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We address the problem of unambiguous discrimination and identification among quantum observables. We
set a general framework and investigate in detail the case of qubit observables. In particular, we show that
perfect discrimination with two shots is possible only for sharp qubit observables �e.g., Stern-Gerlach appara-
tuses� associated with mutually orthogonal directions. We also show that for sharp qubit observables associated
to nonorthogonal directions unambiguous discrimination with an inconclusive result is always possible.
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I. INTRODUCTION

Quantum theory is a statistical theory in its predictions
and therefore a measurement result must be understood as a
probability distribution over possible measurement out-
comes. It could thus seem that an individual outcome ob-
tained in a single experimental run can give hardly any in-
formation. The only conclusion one can draw from a single
outcome is that the system under investigation is in a state
which gives nonzero probability for the obtained outcome.

However, there are situations in which an individual out-
come may provide a significant amount of information. In
such cases the investigated questions have only a finite num-
ber of possible answers. On one hand we can have very
nontrivial a priori information or an assumption about the
quantum object, or its property. For example, in communica-
tion tasks we usually assume that the encoding of the infor-
mation is known to a receiver. On the second hand, our goals
may not be to identify the objects completely, or to quantify
the properties perfectly, but rather to investigate the validity
of some hypothesis �1,2�. For instance, we may want to
verify whether the system is in an excited state. In such cases
an individual measurement outcome may provide us with
sufficient arguments to make the right conclusion.

The previous issue is well-recognized in the realm of state
discrimination �2�. By measuring an informationally com-
plete observable �i.e., performing a complete state tomogra-
phy� one will find out the state of the system. However, this
requires a large number of identically prepared systems as
one needs to know the measurement outcome frequencies. A
particular sequence of measurement outcomes does not re-
veal the state of the system.

On the other hand, it is well-known that two known or-
thogonal states can be discriminated even if only a single
copy of the system is available. There are also many weaker
variations of quantum state discrimination problems and they
can be divided into two classes: �i� minimum error discrimi-
nation �1� �conclusions are only statistical� and �ii� unam-
biguous discrimination �3–5� �conclusions are error-free but
an inconclusive result is possible�.

In this work we investigate perfect and unambiguous dis-
crimination of quantum observables when only a small num-
ber of probe systems are available. The problem is, briefly, to
identify an unknown observable using some suitably pre-
pared probe systems. It is assumed that the unknown observ-
able is one from a finite set of known observables. We show
that discrimination is indeed possible if the set of known
observables is of the specific type.

Our analysis proceeds in the following way. In Sec. II we
recall some concepts which are essential in our investigation.
In Sec. III we formulate the perfect discrimination problem
and derive some general conditions for a solution. In particu-
lar, we give a complete solution for perfect discrimination of
two qubit observables with two shots. Section IV describes
the general unambiguous identification problem of observ-
ables and a solution for sharp qubit observables is presented.
Finally, in Sec. V we summarize the obtained results.

A similar problem has been investigated by Ji et al. in �6�,
but they assumed that the unknown measurement apparatus
has labeled outcomes �cf. Sec. II C� and they mostly studied
schemes were either known measurement or unitary operator
is also performed. In our investigation it is assumed that only
measurements with the unknown apparatus are allowed.

II. OBSERVABLES

A. Positive operator measures

Loosely speaking, an observable is something which at-
taches a probability distribution of measurement outcomes to
each state of the system. Two observables are, by definition,
different if they lead to different probability distributions of
measurement outcomes at least in some state. In quantum
mechanics observables are conventionally represented by
normalized positive operator measures �7,8�. We briefly re-
call this concept.

Let H be the Hilbert space describing the system under
investigation. The states of the system are positive trace class
operators with trace one. Let �= ��1 , . . . ,�k� be the set of
possible measurement outcomes �in this work we only con-
sider observables with finitely many outcomes�. A normal-
ized positive operator measure �POVM� on � is a mapping
A :� j �A j such that each A j is a positive operator in H and

*ziman@savba.sk
†teiko.heinosaari@utu.fi

PHYSICAL REVIEW A 77, 042321 �2008�

1050-2947/2008/77�4�/042321�7� ©2008 The American Physical Society042321-1

http://dx.doi.org/10.1103/PhysRevA.77.042321


� j=1
k A j = I. If the system is in a state �, then the probability

of getting the outcome � j when measuring A is tr��A j�.

