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Systems whose underlying classical dynamics are chaotic exhibit signatures of the chaos in their quantum
mechanics. We investigate the possibility of using the linear response formalism of time-dependent density
functional theory �TDDFT� to study the case when chaos is induced by electron-interaction alone. Nearest-
neighbor level-spacing statistics are in principle exactly and directly accessible from TDDFT. We discuss how
the TDDFT linear response procedure can reveal information about the mechanism of chaos induced by
electron-interaction alone. A simple model of a two-electron quantum dot highlights the necessity to go beyond
the adiabatic approximation in TDDFT.
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I. INTRODUCTION

The study of the quantum mechanics of systems whose
underlying classical dynamics are chaotic, has revealed
many intriguing features. It is now well established that un-
derlying classical chaos dramatically manifests itself in cer-
tain quantum signatures: spectral fluctuations, localization
properties of wave functions, inverse participation ratios, and
extreme sensitivity to tiny variations in control parameters
�1�. Perhaps the most widely studied of these is the spectral
statistics: In particular, the nearest-neighbor spacing distribu-
tions �NNS� for integrable systems generically display Pois-
sonian statistics �level clustering�, while displaying Wigner-
Dyson statistics �level repulsion� for chaotic systems. Such
correspondence between classical chaos and NNS statistics
was conjectured by Bohigas, Giannoni, and Schmit �2�, and
while counterexamples exist �3,4�, the association is so gen-
eral that Wigner-Dyson statistics are often viewed as signa-
tures of underlying classical chaos. This property has been
used to study the transition from integrability to chaos as a
parameter in the confining potential of the system is varied
�5�. Many of these studies consider one particle, or, in quan-
tum dots, noninteracting electrons; the chaos arises in such
cases due to the shape of the dot confining potential. What is
less well understood is what happens when electron-
interaction is turned on. Suppose that interacting electrons
are placed in a potential where the single-particle NNS is
Poissonian; is the chaos induced by the Coulomb interaction
enough to transform the NNS statistics to a Wigner-Dyson
distribution? To what extent does the level repulsion kick in?
Is the picture qualitatively different with few electrons com-
pared to many electrons?

That electron-interaction alone can induce chaos is cer-
tainly evident from the very early days of quantum mechan-
ics, impeding Bohr in 1913 from successfully quantizing the
helium atom �6� �task only completed semiclassically in
1991 �7�; for a beautiful review of the theory of two-electron
atoms, see Ref �8�.�. Putting aside concerns regarding the
validity of random-matrix theory when two-body interac-
tions are present �9�, we note that the first application of

random-matrix theory outside of nuclear physics was to a
series of complex atoms �10,11�, where the spin-orbit inter-
action provided the crucial ingredient in yielding Wigner-
Dyson statistics. Statistics of a different series of complex
atoms based on experimental data �12�, as well as theoretical
models �13� support the finding that highly excited states of
complex atoms tend to display Wigner-Dyson statistics.
There have been several studies in molecules �e.g., Ref. �14��
where the coupling of electronic excitations with nuclear vi-
brational and rotational excitations provide the complexity.
Generally, experimental data, with many levels of the same
symmetry, is needed. The chaos in these examples is under-
stood to arise not from Coulomb electron-interaction alone
but rather from its coupling to other degrees of freedom.

For simple atoms, there have been very few calculations
of the level-spacing statistics, perhaps because of the chal-
lenges involved in gathering enough levels of doubly excited
resonances, either from theory or experiment, which appear
to be crucial for this effect �see Ref. �15� for a calculation of
level-repulsion in helium�. However deviations from Poisso-
nian statistics have been clearly identified in nonhydrogenic
Rydberg atoms in either magnetic or electric fields �16–19�.
The hydrogen atom at the corresponding parameter regime is
integrable, but scattering off the ionic core in a nonhydro-
genic Rydberg atom creates fundamentally different dynam-
ics, with chaotic trajectories depending on the value of the
quantum defect. In models of this effect, NNS have been
shown to display level-repulsion, following a distribution in-
termediate between Poissonian and Wigner-Dyson �16�.

