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Two noninteracting qubits, initially prepared in an entangled state, are coupled to their own independent
environments and evolve under their influence. The reduced non-Markovian dynamics of two qubits is exact
for arbitrary model parameters. Necessary and sufficient conditions for nonvanishing entanglement are formu-
lated for both zero and nonzero temperatures and arbitrary time. It is shown that �i� entanglement dynamics can
effectively be controlled by a finite quantum system coupled to one of the qubits and �ii� dynamical symmetry
of the controlling quantum system can influence significantly entanglement of the qubits and results in its
nonmonotonic decay.
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I. INTRODUCTION

Entanglement of open quantum systems has attracted con-
siderable attention due to its significance for both fundamen-
tals and applications of quantum-information processing �1�.
Time evolution of quantum systems can be developed under
various and often quite abstract assumptions �2� reflected in
the corresponding entanglement dynamics. There are two,
qualitatively different, types of behavior. The first one, when
the �abstract� time evolution is given by the so-called global
transformation �1�. In such a case, the time dependence of
entanglement can exhibit both monotonicity and nonmono-
tonicity. The second class of quantum systems consists of
qubits evolving under local transformations possibly accom-
panied by a classical communication �LOCC�, when the en-
tanglement is always a nonincreasing function of time �1�.

For open quantum systems, the choice of a model of its
reduced dynamics is crucial. One of the most popular guide-
lines for that choice is the complete positivity provided by a
Kossakowski-Lindblad form of master equations �3�. The en-
tanglement dynamics has frequently been studied within the
Markovian approximation: Either formal �4� or rigorously
derived via the Davies weak-coupling theory �5�. The possi-
bility of nonmonotonic entanglement of bipartite systems oc-
curs if either the parties interact directly �1� or if they are
embedded in a common environment �4,5� acting construc-
tively on the entanglement. However, the environment usu-
ally acts destructively upon the entanglement resulting in the
noise induced entanglement decay and death �6� or, accord-
ing to �7�, leading to the decoherence of entanglement. It is
known that Markovian evolution of two noninteracting sys-
tems coupled to their own independent environments cannot
result in a nonmonotonic time dependence of their entangle-
ment. The aim of our work is to show that it is not the case
for non-Markovian systems, when the time homogeneity is
broken.

The Markovian approximation, beyond phenomenological
modeling, can rigorously be justified only under very special
conditions �3�. Let us mention the so-called weak-coupling,
or Davies, approximation. The results obtained within this
method cannot be extrapolated to the low-temperature re-
gime. Therefore, the applicability of the weak-coupling ap-
proximation for solid-state devices, often operating at deep

cold, is truly limited. On the other hand, modeling of reduced
dynamics beyond the Markovian approximation requires par-
ticular care �8� and expressing it in terms of a standard mas-
ter equation is in general impossible, except in some very
special cases. The key problem concerns the entanglement
dynamics in the presence of a real environment derived con-
sistently from the microscopic first principles. The dissipa-
tion or dephasing caused by such an environment is, in gen-
eral, neither Markovian nor weak. In this paper we limit our
consideration to a simple exactly solvable model of pure
dephasing �9�. As this model allows for an exact analysis of
the reduced dynamics, credible results can be obtained for
arbitrary model parameters �9,10�.

For the purpose of some applications, it is important to
overcome the problem of decoherence, e.g., by confining
quantum evolution in the decoherence free subspaces �11�.
The details of the system-environment interaction are crucial
for entanglement of its components, e.g., the quantum sys-
tems coupled by a common heat bath can remain asymptoti-
cally entangled �12�. One of the aims of our investigations is
to show that a pair of qubits, which do not interact with each
other but are initially quantum correlated, can remain en-
tangled for arbitrary long time, provided certain conditions
are imposed on their environments. We investigate two types
of environments: �i� an infinite system of bosonic oscillators
that models a dephasing thermal bath and �ii� a finite, con-
trolling, quantum system that may cause the nonmonotonic
dynamics of the qubits’ entanglement. The exact reduced,
non-Markovian, dynamics of the qubits can be derived for
such a simplified model �9,10�. Recently, the problem of the
non-Markovian entanglement dynamics has been studied in
many papers �13–16�. In particular, it has been shown that
the entanglement dynamics of two qubits coupled to an en-
vironment quantitatively and qualitatively depends on the
low-frequency properties of the bath �7,13,14�. We start with
a pair of entangled qubits and determine the asymptotic be-
havior of the entanglement. In particular, we formulate the
necessary and sufficient condition for the qubits to remain
entangled forever. We also propose a method of design for
the entanglement dynamics. It is achieved by means of an
external finite quantum system. Although the qubits are un-
coupled, the resulting entanglement is a nonmonotonic func-
tion of time and strongly depends on the initial preparation
of the controlling system. This behavior does not contradict
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the common wisdom that LOCC cannot increase the en-
tanglement. The nonmonotonicity originates from the non-
Markovian character of the qubits’ evolution caused by their
environments. As the time homogeneity is essentially bro-
ken, every local transformation of the two-qubit system must
contain the information about the whole history of the quan-
tum evolution. Therefore, adjusting the initial state of the
controlling systems allows one to design, in advance, in-
stants of time when the qubits are relatively strongly en-
tangled and next almost disentangled, i.e., quantum correla-
tions between them are essentially negligible.

