
matrix is arbitrary, the number of contractions that have to be
taken into account is larger than in Coleman’s decomposi-
tion. Thus the matrices 0M, 1M, and 2M are evaluated with
the following auxiliary quantities defined by the contractions
of M:

�1� The contractions over one common index or single
contractions:

�
m

Mim;jm = Bi;j, �
m

Mmi;mj = Bi;j� , �18�

�
m

Mim;mj = Ri;j, �
m

Mmi;jm = Ri;j� . �19�

�2� The double contractions:

�
m,n

Mmn;mn = A, �
m,n

Mmn;nm = A�. �20�

In terms of these magnitudes one has

0Mij;kl =
�KA − A���i,k� j,l + �KA� − A��i,l� j,k

K�K2 − 1�
, �21�

1Mij;kl =
�4A� − 2KA��i,k� j,l + �4A − 2KA���i,l� j,k

K�K2 − 4�

+
2�Bj;l�i,k + Bi;k� � j,l + Rj;k�i,l + Ri;l� � j,k�

K�K2 − 4�

+
�K2 − 2��Bi;k� j,l + Bj;l� �i,k + Ri;l� j,k + Rj;k� �i,l�

K�K2 − 4�

+
Bi;l� j,k + Bj;k�i,l + Bi;l� � j,k + Bj;k� �i,l

4 − K2

+
Ri;k� j,l + Rj;l�i,k + Ri;k� � j,l + Rj;l� �i,k

4 − K2 , �22�

2Mij;kl = Mij;kl − 0Mij;kl − 1Mij;kl. �23�
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Note that in the 2RDM and 2HRDM cases the antisym-
metry under permutation of the creation operators �or under
permutations of the annihilators� forces all single and double
contractions to be related; there is no more than one single
and one double linearly independent contractions. Since
there is no such antisymmetry in the G-matrix case, four
single contractions and two double contractions must be con-
sidered.

For our purpose, an important feature of this decomposi-
tion is that it allows one to independently modify the zero-,
one- and two-body information of the M matrix. Assuming
that the 1RDM is ensemble N-representable, the N- and
S-representability errors of the 2RDM, 2HRDM, and G ma-
trices will be caused by the 2M matrix. Consequently keep-
ing the 1RDM fixed while correcting the two-body part of
these three matrices lies at the base not only of the purifica-
tion procedure that is reported here but of other previously
published ones �40,41,43,46�.

Rendering positive semidefinite the M matrix

When diagonalizing a matrix M that should be positive
semidefinite one finds that some of its eigenvalues are nega-
tive, a purification has to be carried out in order to correct
this positivity defect. In our procedure, we correct the posi-
tivity defects of our matrices by applying an extension of
Mazzioti’s algorithm �40� that may be summarized as fol-
lows.

Let us call 
xp� the eigenvectors corresponding to the
negative eigenvalues �p of the M matrix and let us consider
the matrix

Yp = xp
†xp. �24�

The idea is to look for a matrix Z when added to M yields
an updated matrix that keeps the same 0M and 1M, thus
preserving its traces. In general, if the updated matrix still
has negative eigenvalues, those eigenvalues have smaller ab-
solute values than the original ones.

Let us now apply the unitarily invariant decomposition to
each of the Yp and let us call 2Yp its two-body part. Then the
Z correction takes the form

Z = �
p

�p 2Yp, �25�

where the coefficients �p are determined by solving the fol-
lowing linear system:

�p + �
p�

�p� tr�2Yp�Yp� = 0 �∀p� . �26�

The relations linking different elements of the spin-blocks
of the matrices involved in the 2RDM purification will be
studied in the next section before describing in detail the
strategy followed in the purification procedure itself, which
will described in Sec. V.

III. SPIN STRUCTURE OF THE G MATRIX
CORRESPONDING TO A DOUBLET STATE

Although the general spin properties of the correlation
matrices �43� contain in an implicit way the information

about the particular and interlinked N- and S-representability
conditions �NSG conditions� for doublets, it is important to
obtain their explicit form. These new relations are those that
permit one to obtain the elements of the G-matrix spin com-
ponents and, once these components have been purified, to
reconstruct a new G matrix. In this section, we report these
relations as well as the form in which the 2RDM elements
are affected. Also, some contraction relations of the set listed
in this section can be considered different and relevant re-
sults.