B. Identifying observables

Observables give raise to probability distributions, not
only on individual outcomes, but also on sequences of out-
comes if the measurement is repeated. The identification of
observables is based on the identification of these probability
distributions. For a fixed state �, consider two probability
distributions p and q corresponding to observables A and B,
respectively. Our goal is to discriminate A and B perfectly,
hence to uniquely identify the probabilities p ,q from a par-
ticular experimental outcome, or sequences of outcomes.
Each sequence of outcomes �1 , . . . ,�n therefore must be
uniquely associated with one of the observables. In other
words, the probability vanishes at least for one of the observ-
ables, say A. If this is the case and the sequence of outcomes
is indeed measured, then we can conclude with certainty that
the observable is B. A necessary and sufficient condition for
perfect unambiguous discrimination of two probability dis-
tributions is their orthogonality in the usual scalar product of
Rk,

pq = �
j

pjqj = 0,

where j is a multiindex labeling the outcome sequences.
Only in this case the individual outcomes can be uniquely
identified with a particular probability distribution. Our aim
is to investigate under which conditions on quantum observ-
ables the unambiguous discrimination is possible, i.e., for
which observables there exists a state � such that the result-
ing probabilities are mutually orthogonal. The problem will
be formalized in more details in the following sections.

C. Equivalence of observables

Let us think of an observable as a box which has a row of
LEDs indicating the possible measurement outcomes. When
a measurement is performed, one of the LEDs is flashing. We
assume that the LEDs do not have a particular specification,
such as “up” or “down.” It is our choice to attach some
arbitrary but different labels to each of the LEDs before we
perform measurements. From this point of view, the box
would still be the same measurement apparatus if the label-
ing of the LEDs would have been chosen differently. For
instance, we regard a Stern-Gerlach apparatus pointing in the
z direction to be the same as that one pointing into the −z
direction, since they differ only by different labelings of out-
comes.

Based on this picture we can define the following equiva-
lence relation for observables. Let A and B be two observ-
ables with the outcome space �= ��1 , . . . ,�k�. We say that A
and B are equivalent if there is a permutation � of the num-
bers 1 , . . . ,k such that B j =A��j� for every j=1, . . . ,k. In
other words, two observables A and B are equivalent if the
collections of effects A1 , . . . ,Ak and B1 , . . . ,Bk are com-
posed of the same effects �with the same multiplicity�. This
relation is indeed an equivalence relation in the set of all
observables with the outcome space �.

III. PERFECT DISCRIMINATION OF OBSERVABLES

A. Perfect discrimination problem

Assume that we have an unidentified observable X which
is known to be equivalent to some observable in the set O
= �A ,B ,C,. . .� of �inequivalent� observables, all having the
outcome space �= ��1 , . . . ,�k�. The task is to determine the
correct equivalence class by performing measurements in
some suitably chosen states. It is assumed that only measure-
ments of X are allowed and one can do at most n measure-
ments.

The formalization of this task is as follows.
�a� n systems are prepared to a compound state �, which

is a state in the tensor product space H�n. We call � a probe
state.

�b� An X measurement is performed n times, once for
each system. For each X measurement, we get a measure-
ment outcome � j. Therefore a result of the n measurements
is an element � j���� j1

, . . . ,� jn
� from the product space �n.

�c� The requirement of perfect discrimination is that from
each measurement result � j� occurring with nonzero probabil-
ity, we can conclude the correct observable X. This means
that � j� can be obtained with nonzero probability only for a
single observable in O.

If the unknown observable X can be identified uniquely in
n repetitions, we say that the set O can be perfectly discrimi-
nated in n shots. The following example illustrates the per-
fect discrimination problem under consideration.

