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Precise numerical calculation of transition intervals between metastable states in the antiprotonic helium
atom is performed. Theoretical consideration includes a complete account of the relativistic and radiative
corrections of order R��4 in the nonrecoil limit. The final uncertainty is estimated to be about 1–2 MHz.
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I. INTRODUCTION

Antiprotonic helium is a exotic three-body system which
is formed when one of the two electrons in a helium atom is
replaced by an antiproton. The majority of the antiprotonic
helium atoms promptly annihilates, however, some fraction
of antiprotons settles on nearly circular orbitals with quan-
tum numbers n��M� /me�38 and l�n, here M� is the re-
duced mass of an antiproton-nucleus pair. These latter states
demonstrate very high longevity of a few microseconds de-
termined by the radiative transition rate between antiprotonic
orbitals.

This remarkable feature allows us to perform precision
spectroscopy on these exotic atoms �1–3� with few ppm
�parts per million� accuracy. During the last decade experi-
mental precision was improved by more than three orders of
magnitude �4,5� and became sensitive to the �anti�proton-to-
electron mass ratio. This high precision requires serious the-
oretical improvement in calculation of the transition energies
between metastable states of the antiprotonic helium.

The present work is a continuation of �6�, where some
leading order relativistic and radiative corrections have been
obtained. The major advances are the much better numerical
accuracy for wave functions and expectation values, and the
complete account of m�6 corrections in the nonrecoil limit as
well as the recoil corrections of order m�5�m /M�. Here be-
low we calculate only the “diagonal” part of the higher order
interactions that contributes to the energy. The spin-
dependent terms which lead to a fine or hyperfine splitting
will be considered elsewhere. The diagonal part may contain
the spin-dependent contribution which results in the energy
shift only.

We use atomic units and the CODATA recommended values
of the fundamental constants of year 2002 �7� in our calcu-
lations �see Table I�. Root-mean-square �rms� radii of the
electromagnetic charge distribution for helium-4 �R4He� and
helium-3 �R3He� are taken from �8�.

II. WAVE FUNCTION

The wave function of a state of a total angular momentum
L, its projection M onto the z axis of the space-fixed frame

and a total spatial parity �= �−1�L may be written as

�M
L��R,r� = �

l+le=L

Rlrle�Yl � Yle
	LMGlle

L��R,r,�� , �1�

where R and r are the position vectors of p̄ and of an elec-
tron relative to the helium nucleus. The functions
Glle

L��R ,r ,�� of internal degrees of freedom are expanded as
follows:

Glle
L��R,r,�� = �

i=1

�

Cie
−�iR−�ir−	i
R−r
. �2�

The complex parameters �i , �i, and 	i are generated in a
quasirandom manner. Further details may be found in �9,10�.

With this choice of the geometry it is easy to get a
Feshbach-type closed channel solution. To that end one
needs to retain in the expansion �1� components with small le
�angular momentum of an electron� and if le

�max�
�l, where
�l= l− l� is the smallest energetically possible change of the
antiproton orbital angular momentum in the Auger transition,

�He+p̄�n,l → �He2+p̄�n�,l� + e−,

then the subspace spanned over these basis functions is a
subspace of closed channels for this resonant state.

The radiative width for the metastable antiprotonic helium
states is about 10−12 a.u. So, the states with �l�3 predomi-
nantly decay via the Auger transition, while the states with
�l4 have a radiative decay as a main channel, the lifetime
for these states is about few microseconds.

The Auger width of the states with �l=3 is of the order of
10−8−10−9 a.u. In this case the zero-order wave function
obtained within the closed channel approximation would
have relative uncertainty of �10−4 that sets limits on the
accuracy of mean values of various operators related to rela-
tivistic and radiative corrections. Thus, this approximation is

*korobov@theor.jinr.ru

TABLE I. Physical constants adopted in this work.

mp̄=1836.1526726me Rp̄=0.8750�68� fm

m4He=7294.299536me m3He=5495.885269me

R4He=1.6757�26� fm R3He=1.9448�137� fm

ae=0.001159652186 �p=2.792847351

�=7.297352568�10−3 a0=52917.72108 fm

R�c=3289841960.360 MHz
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insufficient for a precise determination of transition energies.
In order to get better accuracy one needs to take into

account the resonance nature of the antiprotonic helium
states. A powerful tool for that is the complex coordinate
rotation �CCR� method �11�. The essence of the method is to
transform �rotate� the coordinates of the dynamical system as
follows:

rij → rije
i�,

where � is the parameter of the complex rotation.
Under this transformation the Hamiltonian changes as a

function of �,

H� = Te−2i� + Ve−i�, �3�

and the continuum spectrum of H� is rotated on the complex
plane around branch points �“thresholds”� to “uncover” reso-
nant poles situated on the unphysical second sheet of the
Riemann surface �see the Augilar-Balslev-Combes theorem
�12��.