There are also many-electron solid-state examples, where
electron-interaction has shown to lead to the transition be-
tween Poissonian and Wigner-Dyson statistics �20–23�, and
several of these works identify the driving parameter for this
transition. Difficulties with interpreting experimental data
make the idea of a theoretical calculation of the level statis-
tics attractive. At the same time, because the solution of the
interacting many-electron problem grows exponentially with
the number of electrons, typically a model is used for the
interaction, e.g., a two-body random interaction model was
used in Ref. �20�. A recent calculation of just two electrons in
a quantum dot �24�, explicitly demonstrates that Coulomb
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electron-interaction alone can transform the Poissonian sta-
tistics of the noninteracting system into a Wigner-Dyson sys-
tem. Generally in few-electron quantum dot studies of trans-
port �25�, random constant-interaction models �26� are often
used; however, Ref. �24� suggests this may not be a good
description of the real interacting electronic system, as
constant-interaction models retain the Poissonian statistics of
the integrable noninteracting system. In order to better un-
derstand the mechanisms of interaction-induced chaos, it
would be desirable to use a method that captures electron
correlation reliably and efficiently �given the thousands of
excited states needed in the calculation�, scales well with the
number of electrons, and from whose procedure one can
glean aspects of the mechanism that brings about the chaos.

Time-dependent density functional theory �TDDFT� is the
leading candidate for such a method. This has become the
method of choice for the calculation of excitations and re-
sponse properties of interacting electronic systems, because
of its scalability: typically the accuracy is comparable to so-
phisticated wave function methods such as complete active
space self-consistent field �CASSCF�, while implementations
follow a far cheaper scaling with system size, comparable to
time-dependent Hartree-Fock �TDHF�. The theory in prin-
ciple yields exact excitations, but approximations for
exchange-correlation effects are needed in practice. Typi-
cally, excitation energies are given to within a few tenths of
an eV, although there are notorious exceptions �27,28�. There
has been a tremendous drive in recent years to develop and
improve the currently-available functionals.

In this paper we will explore the possibilities of using the
linear response formalism of TDDFT for investigating quan-
tum chaos induced by electron-interaction alone. This is a
new area for TDDFT �here, and in what follows, by the
acronym “TDDFT” we are referring to its linear-response
formalism, unless otherwise stated. See Refs. �29–31� for
cases that go beyond linear response�. The idea is to use
TDDFT to study the transition from clustering to repulsion
statistics in a given system as the electron interaction is
turned on. For the case of chaotic quantum dots, ground-state
DFT has been used within the local spin density approxima-
tion to study the statistics of ground-state spin and spacing
between conductance peaks in the Coulomb blockade regime
�addition spectra� �32,33�, but to our knowledge, the excited-
state statistics of isolated dots with fixed number of electrons
have not been studied via density functional methods. We
will show in Sec. II how, by monitoring the evolution of the
spectral statistics at different stages of the calculation, the
TDDFT linear response framework can also shed light on the
mechanism of interaction-induced chaos.

A most essential question is whether the present-day func-
tionals are good enough to perform these tasks. In Sec. III we
will give an example of a case where they are not. This
example highlights an important challenge that must be over-
come for TDDFT to be used in these studies. Aside from
fundamental interest, it is important to characterize chaotic
versus integrable dynamics for applications of technological
interest, such as transport across quantum dots, highly ex-
cited atoms and molecules in external fields, quantum control
and manipulation in external fields, or the engineering of
quantum computer hardware that maximizes the fidelity of
quantum computations �34�.

II. LEVEL STATISTICS FROM TIME-DEPENDENT
DENSITY FUNCTIONAL THEORY

TDDFT �35� has become the method of choice to calcu-
late a variety of response properties of molecules, clusters,
and solids, in the presence or absence of external time-
dependent fields �28�. The Runge-Gross theorem provides a
rigorously exact foundation for the theory: this states that
given the initial state of the interacting electronic system, all
observables of the system can be extracted in principle from
just the time-evolving density. Most applications in chemis-
try and solid-state physics currently fall in the linear re-
sponse regime, where TDDFT yields predictions for the op-
tical spectra, i.e., the frequency and intensity of electronic
excitations in response to electric fields �36,37�.