Example 1. Let H=C2 �spin-1/2 system� and consider two
measurements �x ,�z corresponding to �ideal� Stern-Gerlach
apparatuses oriented in directions x ,z, respectively. That is

�z ↔ A↑ = 	↑z
�↑z	, A↓ = 	↓z
�↓z	;

�x ↔ B↑ = 	↑x
�↑x	, B↓ = 	↓x
�↓x	;

where 	↑x
= 1
�2

�	↑z
+ 	↓z
� and 	↓x
= 1
�2

�	↑z
− 	↓z
�. Because of
the equivalence relation between the observables, the correct
labels are unknown and we cannot distinguish whether the
shining LED corresponds to “up” or “down.” If this would
be possible, then we could distinguish between �z and −�z. It
follows that we must use the apparatus at least twice to find
one of the following four pairs of outcomes:
�↑↑ ,�↓↓ ,�↑↓ ,�↓↑. Moreover, we are able to distinguish only
whether the outcomes are the same ��↑↑ or �↓↓� or different
��↑↓ or �↓↑�. Consider a probe state

	�
 =
1
�2

�	↑z
 � 	↑z
 − 	↓z
 � 	↓z
�

=
1
�2

�	↑x
 � 	↓x
 + 	↓x
 � 	↑x
� .

For �x the probabilities of outcomes �↑↑ and �↓↓ vanishes.
On the other hand, for �z the outcomes �↑↓ and �↓↑ have
zero probability. Thus if we repeat the unknown measure-
ment twice and observe the same outcomes, it follows that X
is �z. When the outcomes are different, then X is �x.
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In the general scheme described in �a�–�c�, there are kn

possible sequences of measurement results. However, as we
distinguish only between different equivalence classes of ob-
servables, we have to group these sequences into subsets.
Essentially, our conclusion are based only on mutual relation
of individual outcomes observed in n repetitions of the mea-
surement. For instance, the measurement outcome sequences

��1,�1, . . . ,�1�, . . . ,��k,�k, . . . ,�k� �3.1�

must all lead to the same experimental result saying that all
the outcomes are the same. Therefore we cannot discriminate
kn observables in n shot measurement. To make this obser-
vation more explicit, let Sk be the symmetric group of k
elements. For every ��Sk and � j��� j1,. . .,jn
��� j1

, . . . ,� jn
���n, we denote

� · �� j1
, . . . ,� jn

� = ����j1�, . . . ,���jn�� = ���j��.

This defines an action of the group Sk on �n. The set �n is
thus composed as a disjoint union of the Sk orbits. One of the
orbits is clearly the set consisting of the sequences in Eq.
�3.1�.

For a perfect discrimination of a set O in n shots, each
orbit of �n is either associated with a particular observable
from O, or the probability for all elements in this orbit is
zero. If O consists of M observables, then the set �n is
divided into M disjoint subsets R1 , . . . ,RM which are closed
under the action of the permutation group Sk. The subsets
R1 , . . . ,RM indicate different discrimination results. �The or-
bits occurring with zero probability can be added to any
subset R j without affecting discrimination.� It follows that
the maximal number of k-valued observables �k= 	�	� that
can be discriminated in n shots is bounded by the number of
Sk orbits in �n.

For example, for n=3,k�3, the outcomes � j1j2j3
are

grouped into five equivalence classes that can be denoted as
�xxx, �xxy, �xyx, �xyy, and �xyz, where x ,y ,z��
= �1,2 , . . . ,k� and x�y�z�x. Thus using three shots we
can discriminate at most between five observables. The fol-
lowing example illustrates such discrimination of five qutrit
observables.

Example 2. Let H=C3 and ��1 ,�2 ,�3� be an orthonormal
basis. Let A ,B ,C ,D ,E be the following five observables,
each having three different outcomes:

A1 = 	�1
��1	, A2 = 	�2
��2	, A3 = 	�3
��3	;

B1 = 	�1
��1	, B2 = 	�2
��2	 + 	�3
��3	, B3 = O;

C1 = 	�1
��1	 + 	�3
��3	, C2 = 	�2
��2	, C3 = O;

D1 = 	�1
��1	 + 	�2
��2	, D2 = 	�3
��3	, D3 = O;

E1 = 	�1
��1	 + 	�2
��2	 + 	�3
��3	, E2 = E3 = O .