The G-matrix definition, Eq. �7�, shows that all the spec-
trum states that are different from the state � being formally
considered contribute to the value of this matrix element.
However, due to the spin-symmetry rules, many of these
contributions vanish. Thus the G matrix can be decomposed
into a sum of the spin components that, in principle, may
have a non-null contribution. In order to refer to the spin-
quantum numbers of the different states involved we denote:

P̂�S�,Ms�� = �
����

���,S�,Ms�����,S�,Ms�� .

Here S� and Ms� represent the �� spin quantum numbers. A
G-matrix element corresponding to a doublet state � with
�Ms=1 /2� can be decomposed in terms of its spin compo-
nents as

Gi� j��;k��l��
= ���ai�

† aj��
P̂�1/2,Ms��al��

† ak��
���

+ ���ai�
† aj��

P̂�3/2,Ms��al��

† ak��
���

	 �1/2,Ms��Gi� j��;k��l��
+ �3/2,Ms��Gi� j��;k��l��

,

�27�

where Ms� takes the appropriate value according to the ele-
ment considered.

The spin properties of the G components imply a new set
of necessary N- and S-representability conditions including
the positive-semidefiniteness of the G components. It must be
emphasized that imposing these latter conditions upon the G
components guarantees that the global condition G	0 is ful-
filled. However, to have a positive semidefinite G matrix
does not imply that this new set of N- and S-representability
conditions is satisfied.

In what follows, when the spin function considered is
made explicit, the notation will be simplified by denoting the

� function with a bar over the orbital symbol, i.e., k̄.
The two relations linking the spin-block elements of the G

components among themselves are directly derived from
general spin equations reported in �43�

�1/2,−1/2�Gi,k̄;l, j̄
= + �1/2,1/2�Gi,k;l,j + �1/2,1/2�Gī,k̄;l̄, j̄

− �1/2,1/2�Gi,k;l̄, j̄

− �1/2,1/2�Gī,k̄;l,j
+ �1Di;k − 1D

ī;k̄
��1Dl;j − 1D

l̄; j̄
� ,

�28�
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1
3Gī,k;l̄,j = 1

3 �3/2,3/2�Gī,k;l̄,j
= �3/2,−1/2�Gi,k̄;l, j̄

= �3/2,1/2�Gi,k;l,j

= �3/2,1/2�Gī,k̄;l̄, j̄
= − �3/2,1/2�Gī,k̄;l,j

= − �3/2,1/2�Gi,k;l̄, j̄
.

�29�

Essential S conditions for doublet states. The basic rela-
tions, just reported, permit one to establish the set of essen-
tial S conditions that will now be reported.

The G��;�� block is the matrix from which all the G com-
ponents’ spin-blocks can be more easily derived. For in-
stance, the relations linking the G��;�� block to other spin
blocks of the same matrix are

�1/2,1/2�Gi,k;l̄, j̄
= Gi,k;l̄, j̄ + 1

3Gī,k;l̄,j , �30a�

�1/2,1/2�Gī,k̄;l,j
= Gī,k̄;l,j + 1

3Gī,k;l̄,j , �30b�

�1/2,1/2�Gi,k;l,j = Gi,k;l,j − 1
3Gī,k;l̄,j , �30c�

�1/2,1/2�Gī,k̄;l̄, j̄
= Gī,k̄;l̄, j̄ − 1

3Gī,k;l̄,j , �30d�

�1/2,−1/2�Gi,l̄;m, j̄
= G j̄,m;l̄,i − 1

3Gī,l;m̄,j − 1D̄i;m
1D

j̄;l̄
+ 1Di;m

1D̄
j̄;l̄

.

�30e�

These relations allow us to calculate the elements of other
spin blocks from the G��;�� block.

From a theoretical point of view, it is interesting to note
that by imposing that Eq. �30e� is satisfied the fulfillment of
the N-representability condition

Gi,l̄;m, j̄ − G j̄,m;l̄,i = − 1D̄i;m
1D

j̄;l̄
+ 1Di;m

1D̄
j̄;l̄

�31�

is also guaranteed. Moreover, the basic relation

2D
i, j̄;l̄,m

	 2D
j̄,i;m,l̄

�32�

is simultaneously satisfied.