The layout of the present work is as follows: In Sec. II,
we present the two-qubit model. Next, in Sec. III, we eluci-
date entanglement dynamics for initially depolarized Bell
states. In Sec. IV, we work out the case when only one of the
qubits is coupled to the environment. Rigorous results are
derived for both zero and nonzero temperature. In Sec. V, we
elaborate on a single-mode controlling quantum environ-
ment, whereas a two-mode case is discussed in Sec. VI. Sec-
tion VII provides a summary and conclusions. In the Appen-
dix we discuss another aspect of the entanglement dynamics,
namely, the effect of classicization �17� of one of the baths.

II. MODEL OF OPEN TWO-QUBIT SYSTEM

We study an open system consisting of two qubits S1 and
S2. The Hamiltonian is assumed to be of the form

H = H1 + H2,

H1 = S1
z + S1

z
� �

k=1

�

gk�ak
† + ak� + �

k=1

�

�kak
†ak,

H2 =
1

2
�0��0� � H+ +

1

2
�1��1� � H−. �1�

In this dimensionless form, energies are rescaled to the en-
ergy splitting �0=��0 of the qubit S1, frequencies are res-
caled to the frequency �0, and time is rescaled to t0=1 /�0.
The first qubit S1 is represented by the spin-1/2 operator S1

z .
It interacts with a heat bath R1 modeled by an infinite qua-
sifree reservoir composed of bosonic harmonic oscillators of
angular frequencies �k. ak and ak

† are Bose annihilation and
creation operators. The strength of the interaction between
the qubit and the kth mode of the heat bath is described by
gk.

For the second qubit S2, we denote by 	�0� , �1�
 its stan-
dard basis. In this basis, S2

z = ��0��0�− �1��1�� /2. The qubit S2
is coupled to its own environment R2 represented by a finite
�or infinite� quantum system and the interaction is described
in terms of the operators H� which are elements of a Lie
algebra G generating the symmetry group G �18�,

H� = �
k=1

N

h�
k �t�Xk � 1,

�Xi,Xj� = �
l

Cij
l Xl, �2�

where h�
k �t� are scalar control functions and Xk are basis

elements of the Lie algebra with the structural constants Cij
l .

Let us note two important features of the model �1� which
describes two subsystems defined by the Hamiltonians H1
and H2 with �H1 ,H2�=0. First, the qubits S1 and S2 do not
directly interact with each other. However, their correlations
are completely specified by initial conditions and presence of
the environments. Second, the qubits do not exchange energy
with their own environments. Therefore, the interactions
with the environments are purely dephasing and result in an
irreversible process of information loss �19�. As the qubits do
not interact with each other, the only connection between
them is information which is encoded in the initial bipartite
state. Different aspects of similar systems are discussed in
Ref. �6�.

The second qubit can be steered by the driving h�
k �t� of

the controlling quantum system H�. The dynamical symme-
try allows for an exact formulation of an evolution of the
controlled qubit S2 �18�. Initially this qubit is assumed to be
separated from its controlling environment R2 and the initial
wave function of the subsystem H2 is

���0�� = ��+�0� + �−�1�� � ��� , �3�

where �+ and �− are complex numbers defining the initial
state for the qubit S2, and ��� is the initial state of the con-
trolling system R2 that is described by H�. The time evolu-
tion of the H2 subsystem is given by the relation

���t�� = �+eit/2�0� � T„g+�t�…��� + �−e−it/2�1� � T„g−�t�…��� ,

�4�

where T�¯� is a representation of the group G acting in the
space of the controlling system R2 and functions g��t��G
depend on the specific form of �2�. A particularly simple
situation corresponds to the case when the initial state ��� is
a generalized coherent state related to the symmetry group G
since then it evolves into some other coherent state �18�.