These observables can be discriminated with three measure-
ments. Indeed, the probe state � corresponding to the vector
�1 � �2 � �3 leads to the discrimination according to the fol-
lowing table:

Result xxx xxy xyx xyy xyz

Conclusion E D C B A

B. Perfect discrimination of two observables with two shots

Let us assume that an observable X is known to be
equivalent to either A or B. For each state �, we denote by
p�

A�� j�� and p�
B�� j�� the probabilities of getting the outcomes

� j�= �� j1
, . . . ,� jn

� in n repetitions of A measurements or B
measurements, respectively.

As already discussed in Sec. II B, the problem of perfect
discrimination of observables is reduced to a perfect dis-
crimination of the corresponding probability distributions. In
order to discriminate A and B in n shots, we need to find a
probe state � such that

p�
A�� j��p�

B����j��� = 0 ∀ � j� � �n, ∀ � � Sk.

�3.2�

The probabilities under consideration have the form

p�
A�� j1

, . . . ,� jn
� = tr��A j1

� ¯ � A jn
� . �3.3�

Hence, if

p�
A�� j1

, . . . ,� jn
� = 0 �3.4�

for some state �, then there is a unit vector ��H such that

��	A j1
� ¯ � A jn

�
 = 0. �3.5�

This is easily seen by decomposing � to a convex combina-
tion of pure states. We thus conclude that the search for
suitable probe state � can be restricted to pure states. More-
over, since the operator A j1

� ¯ � A jn
is positive, � in Eq.

�3.5� must be its eigenvector with eigenvalue 0.
Let us consider a situation where we have only two sys-

tems available and hence we are trying to discriminate ob-
servables by performing two measurements. The set �2 has
two orbits under the action of Sk. One orbit consists of the
following pairs: ��1 ,�1� , ��2 ,�2� , . . . , ��k ,�k�. The other or-
bit contains all the other pairs, i.e., ��i ,� j� with i� j. As
there are only two orbits, we cannot discriminate more than
two observables.

In order to discriminate two observables A and B with
two shots there must be a state � such that either

p�
A��i,�i� = 0 ∀ i = 1, . . . ,k �3.6�

p�
B��i,� j� = 0 ∀ i, j = 1, . . . ,k, i � j �3.7�

or the same conditions with A and B interchanged.
In terms of operators the above conditions read

tr��A j � A j� = 0 ∀ i = 1, . . . ,k , �3.8�

tr��Bi � B j� = 0 ∀ i, j = 1, . . . ,k, i � j . �3.9�

Still another set of equivalent conditions is the following:

�
j=1

k

tr��A j � A j� = 0, �3.10�
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�
j=1

k

tr��B j � B j� = 1. �3.11�

The last equation follows from the normalization condition
�i,jBi � B j =�iBi�� jB j = I.

Proposition 1. If A and B can be discriminated with two
shots, then the operators A1 , . . . ,Ak ,B1 , . . . ,Bk, except pos-
sibly one of them, have eigenvalue 0.

Proof. Assume that conditions �3.8� and �3.9� hold, the
other case �i.e., A and B interchanged� being similar. Since
all the tensor product operators A1 � A1 , . . . ,Ak � Ak have
eigenvalue 0, it follows that all the operators A1 ,A2 , . . . ,Ak
have eigenvalue 0. Assume now that, for instance, B1 does
not have eigenvalue 0. Since all the tensor product operators
B1 � B2 , . . . ,B1 � Bk have eigenvalue 0, this means that the
operators B2 , . . . ,Bk have eigenvalue 0. �

In the next example we demonstrate that the exception
mentioned in Proposition 1 is indeed possible: one of the
operators A1 , . . . ,Ak ,B1 , . . . ,Bk need not to have eigenvalue
0.

Example 3. Let H=C3, ��1 ,�2 ,�3� an orthonormal basis
and 0	 t	1. We define two observables A and B with the
outcome space �1,2� as

A1 = 	�1
��1	 ,

A2 = 	�2
��2	 + 	�3
��3	 ,

B1 = 	�1
��1	 + 	�2
��2	 + t	�3
��3	 ,

B2 = �1 − t�	�3
��3	 .