Contractions of the matrix diagonal spin blocks to be purified

1. Double contractions

The traces A and A� defined in Eqs. �20� corresponding to
the 2RDM and 2HRDM take the following values:

2RDM 2HRDM

A��� ;���=
+ �N�

2

 + K − �N�

2

 �33a�

A���� ;���=
− �N�

2

 − K + �N�

2

 �33b�

A��� ;���= N�N� �K−N���K−N�� �33c�
A���� ;���= N� K−N� �33d�

Some of the results have been obtained by making use of the

well-known fact that the result of the application of the Ŝ+

operator on a state with highest spin projection vanishes.

When considering the G spin blocks only the A quantities
have analytical expressions, since A� implies a sum over two
creators and another over two annihilators that are not physi-
cally defined. However, since the A� appear in the unitarily
invariant decomposition formula, these quantities are nu-
merically calculated in each case.

The traces, the A parameter, for the different G-spin
blocks have the values:

�3/2,3/2�G��;��: �K − N��N�, �34a�

�1/2,1/2�G��;��: �K − N� + 1�N� − 1
3 �K − N��N� − tr�1D�;�

2 � ,

�34b�

�1/2,1/2�G��;��: �K − N�

3
+ 1
N� − tr�1D�;�

1D�;�� ,

�34c�

�1/2,1/2�G��;��: �K − N�

3
+ 1
N� − tr�1D�;�

1D�;�� ,

�34d�

�1/2,1/2�G��;��: �K − N� + 1�N� − 1
3 �K − N��N� − tr�1D�;�

2 � ,

�34e�

�1/2,−1/2�G��;��: �K − N��N� − 1
3 �K − N��N�. �34f�

2. Single contractions

The auxiliary quantities defined in Eqs. �18� and �19� have
the following values for 2RDM and 2HRDM classified by
the ���� ;���� elements of the parent matrix:

2RDM 2HRDM

Bi;k��� ;���= 1Di�;k�
�N�−1� 1D̄i�;k�

�K−N�+1� �35a�

Bi;k��� ;���= N�
1Di;k �K−N�+1�1D̄i;k

�35b�

Bi;k� ��� ;���= 1Di�;k�
�N�−1� 1D̄i�;k�

�K−N�+1� �35c�

Bi;k� ��� ;���= N�
1D

ī;k̄
�K−N�+1�1D

ī;k̄
�35d�

Ri;k��� ;���= 1Di�;k�
�1−N�� 1D̄i�;k�

�−K+N�−1� �35e�

Ri;k��� ;���= 1D
ī;k̄

1D̄i;k
�35f�

Ri;k� ��� ;���= 1Di�;k�
�1−N�� 1D̄i�;k�

�−K+N�−1� �35g�

Ri;k� ��� ;���= 1D
ī;k̄

1D̄i;k
�35h�

When considering the G-spin blocks, only the B and B�
quantities have analytical expressions, since R and R� imply
a sum over two creators or two annihilators that are not
physically defined. However, since the R and R� appear in
the unitarily invariant decomposition formula, these quanti-
ties are numerically calculated in each case.

The analytical expressions for B and B� quantities in the
G-spin components to be purified are as follows:

�1� For the �3/2,3/2�G��;��,

Bi;q = �K − N��1D
ī;q̄

, �36�
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Bi;q� = N��� j,p − 1Dj;p� . �37�

�2� For the �1/2,−1/2�G��;��,

Bi;q = �K − N��1Di;q − 1
3 �K − N��1D

ī;q̄
, �38�

Bi;q� = N��� j,p − 1Dj̄;p̄� − 1
3N��� j,p − 1Dj;p� . �39�

�3� For the �1/2,1/2�G��;��,

Bi;q = �K − N� + 1�1Di;q − �1D2�i;q − 1
3 �K − N��1D

ī;q̄
,

�40�

Bi;q� = �N� − 1
3N���� j,p − 1Dj;p� + 1Dj;p − �1D2� j;p. �41�

�4� For the �1/2,1/2�G��;��,

Bi;q = �K − N� + 1�1D
ī;q̄

− 1
3N��� j,p − 1Dj;p� − �1D2�ī;q̄,

�42�

Bi;q� = N�� 2
3� j,p − 1Dj̄;p̄ + 1

3
1Dj;p� + 1Dj̄;p̄ − �1D2� j̄;p̄. �43�

Let us finish this section by noting that the set of A� traces
and R and R� contractions of the 2RDM, 2HRDM, and the
G-matrix spin components form a stringent set of
S-representability conditions that must be fulfilled by any
2RDM corresponding to a doublet state.