We now explain in some detail the standard computa-
tional procedure. Consider a time-independent N-electron
Hamiltonian �atomic units will be used throughout�

Ĥ = T̂ + V̂ee +� drn̂�r�vext�r� , �1�

whose energy spectrum �Ek� we want to calculate. In Eq. �1�
T̂=− 1 / 2�i�i

2 stands for the N-electron kinetic energy opera-

tor, V̂ee= 1 / 2�i,j�i	ri−r j	−1 for the electron-electron repulsion
ion, vext�r� for the external potential due to the nuclei, or
applied static fields, and n̂�r�=�i=1

N ��r− r̂i� is the density op-
erator. The first step of a linear-response TDDFT calculation
involves the self-consistent solution of the ground-state
Kohn-Sham �KS� equations �38�


−
1

2
�2 + vs�n��r���i�r� = �i�i�r� . �2�

Here vs�n��r� is the KS potential defined such that N nonin-
teracting electrons in vs�n��r� have the same ground-state
density n�r�= ��0	n̂�r�	�0 as the original interacting system
of ground state 	�0. In the KS scheme, the density is ob-
tained from the N occupied KS orbitals as n�r�
=�i occ	�i�r�	2. The KS potential is written as the sum of
three pieces

vS�n��r� = vext�r� + vH�n��r� + vXC�n��r� , �3�

where vH�n��r�=�d3r�n�r�� / 	r−r�	 is the Hartree potential,
and vXC�n��r� the exchange-correlation potential. This is the
functional derivative �with respect to the density� of the
exchange-correlation energy functional EXC�n�, evaluated at
the ground-state density vXC�n��r�= 	�EXC�n� /�n�r�	n. The
functional EXC�n� is the only quantity that needs to be ap-
proximated in order to get the ground-state density and en-
ergy; it is fortunately amenable to local approximations �39�
in many situations. Knowledge of vXC�r� is sufficient to cal-
culate the ground-state energy E0, but the excited-state ener-
gies �Ek�, k�0, are not accessible from this first step. The
occupied orbital energies �i, and KS orbitals �i�r�, along
with the unoccupied orbital energies and orbitals, are used as
basic ingredients for the second step of the calculation. The
aim of this second step is to correct the unphysical KS exci-
tations toward the correct ones. Here one solves for eigen-
values and eigenvectors of the matrix
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�̃qq� = �qq�	q
2 + 4�	q	q��q	fHXC�	�	q�� . �4�

The square-root of the eigenvalues correspond to the excita-
tion frequencies Ek−E0. The double index q= �i ,a� repre-
sents a single excitation from occupied KS orbital �i�r� to
unoccupied KS orbital �a�r�, 	q is the difference between
occupied and unoccupied KS orbital energies 	q=�a−�i, and

�q	fHXC�	�	q�� =� drdr��i
��r��a�r� 
 fHXC�r,r�;	�


�i��r���a�
� �r�� . �5�

The Hartree-exchange-correlation kernel fHXC�n��r ,r� ;	� is
the central quantity of linear-response TDDFT. In the time-
domain, fHXC�n��rt ,r�t�� is the functional derivative of the
time-dependent Hartree-plus-exchange-correlation potential
vH�nt��r , t�+vXC�nt��r , t� with respect to the time-dependent
density nt�r�t��, evaluated at the ground-state density n�r��
�see Sec. 4.3.2 of Ref. �40� for more details�. Equations �4�
and �5� are obtained from the linear response limit of the full
TDDFT equations, in which N electrons evolve in the time-
dependent KS potential

vS�nt��r,t� = vext�r,t� + vH�nt��r,t� + vXC�nt��r,t� . �6�

Here, nt=n�r , t� is the time-dependent density of the N KS
electrons, which is the same as that of the interacting system
�35�.

To summarize, there are two stages. �1� The ground-state
Kohn-Sham �KS� equations are solved to self-consistency;
this requires an approximation to the ground-state exchange-
correlation energy functional. Even if the �unknown� “exact”
functional were used here, the excitations of the ground-state
KS potential �i.e., differences between occupied and unoccu-
pied KS orbital energies� could only be regarded as zeroth-
order approximations to the true excitations of the system.
�2� The KS frequencies are corrected via fHXC to become the
true excitations of the many-body system �36�.