The operator B1 has eigenvalues t and 1. The observables A
and B can be clearly discriminated with the state correspond-
ing to the vector �1 � �2.

C. Perfect discrimination of two qubit observables with two
shots

Let A and B be two observables defined on C2 and having
k possible outcomes ��1 , . . . ,�k�. In the following we derive
a necessary and sufficient condition for A and B to be per-
fectly discriminable.

First of all, if an operator on C2 has eigenvalue 0, then it
is a multiple of a one-dimensional projection. Thus Proposi-
tion 1 implies that

A j = aj	� j
�� j	 ∀ j ,

B j = bj	
 j
�� j	 ∀ j 	 k ,

Bk = I − �
j

B j ,

where � j ,
 j are unit vectors and aj ,bj � �0,1�. It then fol-
lows from Eqs. �3.8� and �3.9� that a pure probe state �
= 	�
��	 must be orthogonal to states � j � � j and 
i � 
 j for
all i� j, provided that aj�0 and bi�0�bj. Whenever there
are at least three different states � j, then the vectors � j � � j

are linearly independent and span a three-dimensional sub-
space. The one-dimensional subspace orthogonal to that sub-
space is spanned by the singlet state. However, the singlet
state has nonzero overlap with 
i � 
 j if 
i and 
 j are not
collinear. Unless the measurement B is trivial, there is at
least one pair of such vectors.

We conclude that a necessary criterion for the discrimina-
tion of A and B is that there are only two different states
�1 ,�2 in the range of A. Thus each operator A j is propor-
tional either to 	�1
��1	 or 	�2
��2	. Moreover, the normaliza-
tion � jA j = I requires that these states are orthogonal so we
denote them ���1 and ����2. Consequently, the probe
state �= 	�
��	 must be of the form

� = �� � �� + ��� � � �3.12�

for some � ,��C , 	�	2+ 	�	2=1.
Let us now fix two indices i and j such that i� j and bi

�0�bj. The orthogonality relations 0= �
i � 
 j 	�
= �
 j
� 
i 	�
 can then be written in the form

0 = ��
i	�
�
 j	��
 + ��
i	��
�
 j	�
 , �3.13�

0 = ��
i	�
�
 j	��
 + ��
i	��
�
 j	�
 . �3.14�

By expressing the states 
i ,
 j in the basis � ,�� we get


i = a� + eir�1 − a2��, �3.15�


 j = b� + eis�1 − b2��. �3.16�

Here a ,b� �0,1� and r ,s� �0,2��. In this notation we have

0 = �a�1 − b2e−is + �b�1 − a2e−ir, �3.17�

0 = �a�1 − b2e−is + �b�1 − a2e−ir, �3.18�

and consequently

�a�1 − b2e−is + b�1 − a2e−ir��� + �� = 0, �3.19�

�a�1 − b2e−is − b�1 − a2e−ir��� − �� = 0. �3.20�

There are two possible solutions:

either a = b, � = − � = 1/�2, r = s; �3.21�

or a = b, � = � = 1/�2, r = s + � . �3.22�

Here we use the facts that 	�	2+ 	�	2=1 and that � and � can
be multiplied by a common phase factor without changing
the probe state �.

The first solution �3.21� leads to the trivial situation where
for all j,


 j � 
 = a� + eir�1 − a2��. �3.23�

Then the normalization condition � jB j =� jbj	

��	� I does
not hold and therefore this case does not represent a valid
solution.

The second solution �3.22� implies that for every pair i
� j �with bi�0�bj�, we get


i = a� + eir�1 − a2�� � 
+, �3.24�
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 j = a� − eir�1 − a2�� � 
−. �3.25�

In particular, this means that there can be only two nonzero
bj. Without loss of generality, we assume that b1�0�b2
and b3= ¯ =bk=0, i.e., B1=b1	
+
�
+	, B2=b2	
−
��−	,
B3= ¯ =Bk=O. In order to fulfill the normalization con-
straint B1+B2= I they must correspond to mutually orthogo-
nal projectors, i.e., b1=b2=1 and �
+ 	
−
=0. Since
�
+ 	
−
=2a2−1, we get