IV. DOUBLET PURIFICATION PROCEDURE

In our sequential procedure, each of the 2RDM and the
2HRDM spin-blocks ��� ;���, ��� ;���, and ��� ;��� are
separately purified. The positivity defects of the �1/2,−1/2�G,

�1/2,1/2�G, and �3/2,3/2�G spin components will also be indepen-
dently corrected. The main aim here will be to render posi-
tive each of these matrices.

As will be described below, the correct B, B�, R, and R�
contractions for the 2RDM will be imposed at the beginning
of each iteration. As a consequence, the 2HRDM will cor-
rectly contract, as well as the initial G matrix. It must be
noted that the only G contractions that are imposed are B and
B�. Having these ideas in mind, let us now consider the
sequence of operations that are carried out.

The initial data for the procedure are a 2RDM and an
ensemble N-representable 1RDM. The 1RDM will be kept
fixed during all the purification operations. Usually, the se-
lected 1RDM is obtained by contracting the initial 2RDM
and, if necessary, it is rendered ensemble N-representable by
following the method described in detail in �41�.

A. Initial tests and corrections of the 2RDM

The unitarily invariant decomposition is applied to each
of the 2RDM spin blocks. That is, using the traces and the
contractions of this spin-block, its 0M and 1M parts are
evaluated; then, using Eq. �23�, one obtains the two-body
part, 2M. Once this part is obtained, an updated 2RDM is
calculated by using the matrices 0M�f� and 1M�f�, which are

considered fixed; hence the superscript f . Thus one has

0M�f� + 1M�f� + 2M → 2D . �44�

This updated 2RDM and its associated 2HRDM have
N-representable contractions into the zero- and one-body
space.

B. Rendering the 2RDM and the 2HRDM
simultaneously positive

In order to impose the D and Q N-representability condi-

tions upon the 2RDM �i.e., that 2D and 2D̄ be simultaneously
positive semidefinite� one diagonalizes each of these matri-
ces. Let us call xp / x̄q the 2RDM/2HRDM eigenvectors cor-

responding to the negative eigenvalues �p / �̄p. Let us also

call Yp / Ȳq the matrices formed, respectively, by the eigen-
vectors xp / x̄q as described in Sec. II C. In this case, the lin-
ear equations to be simultaneously solved are

�p + �
p�

�p� tr�2Yp�Yp� + �
q�


̄q� tr�2Ȳq�Yp� = 0 �∀p� ,

�45�

�̄q + �
p�

�p� tr�2Yp�Ȳq� + �
q�


̄q� tr�2Ȳq�Ȳq� = 0 �∀q� .

�46�

By solving this set of equations one obtains the set of coef-
ficients �p and 
q. The correction matrix Z for the 2RDM
�and hence for the 2HRDM� is given by

Z = �
p

�p 2Yp + �
q


q 2Ȳq. �47�

The updated 2RDM is therefore

2D + Z → 2D . �48�

C. Incorporating the G S-representability conditions into the
(�� ;��) 2RDM spin block

1. Correcting the (3Õ2,3Õ2)G component spin block

Due to the relations reported in the previous section, this
G spin component is the pivot in the purification of the
��� ;��� 2RDM spin block. Therefore this part of the calcu-
lating program starts by correcting the positivity defect of
this spin block. This is done by applying the method de-
scribed in Sec. II C. When recalculating the ��� ;��� 2RDM
spin block by applying relations �6�, �7�, and �10� one finds
that, as a consequence of the correcting operations carried
out upon the �3/2,3/2�G the R and R� contractions of the
��� ;��� 2RDM have been modified. Therefore the
��� ;��� 2RDM spin block is recalculated by imposing the
correct values to the R and R�.

2. Correcting the (1Õ2,−1Õ2)G component spin block

The positivity error of the �1/2,−1/2�G is corrected by apply-
ing the method described in Sec. II C. Here again, the R and
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R� corresponding to the ��� ;��� blocks of the 2RDM and
the 2HRDM have been modified. In order to get the new
�� ;�� block of the 2RDM we use the following equation:

�1/2,−1/2�Gi,l̄;m, j̄
+ 1

3 �1/2,−1/2�G j,m̄;l,ī
= 8

9G j̄m;l̄i + �1D̄
j̄;l̄

1Di;m

− 1D̄i;m
1D

j̄;l̄
� + 1

3 �1D̄
ī;m̄

1Dj,l − 1D̄j;l
1D

ī;m̄
� , �49�

which is the inverse of Eq. �30e�.