With rare exceptions, an adiabatic approximation �ATD-
DFT� is employed in this second step: the exchange-
correlation potential at time t is approximated by that of a
ground-state with the instantaneous density n�rt�. This
means that the Hartree-exchange-correlation kernel has no
frequency-dependence in ATDDFT. An important conse-
quence for the purposes of this paper is that states of double
�or higher multiple� excitations cannot be captured within
ATDDFT �41,42�; such excitations require a strongly
frequency-dependent kernel. In the simplest �and common�
adiabatic local-density approximation �ALDA�, the approxi-
mation is local in space as well as time.

Notwithstanding the resounding success of TDDFT
within existing approximations, different instances where the
approximations fail have been identified. Charge-transfer ex-
citations at long-range �43–45�, conical intersections �46�,
states of multiple-excitation character �42,46�, polarizabil-
ities of long-chain polymers �47–49�, Rydberg excitations
�50,51�, lie among the challenges in the linear response re-
gime; nonsequential photoionization �30� and quantum con-
trol applications �52� are important challenges for approxi-
mations in the strong-field regime. Given the success of

TDDFT for the vast majority of problems, and the fact that it
scales in a reasonable way with system size while incorpo-
rating electron-correlation effects, there is a tremendous
drive in the recent literature to understand and improve
TDDFT approximations.

Elucidating the mechanism of interaction-induced chaos:
type-KS vs type-fHXC chaos. Consider now a system of N
interacting electrons with Wigner-Dyson NNS statistics, and
focus on the case where the external potential vext�r� is such
that the classical dynamics of a single electron in vext�r� is
integrable. The statistics of N noninteracting electrons mov-
ing in vext�r� follows that of the one-particle system, i.e.,
Poissonian in this integrable case. Suppose also that the ex-
act functionals EXC�n� and fXC�n��r ,r� ;	� are known. The
exact TDDFT procedure must transform the Poissonian non-
interacting statistics to the correct interacting ones. In what
follows, when the interacting system displays Wigner-Dyson
statistics, we refer to this as the P→WD transition. More-
over, in studying how it does so, the mechanism for
interaction-induced chaos can be better understood.

First, the ground-state KS potential vs�r� is found, and we
ask: Is the classical dynamics of a single electron in vs�r�
already chaotic? In this scenario, at least part of the
interaction-induced chaos appears in DFT as a “chaotic kink”
in the Hartree and/or exchange-correlation pieces of the po-
tential. The “kink” is that piece of the KS potential due to
which the single-particle classical dynamics is chaotic. Exci-
tations from the bare KS potential will generally show in this
case some degree of level repulsion, perhaps enough to agree
with the experimental NNS distribution. We refer to this as
type-KS chaos.

�We note here that it is preferable to perform the level
statistics in such a way that N noninteracting electrons in a
given potential follow the same type of distribution as a
single electron in that potential: this can be achieved if the
statistics are performed on energy levels of a fixed symmetry
class. That is, if there are constants of the motion in addition
to the total energy, one fixes the value of each of those con-
stants. In the case of N noninteracting electrons, each orbital
eigenvalue is a conserved quantity; therefore one fixes all
except one, since the sum of the orbital energies gives the
total energy. This amounts to considering only single excita-
tions of the system; these can be out of any of the occupied
orbitals, depending on which were chosen fixed but the re-
sulting statistics will be independent of the choice�.

In the second step of TDDFT, the bare KS excitations are
corrected to the true ones using fHXC: What is its effect on
the statistics? Certainly if the KS system turned out to be
integrable, then the entire job of transforming the statistics is
done by the exact fHXC. We refer to this as type-fHXC chaos.

For N electrons in one dimension, type-KS chaos is im-
possible. The dynamics of a single electron in one dimension
is obviously always integrable, since there is one conserved
quantity �the energy of the electron� and one degree of free-
dom. Using the terminology above, the Kohn-Sham potential
will never acquire a “chaotic kink” in one dimension. In
more than one dimension the modulation of the external po-
tential that is provided by the Hartree and xc terms �Eq. �3��
may induce chaotic motion on the one-electron dynamics.
Nevertheless, as we will discuss in Sec. IV, type-fHXC chaos
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is likely to be more common also in more than one dimen-
sion. Generally, most of the job required for the P→WD
transition has to be done by fHXC.