 =
1
�2

��  eir��� . �3.26�

We summarize this solution in the following proposition.
Proposition 2. Two qubit observables A and B can be

perfectly discriminated in two shots only if they are of the
following form:

A1 = a1	�
��	 B1 = 	
+
��+	

] B2 = 	
−
��−	

Am = am	�
��	 B3 = O

Am+1 = am+1	��
���	 ]

] ]

Ak = ak	��
���	 Bk = O

with � j�maj =� j�maj =1, and


 =
1
�2

��  eir���

for some r� �0,2��. The probe state is

� =
1
�2

�� � �� + �� � �� .

IV. UNAMBIGUOUS DISCRIMINATION AND
IDENTIFICATION OF OBSERVABLES

A. Unambiguous identification problems

In the previous sections we have investigated perfect dis-
crimination of quantum observables. We have seen that this
is possible only in some special cases. Therefore generaliza-
tions of the perfect discrimination scheme are needed.

In what follows we will generalize the framework of per-
fect discrimination and introduce the concepts of unambigu-
ous discrimination and unambiguous identification of quan-
tum observables. In these generalizations all conclusions are
still required to be error-free, but also inconclusive results
are allowed. Moreover, it is not assumed that there is a con-
clusive result for each a priori possibility. As before, the
starting point is that we are given a measurement apparatus
X which is known to be described by an observable from the
set O= �A ,B ,C , . . .�. The goal is to single out the correct
observable. We are interested in the following four situa-
tions.

�1� Perfect discrimination �PD� of the set O means that
we can deduce X from any measurement result occurring
with nonzero probability. There are no inconclusive results.

�2� Unambiguous discrimination �UP� of the set O means
that whichever X is, we have a nonzero probability to arrive
at a conclusion.

�3� Perfect identification �PI� of a subset O��O from O
means that whatever measurement result we get, we can con-
clude whether X is A or not for each A�O�.

�4� Unambiguous identification �UI� of a subset O��O
from O means that if X=A�O�, then there is a nonzero
probability to get a measurement result leading to this con-
clusion.

It is clear that UI is the most general scheme of these and
the other three are special cases of it. PI becomes PD and UI
becomes UD when O�=O. UD reduces to PD when the
probability of the inconclusive result is zero.

Let us consider a situation where we make n measure-
ments with the unknown measurement apparatus X. The total
outcome space is thus �n, and we divide it into disjoint
subsets R1 ,R2 , . . ., and R?. The last subset R? is associated
with the inconclusive result; if an outcome from R? is re-
corded, we cannot make a conclusion. The other subsets
R1 ,R2 , . . ., correspond to conclusions X=A , X=B, etc. as
in the case of perfect discrimination. A probability for each
conclusive outcome must vanish for all observables except
one of them. If, for instance, the subset R1 is associated with
the conclusion X=A, then for every � j��R1, we must have

p�
A�� j�� � 0 = p�

B�� j�� = p�
C�� j�� = ¯ . �4.1�

Proposition 3. If an observable A can be unambiguously
discriminated, then at least one effect A j has eigenvalue 0.

Proof. In order to have zero probability for a result � j�

= �� j1
, . . . ,� jn

�, the corresponding effect A j�=A j1
� ¯ � A jn

must have at least one zero eigenvalue. The eigenvalues of
A j� are products of the eigenvalues of the effects A j, hence at
least one of the effects A j must have eigenvalue 0. �

Let us note that the above impossibility statement holds
only for the unambiguous discrimination problem and it is
not applicable to a general unambiguous identification prob-
lem. In fact, although A cannot be unambiguously discrimi-
nated, it can still be unambiguously identified as we will see
at the end of Sec. IV B.

For an inconclusive result �i.e., an outcome belonging to
R?� the probability is nonzero for more than one observable.
The goal of a given task for a given set of observables O is
to decide on the existence of a suitable probe state � and
maximize �over all potential probe states� the average prob-
ability of getting the conclusive results �success probability�
Psucc

� =�X�O�Xp�
X�RX�, where � :O→ �0,1� is a given prob-

ability distribution of the elements in O reflecting our a pri-
ori information, i.e., �X�O�X=1.