The resonance energy is then determined by solving the
complex eigenvalue problem for the “rotated” Hamiltonian

�H� − E��� = 0, �4�

The eigenfunction �� obtained from Eq. �4� is square inte-
grable and the corresponding complex eigenvalue E=Er
− i� /2 determines the energy Er and the width of the reso-
nance, �.

The use of a finite set of N basis functions reduces the
problem �4� to the generalized algebraic complex eigenvalue
problem

�A − �B�x = 0, �5�

where A= ���
H�
�� is the finite N�N matrix of the
Hamiltonian in this basis, and B is the matrix of overlap B
= ��� 
��.

To get an accurate CCR solution for the antiprotonic he-
lium is a numerically difficult problem because antiproton
and electron orbitals have different scales. In our calculation
we use a general strategy of a multilayered variational ap-
proximation as is described in �9�. A trial wave function con-
tains four basis sets. First, two sets are used for better ap-
proximation of the closed channel solution. Parameters of a
third set are adjusted to approximate excited electron inter-
mediate states, and the last set corresponds to electron con-
tinuum configurations.

The numerical solution of Eq. �5� is obtained using the
basis sets with N=4400 functions, which is 2 times larger
than in our previous work �6�. A sextuple precision arith-
metic ��48 decimal digits� has been used to avoid round-off
errors in calculations. It has been found that for our aims the
first five terms in expansion �1� are sufficient. The higher le
terms in �1� do not improve the result within required accu-
racy.

III. HIGHER ORDER CORRECTIONS

In this section we will consider only contributions of or-
ders R��3 and higher. The leading order relativistic correc-
tions, which result from the Breit-Pauli Hamiltonian along
with the finite size correction due to the charge distribution
of nuclei, and the contribution from the anomalous magnetic
moment of an electron, have been discussed in detail in �6�.
It is worth mentioning here that the new numerically more
accurate values for the most crucial expectation values are

TABLE II. Nonrelativistic energies Enr, half-widths � /2, and the expectation values of the most important operators for individual states
of 4He+p̄. All quantities are in atomic units.

State Enr � /2 pe
4 ��rHe� ��rp̄� Q�rHe� Q�rp̄� Erc

�4��−4

�31,30� −3.6797747876576�1� 4.7602�10−9 26.070956 0.9262219 0.1214405 −1.1942 0.1581 −1.2481

�32,31� −3.50763503897101�1� 5.4�10−13 28.308649 0.9938238 0.1130804 −1.2919 0.1616 −1.4078

�33,32� −3.35375787083340�1� 1.07�10−12 30.718285 1.0664983 0.1044583 −1.3964 0.1634 −1.5810

�34,32� −3.2276763796294�3� 2.7237�10−9 34.530638 1.1808676 0.0925595 −1.5613 0.1597 −1.8530

�35,32� −3.116679795873�3� 6.9733�10−8 38.370099 1.2958629 0.0812115 −1.7271 0.1538 −2.1171

�34,33� −3.21624423907002�1� 1.4�10−13 33.304865 1.1443963 0.0956136 −1.5086 0.1641 −1.7670

�35,33� −3.1053826755489�3� 2.8�10−12 37.278812 1.2635240 0.0838705 −1.6804 0.1583 −2.0442

�36,33� −3.0079790936832�4� 2.9188�10−9 41.233471 1.3819872 0.0729174 −1.8512 0.1505 −2.3062

�35,34� −3.09346690791590�1� 36.069959 1.2275613 0.0865934 −1.6284 0.1632 −1.9644

�36,34� −2.9963354479662700�5� 2.3�10−13 40.168797 1.3503397 0.0751362 −1.8055 0.1554 −2.2415

�37,34� −2.9111809394697�4� 2.6�10−12 44.174196 1.4702684 0.0646698 −1.9785 0.1458 −2.4961

�38,34� −2.836524601208�1� 1.604�10−9 48.000329 1.5848219 0.0553288 −2.1439 0.1351 −2.7231

�39,34� −2.771011573577�1� 9.920�10−9 51.574850 1.6918636 0.0471712 −2.2983 0.1238 −2.9203

�37,35� −2.89928218336728�1� 43.186470 1.4409042 0.0664487 −1.9361 0.1510 −2.4424

�38,35� −2.8251468095450�1� 47.185100 1.5605889 0.0566232 −2.1088 0.1398 −2.6839

�39,35� −2.7602333455733�1� 1.0�10−12 50.925526 1.6725711 0.0480612 −2.2704 0.1279 −2.8932

�40,35� −2.7032832165135�3� 1.9�10−12 54.349384 1.7751265 0.0407571 −2.4184 0.1159 −3.0701
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presented in Tables II and III. They should be used instead of
those given in �6� for evaluation of the leading order relativ-
istic contribution.