Of course in practice, approximate functionals must be
used. The question then arises: what properties are needed in
approximate kernels to achieve the correct statistics? Are the
present-day approximations good enough to capture the
P→WD transition as the interaction is turned on? In particu-
lar, the adiabatic approximation for the kernel: this mixes KS
single excitations but cannot fold in multiple excitations
�41,42�. This immediately raises a red flag as a chunk of the
true excitations are excluded from consideration: how sig-
nificant is this chunk? Even if the adiabatic kernel creates
level repulsion by mixing singles only, if the double excita-
tions compose a significant proportion of the spectra in a
certain range, then the ATDDFT spectra would not be repre-
sentative of the true system. The answers to these questions
are likely system dependent. We illustrate in the next section
most of the concepts discussed so far using a model of a
one-dimensional quantum dot.

III. MODEL 1D QUANTUM DOT

Consider the problem of two electrons interacting via a
soft-Coulomb potential vee�x1 ,x2�= �1+ �x1−x2�2�−1/2 in a
one-dimensional box of length L. A simple analysis shows
that the matrix elements of vee scale approximately as 1 /L
�basis of noninteracting electrons�, whereas the kinetic-
energy matrix elements scale as 1 /L2. The interaction in this
sense becomes more important as the length of the box is
increased. The noninteracting system is of course integrable,
having two constants of the motion �the energies of the indi-
vidual particles� for two degrees of freedom. The weakly
interacting case �small L� is then almost integrable, and the
strongly interacting case �large-L� nonintegrable. In fact,
Ref. �24� shows clear signatures of interaction-induced chaos
in a similar system. We start, however, in the weakly inter-
acting limit, realized for L=1 a.u.

The light-shaded bars of Fig. 1 correspond to the nearest-
neighbor-spacing �NNS� distribution P�s� obtained via the

following three steps. �1� Get the first Nmax levels of the
energy spectrum �Ei� by exact diagonalization of the two-
electron Hamiltonian, and discard the lowest Nmin. We typi-
cally used Nmax=2000, Nmin=200 and only states of even
symmetry. �2� Unfold the staircase function N�E�, represent-
ing the number of states having energy less than E, by ap-
plying the map xi=N�Ei�, where N is the smooth part of N,
found via a fourth-order polynomial fit to N�E�. �3� Set si
= �xi+1−xi�, and count P�s�, the number of occurrences for
each si / s̄, where s̄=�isi / �Nmax−Nmin�. P�s� then contains in-
formation about inherent fluctuations of the level spacings.
As discussed in the introduction, these are generally
Poissonian for integrable systems, and Wigner-Dyson-like
for chaotic systems �53�, but may also be nongeneric for
some highly symmetric systems such as the one we are con-
sidering here. The exact histogram consists of a series of bars
separated by gaps. The fluctuations around N�E� �dotted line
on the inset of Fig. 1� are evidently not random; they exhibit
distinctive patterns, each of which gives rise to a different
bar in the histogram. In the noninteracting limit, the problem
of two particles with the same mass in a one-dimensional
box is equivalent to that of a single particle in a two-
dimensional square box, and the patterns just mentioned
arise from the square symmetry of the problem. These re-
main in the weakly interacting regime. The histogram would
be more Poissonian if the two particles had different masses,
and even more so if the ratio of the two masses were an
irrational number, as shown in Fig. 2 �and Ref. �54��.

What does TDDFT predict for the histogram within the
adiabatic approximation? A single bar centered at s=1 �dark-
shaded bar in Fig. 1�. We now explain why.