D. Incorporating the G S representability conditions into the
(�� ;��) 2RDM spin blocks

Since according to Eq. �29�

�3/2,1/2�G��;�� = 1
3 �3/2,3/2�G��;�� �50�

the �3/2,1/2�G��;�� is approximately positive semidefinite.
Therefore we center our attention on correcting the negativ-
ity error of the other component, �1/2,1/2�G��;��. Thus its
negativity is approximately corrected by applying the
method described in Sec. II C. The next operation is to
evaluate the corresponding 2RDM blocks by applying Eqs.
�6�, �7�, �30c�, and �30d� and assuming that �3/2,3/2�G��;��
remains fixed.

E. Final tests on the 2RDM

The purification of the three matrices 2RDM, 2HRDM,
and G matrix is considered to be completed when the initial
tests including positivity checks satisfy the stablished toler-
ance limit �in general 10−4 to 10−5�. If the tolerance limits
have not been reached, a new iterative cycle of the whole set
of operations restarts.

V. PERFORMANCE OF THE DOUBLET PURIFICATION
PROCEDURE

The purification procedure described above has been ap-
plied to correct the N- and S-representability defects of the
approximated 2RDM corresponding to the ground state and
to the first and fourth excited states of the linear BeH2

+ cat-
ion �Be–H bond length is 2.54a0�. An orthonormalized basis
set of seven Hartree-Fock orbitals optimized for the neutral
molecule and, hence, adapted to the symmetry of the prob-
lem were used.

In order to prepare a suitable 2RDM to be purified �i.e., a
matrix that cannot be considered neither N nor S represent-
able while nevertheless being a sensible one� a constructing
algorithm �33� for evaluating a 3RDM in terms of the 1- and
2RDMs has been used. This 3RDM was then contracted in
order to obtain the corresponding 2RDM. It could have been
done via a random process but in this way other properties,
such as the spatial symmetry, are preserved.

The initial 1- and 2RDMs used were obtained from a
full-configuration-interaction �FCI� calculation; and there-
fore these initial data for approximating the 3RDM are exact.
Since the 3RDM is an approximated matrix so is the 2RDM
derived from it. Indeed, the 2RDM thus obtained, as will be
shown below, does not completely satisfy the N- and
S-representability conditions described in Secs. II and IV.
The results reported below correspond to the 2RDM purifi-
cation, which in its turn corresponds to the three selected
states of the molecular cation.

In the purifications of all the matrices that have been car-
ried out, the number of iterative cycles has been 20. The
significant results are reported in six self-explanatory figures
and in three tables.

Correcting the positivity defects of the 2RDM and the
2HRDM in the three states considered. The curves shown in
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FIG. 1. Lowest eigenvalue of
the 2RDM and 2HRDM at each
iteration of the doublet purifica-
tion procedure for the ground state
of the BeH2
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Figs. 1–3 describe the correction of the positivity defects of
the 2RDM and 2HRDM by showing the lowest negative ei-
genvalue of these matrices for the ground, first, and fourth
excited states, respectively. Also, the initial and final values
of these eigenvalues are reported in the second and third
columns of Table I. As can be seen, after 20 purification
iterations these matrices can be considered to be positive
semidefinite in both the ground and the excited states con-
sidered. An interesting feature that is common to all the
curves is that in the first three iterations the negativity of
both matrices rapidly tend to zero and is already of the order
of 10−4.

Correcting the positivity defects of the G spin blocks in the
three states considered. The curves shown in Figs. 4–6, to-
gether with the numerical data reported in the fourth, fifth,
and sixth columns of Table II, show that the �1/2,−1/2�G,
�3/2,3/2�G, and �1/2,1/2�G matrices are rendered smoothly posi-
tive in the three states being studied. Here also, the error
rapidly diminishes and, in fact, in most of these calculations
the error decays in two orders of magnitude in the first three
iterations. It must be underlined that, although only the diag-
onal spin blocks of the �1/2,1/2�G spin component are purified
within our procedure, the whole �1/2,1/2�G spin component has
been considered for testing its positivity defect.
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FIG. 2. Lowest eigenvalue of
the 2RDM and 2HRDM at each
iteration of the doublet purifica-
tion procedure for the first excited
state of the BeH2
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FIG. 3. Lowest eigenvalue of
the 2RDM and 2HRDM at each
iteration of the doublet purifica-
tion procedure for the fourth ex-
cited state of the BeH2
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Analysis of the convergence of the 2RDM contractions.
The root-mean-square deviation �RMSD� of the B, B�, R,
and R� contractions of the 2RDM toward the initial first-
order matrices, which are considered fixed during the purifi-
cation process, is shown in Table II. Although the RMSD of
the different contractions in the three states considered is
initially rather small, these defects have important conse-
quences upon the S-representability of the 2RDM. It is re-
markable that already in the second iteration there is a de-
crease of two or three orders of magnitude in their RMSD,
except in the fourth excited state where for the convergence
of the R and R� contractions the decrease of the RMSD is
only of one order, as can be seen in Table II.