The reduced dynamics of qubits can be determined ex-
actly for arbitrary model parameters �9,10� provided the ini-
tial state ��0� of the total system H can be factorized into the
two-qubit state 	�0� and the states 	R1 and 	R2 of the corre-
sponding environments R1 and R2, namely, ��0�=	R1

� 	�0� � 	R2. Simplicity of the model allows for an exact,
rigorous treatment of entanglement dynamics beyond weak
coupling and at arbitrary temperatures of the heat bath.

We assume that the state 	R1 of the heat bath R1 is an
equilibrium Gibbs state and the initial state of the environ-
ment R2 is 	R2 = ������. The initial state 	�0� of two qubits is
an arbitrary state for the bipartite system. For time t
0, the
state 	�t� of two qubits has the form �cf. Eq. �5.19� in �9��

	�t� = ��t�	�0� , �5�

where the nonunitary evolution operator

��t� = �1�t� � �2�t� ,
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�n�t�	 = C1
n�t�	 + 2C2

n�t��Sn
z ,	� + 4C3

n�t�Sn
z	Sn

z , n = 1,2,

�6�

for an arbitrary operator 	. The functions

C1
n�t� =

1

2
�1 + An�t�cos �n�t�� ,

C2
n�t� =

1

2
iAn�t�sin �n�t� ,

C3
n�t� =

1

2
�1 − An�t�cos �n�t�� , �7�

for n=1,2. For the first qubit �9�,

�1�t� = t , �8�

A1�t� = exp�− f�t�� , �9�

f�t� = �
0

�

d�
J���
�2 coth���
0/2��1 − cos �t� , �10�

where 
0=1 /kBT, kB is the Boltzmann constant, and T is
temperature of the heat bath R1. The relaxation function A1�t�
is a decreasing function of time and describes the decay of
mean values of the x and y components of the spin S1.

The frequency spectrum of heat bath fluctuations is deter-
mined by the spectral function J���=�kgk

2���−�k�. In the
thermodynamic limit for R1, it is assumed to take the form
�8,20�

J��� = ��1+� exp�− �/�c�, � 
 − 1, �11�

where the cutoff frequency �c determines the largest energy
scale of R1 �it removes possible problems at high frequen-
cies� and � corresponds to the coupling constant of the qubit
S1 and the environment R1. The spectral exponent � charac-
terizes low-frequency properties of the heat bath and defines
its various types. According to the classification proposed in
Ref. �20�, the heat bath is called sub-Ohmic for �� �−1,0�,
Ohmic for �=0, and super-Ohmic for �� �0,��. This clas-
sification shall be reflected in the dynamical properties of
entanglement.

As one can infer from Eq. �4�, after taking trace with
respect to the R2 variables one obtains for the qubit S2,

�2�t� = t + arg����T†
„g−�t�…T„g+�t�…���� , �12�

A2�t� = ����T†
„g−�t�…T„g+�t�…���� . �13�

These functions depend essentially on the choice of the ini-
tial preparation ���. It is worth to stress that the correspond-
ing generator of the reduced dynamics is of the
Kossakowski-Lindblad form �9� and hence the complete
positivity is preserved �3�.

III. ENTANGLEMENT DYNAMICS

In this section we discuss evolution and long-time asymp-
totics of entangled states of two qubits S1 and S2. There are

several computable measures of entanglement degree of bi-
partite systems �21�. Two of them, namely, concurrence �22�
and negativity �23�, have been extensively exploited. The
relations between these two measures are discussed in Ref.
�24�. In the paper, we choose the negativity N�	�=max�0,
−�i�i� �23�, where �i are negative eigenvalues of the par-
tially transposed density matrix 	�t� of a pair of qubits �25�.
For entangled mixed states, the negativity is positive whereas
it vanishes for unentangled states. Moreover, as it is an en-
tanglement monotone �23�, it can be used to quantify the
degree of entanglement in composite systems. As we limit
our attention to the 2�2 dimensional systems, the use of one
of several other known entanglement monotones �21� such
as, e.g., the concurrence leads to similar results.

We assume that initially the qubits are prepared in states
belonging to the family of the depolarized Bell states �26�

	�0� = �1 − p��Bk��Bk� +
p

4
I , �14�

where k=1,2 ,3 ,4, p� �0,1�, and I is the unit operator. As
�Bk� we take the maximally entangled states

�B1/2� = ��11� � �00��/�2,

�B3/4� = ��01� � �10��/�2. �15�

The depolarization accounts for an imperfect preparation of
the initial state. The experimentally accessible states are al-
ways mixed due to quantum or classical noise. In this sim-
plest approach, it is modeled by a single parameter p.