A complete set of the R��3 order QED corrections is de-
termined by the following three equations.

The one-loop self-energy correction �R��3�,

Ese
�3� = �34

3
�ln

1

�2 − ��L,v� +
5

6
−

3

8
��ZHe��rHe� + Zp̄��rp̄� ,

�6�

where

��L,v� =
�J�H0 − E0�ln��H0 − E0�/R��J

�†J,�H0,J�‡/2

is the Bethe logarithm �13�of the three-body state �calculated
in atomic units scale. The numerical values for ��L ,v� may
be found in �6�.

One transverse photon exchange �recoil� correction
�R��3�m /M�� may be written as �14,15�

Erecoil
�3� = �

i=1,2

Zi
2�3

Mi
�−

14

3
Q�ri� +

2

3
�− ln � − 4��L,v� +

31

3
�

����ri�� , �7�

where Q�r� is the so-called Araki-Sucher term �16�,

Q�r� = lim
�→0
���r − ��

4�r3 + �ln � + 	E���r�� .

One-loop vacuum polarization can be written as

Evp
�3� =

4�3

3
�−

1

5
��ZHe��rHe� + Zp̄��rp̄� . �8�

The recoil correction contribution �Eq. �7�� to the transition
energy is of the order of 0.5–0.7 MHz. We expect that the

higher order in � recoil contributions are at least an order of
magnitude less and may be neglected for the time being. The
radiative corrections of the R��4 and R��5 ln2 � in a nonre-
coil limit of the adiabatic two-center approximation �or an
external field approximation� are known analytically �17,18�.

The one-loop self-energy and vacuum polarization contri-
butions �R��4� are

Ese
�4� = �4�4��139

128
−

1

2
ln 2���ZHe

2 ��rHe� + Zp̄
2��rp̄� ,

Evp
�4� = �4�5�

48
��ZHe

2 ��rHe� + Zp̄
2��rp̄� . �9�

The two-loop QED correction �R��4� is

TABLE III. Nonrelativistic energies Enr, half-widths � /2, and the expectation values of the most important operators for individual states
of 3He+p̄. All quantities are in atomic units.

State Enr � /2 pe
4 ��rHe� ��rp̄� Q�rHe� Q�rp̄� Erc

�4��−4

�31,30� −3.507372719685�1� 3.341�10−9 28.309520 0.9936884 0.1128789 −1.2914 0.1612 −1.4100

�32,31� −3.34883217260011�1� 5.16�10−12 30.803392 1.0689407 0.1040109 −1.3999 0.1633 −1.5890

�33,31� −3.2195072511344�2� 8.2761�10−9 34.744072 1.1871601 0.0917424 −1.5703 0.1594 −1.8697

�34,31� −3.1061288624340�2� 7.935�10−9 38.697601 1.3055346 0.0800594 −1.7411 0.1530 −2.1415

�34,32� −3.0944509665400�4� 1.72�10−11 37.595356 1.2729449 0.0828113 −1.6939 0.1578 −2.0674

�35,32� −2.9954043582725�5� 8.1610�10−9 41.676374 1.3951949 0.0715852 −1.8703 0.1496 −2.3363

�35,33� −2.98337312345513�3� 1.30�10−12 40.593961 1.3630401 0.0738344 −1.8238 0.1546 −2.2713

�36,33� −2.89719228783746�5� 2.921�10−11 44.720654 1.4866058 0.0631524 −2.0021 0.1445 −2.5314

�37,33� −2.8219630307782�6� 4.2684�10−9 48.642644 1.6040396 0.0536909 −2.1715 0.1332 −2.7615

�36,34� −2.88491261933851�4� 43.723769 1.4569802 0.0649187 −1.9593 0.1498 −2.4783

�37,34� −2.81026108529864�2� 6.8�10−13 47.831114 1.5799276 0.0549480 −2.1367 0.1380 −2.7235

�38,34� −2.7451741489575�1� 3.9�10−12 51.647727 1.6942063 0.0463399 −2.3016 0.1256 −2.9338

�39,34� −2.688292963471�2� 1.138�10−9 55.114312 1.7980620 0.0390712 −2.4513 0.1132 −3.1097

�40,35� −2.62832404729795�4� 7.0�10−13 57.840658 1.8798948 0.0331808 −2.5694 0.1044 −3.2474

FIG. 1. Adiabatic “effective” potentials for the relativistic m�6

order correction for the antiprotonic helium atom �Z1=2,Z2=−1�.
Dashed line is the radial wave function of the �36,34� state in 4He+p̄
atom. Energies are in �atomic units���4.
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E2 loop
�4� = �4� 1

�
�−

6131

1296
−

49�2

108
+ 2�2 ln 2 − 3��3���

��ZHe��rHe� + Zp̄��rp̄� . �10�

It includes both Dirac form factor and polarization operator
contributions.