Correcting the error on the expectation value of the Ŝ2

operator. In Table III we report the results concerning the S
representability of the 2RDM. As can be appreciated in the

table, for the ground, first, and fourth excited states, the ini-
tial expectation value of Ŝ2 has an error of 10−3, 10−2, and
10−3, respectively; and after the purification has been carried
out the errors are reduced to 10−6 for the ground and first
excited state and to 10−5 for the fourth excited state. That is,
after 20 iterations, the expectation value of Ŝ2 becomes prac-
tically equal to 0.75 in all the states considered. This clearly
shows that the S representability has been attained.

Convergence of the approximated 2RDM toward the FCI
2RDM. The quantities given in the third column of Table III
are the expectation values of the energy obtained with the
final RDMs. These expectation values are close to the eigen-
values of the Hamiltonian. Since the initial non N- nor
S-representable 2RDMs to be purified were approximations
to the FCI RDMs, these results show that when rendering N
and S representable the initial 2RDMs, the purification pro-

TABLE I. Performance of the doublet purification procedure when applied to approximated 2RDMs
corresponding to the ground, first, and fourth state of the cation BeH2

+: Positivity defects of the 2RDM,
2HRDM, and �1/2,−1/2�G, �3/2,3/2�G, and �1/2,−1/2�G spin components.

Lowest eigenvalue

Iterations 2RDM 2HRDM �1/2,−1/2�G �3/2,3/2�G �1/2,−1/2�G

Ground state

0 −1.705�10−4 −1.367�10−2 −1.170�10−2 −1.316�10−2 −1.136�10−2

20 −6.312�10−5 −2.597�10−5 −4.839�10−7 −1.882�10−5 −1.400�10−4

First excited state

0 −1.749�10−4 −2.221�10−2 −2.151�10−2 −2.029�10−2 −2.069�10−2

20 −3.886�10−5 −5.410�10−5 −5.309�10−7 −2.253�10−5 −1.799�10−4

Fourth excited state

0 −4.106�10−4 −3.248�10−3 −1.658�10−2 −2.495�10−2 −8.344�10−3

20 −2.862�10−4 −1.092�10−4 −1.161�10−5 −1.746�10−5 −6.039�10−4
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FIG. 4. Lowest eigenvalue of
the �1/2,−1/2�G, �3/2,3/2�G, and

�1/2,−1/2�G spin components at each
iteration of the doublet purifica-
tion procedure for the ground state
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cedure does not essentially modify the structure of the ma-
trix. This is an important feature since otherwise the utility of
the purification procedure would be impaired. Indeed, the
purification procedure is to be applied to the 2RDM output
of the iterative solution of the 2CSE; and no convergence of
the combined process would occur if the purification proce-
dure deeply perturbed the RDM structure. That is, the
purification procedure of the matrix should render it closely
N and S representable while modifying it as little as possible.
Let us, however, remark that, since the purification procedure
is just aimed at the correction of the N- and

S-representability defects, the final RDMs are in no way con-
strained to correspond to an eigenstate of the Hamiltonian.

Also concerning the quantities given in the third column
of Table III, it is interesting to note that, for the ground-state,
the expectation value of the energy lies above the FCI one—
which is a necessary N-representability condition—
indicating that it is a mixture of the ground and some other
states.

Last but not least, the RMSD values given in the fourth
column of Table III show that the purification procedure
clearly diminishes the differences between the purified
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FIG. 5. Lowest eigenvalue of
the �1/2,−1/2�G, �3/2,3/2�G, and

�1/2,−1/2�G spin components at each
iteration of the doublet purifica-
tion procedure for the first excited
state of the BeH2
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the �1/2,−1/2�G, �3/2,3/2�G, and
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2RDM and the exact FCI 2RDM. The improvement is rather
marked in the ground state, less so in the other states but in
all cases it is noticeable. This shows that the changes under-
gone by the approximated 2RDM in order to become N and
S representable have brought this matrix closer to the FCI
2RDM. Although, due to the consistency of all the tests car-
ried out these results were to be expected, we nevertheless
consider them to be a confirmation of the effectiveness of the
purification procedure.