B. Unambiguous identification of sharp qubit observables with
two shots

By making two measurements with the unknown mea-
surement apparatus X we get only two results; either the
outcomes are the same or different. Therefore we have three
options.

�1� Both results are conclusive �perfect discrimination of
two observables�.
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�2� One of the results is conclusive and the second one is
inconclusive �unambiguous identification of one observable�.

�3� Both results are inconclusive �no identification at all�.
Let us assume that X is known to be either A or B, which

are both sharp qubit observables. Proposition 2 implies that
perfect discrimination of A and B is possible if and only if
they are of the form

A1 = 	�
��	 ,

A2 = 	��
���	 ,

B1 = 	
+
��+	 ,

B2 = 	
−
��−	 , �4.2�

where 
= 1
�2

��eir��� for some r�R.
In the following we investigate unambiguous identifica-

tion of two sharp qubit observables in two shots. There are
only two results in the two shot measurement scheme: Rsame
and Rdiff. We have thus two choices; either Rsame is conclu-
sive or Rdiff is conclusive. For sharp qubit observables these
two options are equally good as far as we consider the suc-
cess probability. Indeed, this observation is proved below in
Proposition 4.

We recall that a sharp qubit observable A is described, up
to equivalence, by a unit vector a�R3. Namely, a sharp
qubit observable A with two outcomes �1 ,�2 is given by

�1 � A1 =
1

2
�I + a · �� , �4.3a�

�2 � A2 =
1

2
�I − a · �� . �4.3b�

Proposition 4. Let A and B be sharp qubit observables a
priori distributed according to probabilities �A=� and �B

=1−�. The following statements are equivalent.
�i� There is a probe state � such that Rsame leads to the

conclusion X=A and the success probability is Psucc.
�ii� There is a probe state �� such that Rdiff leads to the

conclusion X=A with the success probability Psucc.
Proof. The first statement asserts that

Psucc = ���	A1 � A1 + A2 � A2	�
 ,

0 = ��	B1 � B1 + B2 � B2	�
 .

Let A1= 1
2 �I+a ·�� and B1= 1

2 �I+b ·��. The self-adjoint uni-
tary operator U : = a�b

a�b ·� transforms A1 and B1 in the fol-
lowing way: UA1U=A2, UB1U=B2. Thus defining ��= �I
� U�� we obtain

Psucc = ���	A1 � A1 + A2 � A2	�


= ����	A1 � A2 + A2 � A1	��


and

0 = ��	B1 � B1 + B2 � B2	�
 = ���	B1 � B2 + B2 � B1	��
 .

�

Let A and B be two sharp qubit observables. Assume that
Rdiff is the inconclusive result and Rsame is the conclusive
result X=A. This means that

tr��A j � A j� � 0 for j = 1 or j = 2, �4.4�

tr��B j � B j� = 0 for j = 1,2. �4.5�

Let 
 and 
� be orthogonal unit vectors such that B1
= 	

��	 and B2= 	
�
���	. From the second condition it fol-
lows that a probe state � is of the form

� = �
 � 
� + �
� � 
 �4.6�

for some � ,��C, 	�	2+ 	�	2=1. Inserting this state into Eq.
�4.4� we obtain the following expression for the probability
Psucc of the conclusive result:

Psucc = ���	A1 � A1 + A2 � A2	�
 �4.7�

=
1

2
��1 + ��	a · � � a · �	�
� , �4.8�

where we have denoted A1= 1
2 �I+a ·��. In order to maximize

the above probability one needs to maximize the term

��	a · � � a · �	�
 = ���� + ����	�
	a · �	
�
	2

− �
	a · �	

2.