For the system of two qubits evolving under exact re-
duced dynamics given by Eqs. �5� and �14� one can evaluate
the negativity at arbitrary time. For the above four Bell
states, it has an appealing form, namely,

N„	�t�… = max
0,
1 − p

2
A1�t�A2�t� −

p

4
� . �16�

It is our main result, which through its simple product form
A1�t�A2�t�, allows us to consider a variety of controlling en-
vironments R2 defined by a large set of Lie algebras G as in
Eq. �2�. Inspection of this formula allows us to determine a
critical value pc�t� of the probability p below which the sys-
tem remains entangled at the given time t, i.e., for p� pc�t�
one gets N(	�t�)�0. This critical value reads as

pc�t� =
2A1�t�A2�t�

1 + 2A1�t�A2�t�
. �17�

Notice that for t=0, when A1�0�=1 and A2�0�=1, one gets
the condition for entanglement of a depolarized Bell state,
i.e., p�2 /3.

In the following we discuss entanglement in the limiting
case t→�. The asymptotic entanglement is possible in the
case when

N� = lim
t→�

N„	�t�… � 0. �18�

It is clear from Eq. �16� that the condition
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A1���A2��� = lim
t→�

A1�t�A2�t� � 0 �19�

is necessary for nonvanishing asymptotic entanglement. This
condition becomes also sufficient for pure initial states, i.e.,
when p=0. For depolarized initial states �14� the relation p
� pc��� imposes the upper bound on the amount of initial
noise.

IV. ENVIRONMENT-ASSISTED ENTANGLEMENT

As a first example, let us consider a simplified model with
A2�t�=1 �13�, i.e., the second qubit S2 does not interact with
the environment R2. However, the first qubit S1 interacts with
the heat bath R1. Interestingly enough, this case has been
analyzed in a recent work �13�. Notably, the previous study
identifies the long-time asymptotics of entanglement by
means of numerical calculations only. Here, we provide ana-
lytical results and prove that for the assumed class of initial
states �14�, the conjecture on nonvanishing long-time en-
tanglement holds true. To this end, we must know explicit
forms of the function A1�t� which are presented in Ref. �9�.
We shall intensively use the results therein.

A. Zero-temperature limit

Let us first consider the zero-temperature case, T=0. In
this case, the quantum-mechanical features should be more
distinct because the classical sources of dissipation, decoher-
ence, and dephasing are frozen. However, there are still zero-
temperature fluctuations due to vacuum fluctuations of the
environment R1.

In order to make the paper self-contained we quote here
the formulas derived in �9�. For the Ohmic bath ��=0�, one
obtains

A1�t� = �1 + �c
2t2�−�/2. �20�

For the sub-Ohmic and super-Ohmic baths one obtains

A1�t� = exp„− ������c
�	1 − �1 + �c

2t2�−�/2

�cos�� arctan��ct��
… , �21�

where ��z� is the Euler � function. One can see that for both
Ohmic ��=0� and sub-Ohmic ��� �−1,0�� reservoirs,
limt→� A1�t�=0. In consequence, the negativity is zero, N�

=0, and the two-qubit states become unentangled in the long-
time limit. For the super-Ohmic bath ��
0�,

A1��� = lim
t→�

A1�t� = exp�− ������c
�� � 0. �22�

It follows that in this case the negativity is positive, N�
0
and the two-qubit state is entangled for any time t
0, also
when t→�. It proves the conjecture put in Ref. �13� that
only for the super-Ohmic environment, entanglement re-
mains nonzero for arbitrary long times.

In Fig. 1 we visualize time evolution of entanglement of
the qubit-qubit system quantified by the negativity. We as-
sume that the first qubit is coupled to the infinite heat bath of
oscillators whereas the second qubit evolves freely, i.e.,
A2�t�=1. For all four initial Bell states �15� with p=0 in Eq.