VI. FINAL REMARKS

As has been commented in the previous section, the itera-
tive purification process of the three approximated 2RDMs
considered was rapidly and smoothly convergent. Moreover,
its consistency was remarkable. Indeed, since rendering posi-
tive semidefinite the G spin blocks is a process that is only
indirectly influenced by the process by which the 2RDM and
2HRDM are rendered positive semidefinite, oscillations
could easily have occurred in the convergence of the R and
R� contractions of the inter-related spin blocks. For instance,
while the purification procedure based on the 2RDM Cole-
man’s decomposition yielded smooth and rapidly convergent
results when applied to the singlet ground state of BeH2 �46�,
it did not yield consistent convergent results for the R and R�
contractions. It seems therefore that Alcoba’s generalization
of Coleman’s decomposition �1� is more generally efficient.
The satisfying consistency with which all the
S-representability conditions are fulfilled by all the G spin
blocks clearly indicates that the S representability is attained
at the end of the purification process. With respect to the N
representability, although the set of necessary conditions that

we have imposed may still not be complete, there is no doubt
that after purification the 2RDM N-representability defects
are much smaller and such a matrix may be considered a
quasi-N-representable 2RDM. Let us finally mention that the
theoretical study of molecular compounds, both neutral and
charged, having an odd number of electrons is not easy. On
the other hand, these compounds are among the most reac-
tive systems in nature. Therefore to have a reliable and effi-
cient method for calculating with high accuracy the elec-
tronic structure of this type of compounds is extremely
convenient.

At present, the version of the 2CSE code is being opti-
mized also having in view the study of systems with doublet
symmetry. We expect that this code, in combination with the
purification procedure reported here, will constitute a suit-
able method for studying this type of compound. Indeed, we
expect to obtain results as accurate in the calculation of dou-
blets as this approach yielded in the study of singlets
�27,29,33,42,45,46�.
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TABLE III. Performance of the doublet purification procedure
when applied to approximated 2RDMs corresponding to the
ground, first, and fourth state of the cation BeH2

+: Expectation

value of the Hamiltoniana, of the Ŝ2b operator, and root-mean-
square deviations of the 2RDM from the FCI matrix.

Iterations �Ŝ2� �Ĥ�
RMSD of 2RDM
from FCI matrix

Ground state �FCI energy: −15.304537�
0 0.7496958 −15.298811 4.196�10−4

2 0.7503577 −15.304673 3.893�10−5

20 0.7500023 −15.304541 3.437�10−5

First excited state �FCI Energy: −15.260690�
0 0.7674983 −15.255676 6.209�10−4

2 0.7503905 −15.259706 1.185�10−4

20 0.7500003 −15.259711 1.092�10−4

Fourth excited state �FCI Energy: −15.084550�
0 0.7484445 −15.084047 6.402�10−4

2 0.7515535 −15.082821 2.472�10−4

20 0.7500512 −15.082707 2.396�10−4

aQuoted values of the energy are given in hartrees.
b�Ŝ2� values in units of �2.

TABLE II. Performance of the doublet purification procedure
when applied to approximated 2RDMs corresponding to the
ground, first, and fourth state of the cation BeH2

+: Contraction de-
fects of the 2RDM.

RMSD from fixed �FCI� matrices

Iterations B B� R R�

Ground state

0 8.500�10−4 1.012�10−3 1.461�10−3 1.461�10−3

2 1.996�10−6 1.678�10−6 2.575�10−5 2.575�10−5

20 8.785�10−7 2.007�10−8 3.056�10−7 3.056�10−7

First excited state

0 1.268�10−3 1.410�10−3 3.789�10−3 3.789�10−3

2 3.612�10−6 1.706�10−6 3.023�10−5 3.023�10−5

20 2.353�10−7 1.165�10−7 5.409�10−7 5.409�10−7

Fourth excited state

0 1.194�10−3 1.262�10−3 5.037�10−3 5.037�10−3

2 3.742�10−6 4.247�10−6 1.383�10−4 1.383�10−4

20 1.129�10−6 4.584�10−7 5.778�10−6 5.778�10−7
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