The R��4 relativistic correction is obtained using the
adiabatic “effective” potential for the m�6 order term in the
�2 expansion of the two-center Dirac energy. These effective
potentials for the case of the antiprotonic helium �Z1=2, Z2
=−1� �see Fig. 1� were calculated in �19�. Averaging them
over the squared wave-function density of a state one obtains
Erc

�4� �see Tables II and III�.
The R��5 order corrections are

Ese
�5� = �5�− 1��ZHe

3 ln2�ZHe��−2���rHe�

+ Zp̄
3 ln2�Zp̄��−2���rp̄�� ,

Ese
�5�� = �5ZHe

3 �A61 ln�ZHe��−2 + A60����rHe� ,

E2 loop
�5� =

�5

�
ZHe

2 �B50����rHe� , �11�

where the constants A61, A60, and B50 are taken equal to the
constants of the 1s state of the hydrogen atom A61=5.419
�20�, A60=−30.924 �21�, and B50=−21.556 �22�. The error
bars are determined by the total contribution of the terms of
the last two equations.

IV. RESULTS AND CONCLUSION

Results of numerical calculation for individual states are
summarized in Tables II and III, the nonrelativistic energies
are shown with a numerical uncertainty indicated in paren-

theses. The Auger width of a state has the same error bars as
the nonrelativistic energy.

From these tables one may conclude that the numerical
accuracy is better for the states with lower Auger width.
Thus, from the theoretical point of view transitions between
metastable states are preferable for precision spectroscopy.

Table IV presents final results for the transition energies
and comparison with the latest experiments �5�. The first
error for theoretical values reflects the theoretical uncertainty
as it has been defined in the text after Eq. �11�. The second
one is the numerical uncertainty. As is seen from Table IV,
the best candidates for determination of the antiproton mass
are the lowest transitions with the smallest principal quantum
number n of the antiproton orbital. For these transitions the-
oretical uncertainty is lower and the transition frequency is
larger.

For the two-photon transitions �the last rows for 4He+p̄
and 3He+p̄� the numerical uncertainty is an order of magni-
tude less than the theoretical one. That is because the nu-
merical errors are determined primarily by the less accurate
calculation of the daughter state �larger Auger width�.

It is important to indicate how the uncertainty in the rms
radii of nuclei influences the final value of the transition
frequency. A variation of the transition frequency is about 50
kHz due to the uncertainty in the rms radius of the 3He
nucleus, less than 10 kHz for 4He, and below 1 kHz for p̄.

In conclusion, we want to state that the results obtained
here achieve the relative accuracy of 1 ppb �parts per bil-
lion�. Further improvement may be expected with explicit
calculation of the radiative one-loop and two-loop correc-
tions in the R��5 order. Especially it is important for the
two-photon precision spectroscopy, where the numerical er-
ror is relatively small. The accomplishing of this task, even-
tually, will allow for the improved measurement of the
�anti�proton-to-electron mass ratio.

TABLE IV. Theoretical predictions to transition frequencies � �in MHz� between metastable states, and
comparison with the latest experiment �5�. Calculations are performed with CODATA02 recommended values.

Transition Theory Experiment

4He+p̄ �32,31�→ �31,30� 1132609223.5�0.8��0.2� 1132609209�15�
�35,33�→ �34,32� 804633058.0�1.0��0.3� 804633059�8�
�36,34�→ �35,33� 717474001.1�1.1��0.3� 717474004�10�
�37,34�→ �36,33� 636878151.7�1.1��0.3� 636878139�8�
�37,35�→ �38,34� 412885132.8�1.8��0.4� 412885132�4�
�39,35�→ �38,34� 501948755.6�1.1��0.4� 501948752�4�
�40,35�→ �39,34� 445608569.3�1.0��0.8� 445608558�6�
�36,34�→ �34,32� 1522107059.1�2.1��0.3�

3He+p̄ �32,31�→ �31,30� 1043128579.7�0.9��0.1� 1043128609�13�
�34,32�→ �33,31� 822809170.9�1.1��0.2� 822809190�12�
�35,33�→ �34,32� 730833929.9�1.1��0.2�
�36,33�→ �35,32� 646180408.2�1.1��0.4� 646180434�12�
�36,34�→ �37,33� 414147507.8�1.8��0.3� 414147508�4�
�38,34�→ �37,33� 505222280.9�1.1��0.3� 505222296�8�
�35,33�→ �33,31� 1553643100.9�2.1��0.2�
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