�14� �perfect preparation�, one can observe two qualitatively
distinct regimes �13�. In the first regime, Ohmic and sub-
Ohmic, the negativity decays and vanishes in the limit t
→�. In the second regime, when the heat bath is super-
Ohmic, the negativity tends to a nonzero value. Now, let the
system be embedded in the super-Ohmic bath and consider
the depolarized initial states �14�. If the imperfect prepara-
tion parameter p
0, then one can expect three qualitatively
different scenarios. The first, occurring for p� pc���, is char-
acterized by nonvanishing asymptotic entanglement. In the
second scenario, for p= pc���, the entanglement diminishes
with time and asymptotically vanishes. The third scenario is
the so-called entanglement sudden death �6� characterized by
complete entanglement decoherence in a finite time. The mo-
ment of death td�� can be implicitly defined by the relation
p= p�td�
 p���.

Let us notice that our discussion can follow along the
same line as for the generalized case when both qubits inter-
act with two infinite environments. Such two environments
can differ from each other with respect to microscopic pa-
rameters which determine their spectral properties. It is clear
that asymptotic entanglement does not vanish at T=0 if and
only if both environments are super-Ohmic. This conclusion
generalizes the results of Ref. �13�.

B. Nonzero temperature

When temperature of the heat bath R1 is nonzero, T
0,
then entanglement survives under stronger conditions: The
environment must be super-Ohmic and additionally its low-
frequency spectrum J������ with �
1. If �
1, then the
relaxation function A1�t� tends to a positive value given by
the formula

A1��� = exp	− ������c
��1 + 2B�T��
 , �23�

where the temperature contribution B�T� reads as

B�T� = �
n=1

�

�1 + n�c/kBT�−�. �24�

For low temperature, the dominating term has the power-law
form,

-25

-20

-15

-10

-5

0

0 2000 4000 6000 8000 10000

ln
(N

)

t

µ=0.1
µ=0

µ=-0.1

FIG. 1. �Color online� Time evolution for negativity from all
four Bell states �15�. The first qubit is coupled to the sub-Ohmic
��=−0.1�, Ohmic ��=0�, or super-Ohmic ��=0.1� bath and the
second qubit evolves freely, i.e., H�= �1. The cutoff frequency
�c=103, the coupling constant �=0.1, temperature T=0, and the
imperfect preparation parameter p=0, cf. Eq. �14�. Time is given in
units of t0.
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B�T� = �����kBT/�c��, �25�

where ���� is the Riemann � function �27�. So, the relaxation
function A1��� depends on temperature in the stretched ex-
ponential way: A1����exp�−const T��.

The persistence of asymptotic entanglement at nonzero
temperature, i.e., A1����0, holds true always for super-
Ohmic baths satisfying �
1. For ��1 the relaxation func-
tion decays to zero either exponentially or algebraically and
the qubits become disentangled.

V. SINGLE-MODE CONTROL

For the system considered in the preceding section, the
negativity �and entanglement� is a monotonically decreasing
function of time. If one wants to manipulate the entangle-
ment in a desired way �e.g., modulate or maintain the en-
tanglement in a desired interval�, a method for how to do it
must be worked out. Below, we propose possible scenarios
for how to decrease and increase in time the entanglement of
a pair of qubits. We will concentrate on the dynamics with
respect to the role played by the coupling of the second qubit
to a finite environment. We assume that the first qubit S1 is
dephasingly coupled to the super-Ohmic bath and the second
qubit S2 is controlled by a quantum system having the
Heisenberg-Weyl symmetry. Such a symmetry, typical for
quantum oscillators, is related to the system of standard co-
herent states in the Euclidean phase space. Our model is also
valid for controlling systems with different dynamical sym-
metries. An example of a control with the rotational symme-
try is briefly presented in the Appendix.

Experimentally, an oscillatorlike controlling system R2
can be prepared by placing one of the qubits in the n-mode
cavity. We show that by choosing an initial state of the cavity
and the form of its interaction with the qubit one can design
dynamical properties of the two-qubit entanglement.

We start with a single-mode coupling. Namely, let in Eq.
�2� the operators H� be of the form

H� = a†a � ���a + a†� � 1. �26�

For ��=�=const we arrive at a single-mode limit of the
Hamiltonian of the environment R2. The exact time-
dependent solution generated by the Hamiltonian �26� is
known for a general, time-dependent coupling �=��t�
�18,28�. In the following we limit ourselves to the isotropic
coupling ��=�. The corresponding function A2�t� reads as

A2�t� = ����D„��t�…���� , �27�

where ��t�=��1−exp�it�� and D�x�=exp�xa†−x�a� is the
displacement operator �18,29�. This operator generates the
set of standard coherent states. The function A2�t� is the Weyl
function studied intensively in the context of interference
phenomena �30� and mesoscopic devices controlled by non-
classical external fields �31�.