As discussed in Sec. II, the Kohn-Sham scheme trans-
forms the original problem of two interacting electrons into
that of a single electron moving in the potential vs�x�
=vext�x�+vHXC�x�, where vext�x� is the external potential
�box of unit length, in this case�. Being a one-dimensional
potential, it cannot exemplify type-KS chaos. The Hartree-
exchange-correlation potential vHXC�x� was found here
within the exact-exchange approximation �55�, as imple-
mented in the octopus code �56�. vHXC�x� is in this case
simply a small bump at the bottom of the box �see solid line
in lower panel of Fig. 3�, having practically no influence on
the high-energy spectrum of the noninteracting problem, ex-
cept for a small shift in all the high-lying energies, irrelevant
when the analysis of the differences between neighboring
levels is made. The Kohn-Sham equations �Eq. �2�� yield a
set of orbital energies ��i�, but only the subset of occupied
orbitals is used to get the ground-state energy of the interact-
ing system, as E0=�i occ�i+EHXC�n�−�dxn�x�vHXC�x�. The
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excited-state energies En
TDDFT are obtained within linear-

response TDDFT as

En
TDDFT = E0 + 	n

TDDFT, �7�

where the squares of 	n
TDDFT, �n��	n

TDDFT�2 are the eigen-
values of the matrix of Eq. �4�.

The fHXC kernel we employed is again that of exact-
exchange, local in time �proportional to ��t− t���. This level
of approximation is sometimes called adiabatic time-
dependent optimized effective potential, and is not the same
as TDHF �see, for example, Ref. �57��. Since the kernel is
local in time, its Fourier transform with respect to t− t� is
therefore frequency independent. As a consequence, from
Eq. �4� and Refs. �41,42�, ATDDFT only yields corrections
to KS single excitations. Since the frequencies 	n

TDDFT of Eq.
�7� are all mixtures of single excitations, the ATDDFT spec-
trum at this level contains no double excitations at all �or
multiple excitations for N�2�. This is a serious problem
even at the low energies that are of interest for most
quantum-chemical purposes, but in the present setting, the
missing of double excitations is simply catastrophic. Single
excitations are not more than a negligible fraction of the
high-energy set of levels. The arrows of the inset in Fig. 1,
for example, point to the only two single excitations found in
the lowest-energy segment taken into account for our statis-
tical analysis.

We are only one step away from concluding that in the
energy range entering the statistical analysis, the ATDDFT
staircase function is identical to the bare KS staircase func-
tion

NATDDFT�E� = NKS�E� . �8�

To see this, we just point out that the expectation value of
Eq. �5� becomes vanishingly small in the adiabatic approxi-
mation for high values of 	q. It can be seen in Table I that for
unoccupied orbital indices a�10, adiabatic single excita-

tions barely differ from the KS ones on the scale of energy
fluctuations.

Furthermore, in the weakly interacting limit, NKS�E� co-
incides with the staircase function for a single electron in the
presence of vext�x�, since, as argued before, the effect of
vHXC�x� is negligible. NKS�E� has no fluctuations at all in
this limit, being precisely proportional to �2E, and the un-
folding process translates this into a histogram showing only
s=1 spacings.

It may be argued that double excitations can simply be
added to the ATDDFT spectrum by including the sums of
�a+�b with a and b running over all the unoccupied orbitals.
This seems entirely sensible, and works of course in the non-
interacting limit, but the adiabatic approximation yields no
corrections to these states, and Eq. �8� still holds true.

We now discuss what occurs as we move toward the
strongly interacting regime. Figure 4 shows the NNS histo-
grams as the length of the box is increased from L=10 to
L=104.

Strong level repulsion manifests itself with a marked de-
crease of small spacings. The histogram tends to a Wigner-
Dyson distribution P�s�= �

2 se−��/4�s2
for very wide boxes.

This is a quantum signature of the underlying interaction-
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TABLE I. Comparison of low-frequency excitations �in hartree�
between bare Kohn-Sham energy differences �a−�i and TDDFT
frequencies obtained via Eq. �4� with the exact-exchange approxi-
mation to vXC and an adiabatic approximation to fXC.

i→a KS TDDFT

1→2 0.0939 0.2771

1→3 0.3362 0.5132

1→4 0.6736 0.8014

1→5 1.1091 1.1963

1→6 1.6425 1.7015
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FIG. 4. NNS histograms for two interacting electrons in a 1D
box of length L=10�. P�s� approaches a Wigner-Dyson distribution
�dashed� for very wide boxes, a signature of chaos in the underlying
classical dynamics. The Poisson distribution is indicated by dotted
lines.
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induced chaos, as implied by the classical dynamics results
obtained by Fendrik et al. �24�, showing that apart from
small regular regions in phase space, the dynamics of the
system can become strongly chaotic due to electron-electron
interactions. However, it follows from Eq. �8� that ATDDFT
yields no level repulsion. Practically all levels entering the
statistical analysis are double excitations. Even if we decided
to artificially add these by summing unoccupied KS orbital
energies, as discussed before, only a mixture of uncorrelated
levels would result, i.e., a Poisson distribution P�s�=e−s with
no level repulsion whatsoever �dotted lines in Fig. 4�. This
important signature of interaction-induced chaos is simply
not captured by ATDDFT.