This expression achieves maximum for �=�=1 /�2, thus the
optimal probe state is

� =
1
�2

�
 � 
� + 
� � 
� �4.9�

and

Psucc =
1

4
��3 + a � b2 − 3�a · b�2� = � sin2 �ab,

where �ab is the angle between a and b.
Proposition 5. If A and B are sharp qubit observables, the

success probability Psucc of the unambiguous identification of
A in two shots is

Psucc = � sin2 �ab. �4.10�

This result can be generalized to a pair of a sharp observable
B and an unsharp observable A defined by a vector a�R3

�a�1� through formula �4.3�. In such case A can be iden-
tified unambiguously and Proposition 4 holds as A1 and A2
are connected by a unitary transformation. The optimal probe
state is the same as the previous and for the success prob-
ability we get

Psucc = ��a2 sin2 �ab +
1

2
�1 − a2�� . �4.11�

In particular, Psucc�0 whenever A and B are inequivalent.
Note that if a	1, then the operators A1 and A2 do not
have eigenvalue 0. Even though Proposition 3 implies that A
cannot be discriminated, we have seen that it can be identi-
fied.
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C. Unambiguous discrimination of sharp qubit observables

As explained in the beginning of the previous section,
unambiguous discrimination in two shots is possible only in
the case of perfect discrimination of two observables. Hence
for two sharp qubit observables A and B which do not sat-
isfy condition a�b, we need at least three shots for their
unambiguous discrimination.

One possibility is to perform twice the procedure of un-
ambiguous identification in two shots, once to identify A and
once for B. If we do this in the optimal way as characterized
in Sec. IV B, then we get the following result.

Proposition 6. Unambiguous discrimination of two sharp
qubit observables A and B is possible in four shots and

Psucc � sin2 �ab. �4.12�

In particular, the probe state is

� =
1

2
�
 � 
� + 
� � 
� � �� � �� + �� � �� ,

�4.13�

where �� ,���, �
 ,
�� are bases associated with sharp ob-
servables A ,B, respectively. The first pair of outcomes al-
lows us to unambiguously identify the observable A and the
second pair of outcomes unambiguously identifies the ob-
servable B. Both conclusions happen with probability
sin2 �ab. Therefore the average success probability achieves
just the same value whatever is the initial distribution of
observables A and B. We leave it as an open problem
whether the equality holds in Eq. �4.12� and also whether
unambiguous discrimination of A and B is possible in three
shots.

V. CONCLUSIONS

In this paper we developed the general framework in
which different variations of unambiguous identification
tasks for quantum observables can be tackled. In all the prob-
lems considered here, we are given an unknown apparatus X
promised to be one from a given finite set of observables.
The goal is to identify the observable without an error. More-
over, we are interested in minimal resources necessary for
the successful realization while keeping the success probabil-

ity as large as possible. Resources are quantified in a number
of probe systems, i.e., usages of the unknown apparatus.
Nothing can be concluded if the apparatus is used only once,
hence the minimal number of usages is two. Because of the
unknown labeling of the given measurement device the dis-
crimination cannot be based on a particular outcome se-
quence, but rather on its symmetry. For instance, in the two
shots scenario we can only say whether the outcomes are
different or the same.

We formulated the problems in general settings and pre-
sented some solutions in the case qubit observables. We suc-
ceeded to show that using the unknown measurement device
twice we can perfectly discriminate only sharp qubit observ-
ables A ,B corresponding to Stern-Gerlach apparatuses ori-
ented in mutually orthogonal directions a�b. For a general
pair of sharp qubit observables only unambiguous conclu-
sions are possible with two shots. In particular, using the
apparatus twice we can conclusively identify only one of the
observables �say A� with probability Psucc=� sin2 �ab, where
� is a priori probability of A and �ab is the angle between
directions a and b. The value of sin2 �ab serves also as the
lower bound for the success probability of the unambiguous
discrimination of A and B, in which both observables are
identified conclusively. Interestingly, in all these cases the
optimal probe state is a specific maximally entangled state.
However, as shown in examples 2 and 3, entangled states are
not always necessary and also factorized states can be ex-
ploited for perfect discrimination.

Discrimination and identification types of problems are of
interest, because in these situations also the individual out-
comes can provide us with useful information about un-
known quantum apparatuses. This paper represents a prelimi-
nary step toward understanding of mutual experimental
distinguishability of quantum observables and calibration of
quantum measurement devices. There are many interesting
questions in this subject deserving further investigation.
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