As the length of the box increases, localization of the
electrons in opposite extremes of the box starts taking place,
and convergence of the KS equations becomes problematic
�we used the OCTOPUS code �56� for the DFT calculations�.
Figure 3 shows the evolution of the KS potential and ground-
state density as L is increased from 1 to 16. The problems
here are no different than those encountered when trying to
describe the formation of a Wigner crystal �58� or other phe-
nomena in the strongly correlated regime. There is already a
hint of localization when L=16 �long-dashed line, upper
panel of Fig. 3�. The KS potential adopts the shape of a
double well, with vHXC�x� as the barrier in the middle, grow-
ing stronger with respect to level spacings as the length of
the box increases.

IV. DISCUSSION AND OUTLOOK

Our example model system was an unfortunate one for
the usual adiabatic approximations of TDDFT. The missing
double excitations haunt the problem even in the integrable
limit, making up the significant fraction of excitations in the
true space and being crucial to bringing about the chaos.
There is intensive development to go beyond the adiabatic
approximation in TDDFT �e.g., Refs. �42,59–61��, and the
progress has been successful in many cases. It will be inter-
esting to adapt the kernel of Refs. �42,62�. to the case in the
current paper.

We can now justify our claim of Sec. II that type-KS
chaos is rare. Even in cases where vHXC�r� develops a “cha-
otic kink” �see second part of Sec. II�, level repulsion in the
bare Kohn-Sham system will only be observed when the
relevant excitations that enter the statistical analysis are of a
single-particle nature. In such cases, ATDDFT should per-
form much better than in the model of Sec. III. The spectral
properties of nonhydrogenic atoms in weak external electric
or magnetic fields seem to be suitable examples. The joint
effect of an ionic core of inner electrons �describable by a

quantum defect for a series of single excitations� and the
external field, has been shown to lead to chaos in some pa-
rameter regimes �16�. The fact that accurate quantum defects
can be obtained from bare Kohn-Sham potentials, and that
the external field appears explicitly in the KS equations, sug-
gests that ATDDFT has a good chance to succeed in the
description of this phenomenon. It will be interesting to com-
pare the ATDDFT spectrum with that of the scatterer-
perturber models in the literature, Refs. �16–19�. TDDFT
treats all electrons quantum mechanically, and provides an
ab initio method against which to compare the model poten-
tials.

It should also be noted that the level-spacing statistics
physically affect very high-temperature properties of the sys-
tem. Other measures of chaos such as localization properties
of wave functions are more relevant at usual lower tempera-
tures. Before TDDFT can be used for these properties, one
must first solve the TDDFT “observable problem,” i.e., quan-
tities that are directly given by the time-evolving density �or
in perturbation theory, the density response�, such as the ex-
citation energies, oscillator strengths, or dipole moments, are
simply extracted from the Kohn-Sham system. However, for
properties that rely on other aspects of the interacting wave
function, such as its localization in phase space, the informa-
tion is not readily accessible from the Kohn-Sham system.
Such cases demand the construction of appropriate function-
als of the time-dependent density for the relevant wave
function-dependent observable, often a challenging task �see,
for example, Ref. �31��.

In summary, we have discussed prospects for using TD-
DFT to study how electron-interaction induces chaos in an
otherwise integrable system. The scalability of TDDFT and
its success in describing electron correlation in an ever-
widening range of problems, make it attractive for this.
Moreover, in principle, TDDFT should yield the correct level
statistics for the interacting electronic system. We have dis-
cussed how the majority of currently-available approximate
functionals, however, cannot capture the correct statistics in
many cases of interest in quantum chaos, because of their
inability to describe excited states of multiple-excitation
character. Therefore challenges lie in developing approxi-
mate and easily implementable functionals for this purpose.
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