A. Pure initial states

In the following we study the effect of a particular choice
of initial preparation. Various states of quantum systems can

be, under carefully performed quantum engineering, experi-
mentally prepared in the context of producing nonclassical
electromagnetic fields �32�. In this section we limit our at-
tention to number states, i.e., ���= �N� and a†a�N�=N�N�.
Choice of the coherent state as an initial state of the control-
ling system R2 ����= �z�� results in modification of the phase
�2�t� in Eq. �12� without changing A2�t�. The qubit-qubit
entanglement is then the same as for the initial ground num-
ber state ���= �0�.

Numerical results for the entanglement dynamics con-
trolled by the single-mode bosonic field are depicted in Fig.
2. Initially the two-qubit system is maximally entangled. The
controlling system is assumed to be prepared in the number
eigenstate �N�. There are two features induced by a control-
ling system. First, the time evolution results in damped peri-
odic oscillations of the entanglement. Second, the entangle-
ment is weaker �not stronger� compared to the case H�

= �1 �depicted by the uppermost line in Fig. 2� and the
maximal values are limited by A1�t� as the envelope func-
tion. This amplitude can be controlled by a suitable depolar-
ization of the initial state. For p
 pc��� one can expect the
entanglement sudden death. Moreover, time distances be-
tween successive extrema of entanglement are smaller and
smaller when N increases. It allows us to manipulate the
degree of entanglement at certain time intervals. As the en-
tanglement establishes strong quantum correlations between
subsystems, the action carried out on one of the components
is felt by the other. This is an essence of most of quantum
protocols. By controlling entanglement oscillations one can
predict and design when the system becomes almost disen-
tangled allowing for local operations which do not affect the
remaining subsystem.

Let us notice that nonmonotonicity of the negativity
caused by interaction with a system locally coupled to one of
the qubits is not in contradiction with the common wisdom
concerning nonincreasing entanglement under local opera-
tions or classical communication �LOCC�. As the control is
non-Markovian, the only local operation transforms the sys-
tem from ti=0 to tf = t
0. This transformation carries the
information about the history of time evolution and certainly
does not increase entanglement for every tf 
0, i.e.,
N(	�0�)�N(	�tf�).

-16

-15

-14
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-11

-10
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-8

0 1 2 3 4 5 6 7 8 9 10

ln
(N

)

t

A2(t)=1

N=0
N=1
N=5

FIG. 2. �Color online� Negativity of the qubit-qubit system. The
single-mode control is determined by �26� and �27� with ��=1. The
initial state of the controlling quantum system is the number state
���= �N� with N=0,1 ,5. The reservoir R1 is super-Ohmic at T=0.
Remaining parameters are the same as in Fig. 1.

NON-MARKOVIAN ENTANGLEMENT EVOLUTION OF TWO … PHYSICAL REVIEW A 77, 042316 �2008�

042316-5



B. Mixed initial states

In this section we consider the influence of the controlling
quantum system H� prepared initially in a mixed state. With-
out loss of generality we work in the basis where the initial
state of the controlling system is diagonal, i.e., 	R2

=�kpk��k���k�. The methods discussed in the preceding sec-
tions can be extended if we consider the following purifica-
tion of the initial state:

��pur� = ���0�� = �
k

�pk��k��ak� , �28�

where the set 	ak
 spans the Hilbert space of an ancilla sys-
tem �26�. The probabilities pk�0 and �kpk=1. We assume
that the ancilla system does not evolve in time and the
Hamiltonian of the purified system is

H�
pur = H��t� � I , �29�

where I is the identity operator in the Hilbert space of an
ancilla system. In such a case, the resulting state is

����t�� = �T„g��t�… � I����0�� . �30�

Its impact on the entanglement is quantified by the function

A2�t� = ���−�t���+�t��� = ��
k

pk��k�T†
„g−�t�…T„g+�t�…��k�� .

�31�

Because the probabilities pk�1, A2�t� is smaller in compari-
son with the cases of pure initial states. In consequence, it
causes lowering of the entanglement degree �30�.

VI. TWO-MODE CONTROL

In this section we assume that the controllable qubit is
exposed to the two-mode controlling system characterized by
the Hamiltonian

H� = �
i=1

2

�ai
†ai � �i�ai + ai

†�� � 1. �32�

Such a control results in dephasing governed by the function

A2�t� = �����
i=1

2

D„�i�t�…���� . �33�

For the state which initially is factorizable, i.e., for ���
= ��1 ,�2�= ��1���2�, it factorizes into the product form

A2�t� = �
i=1

2

���i�D„�i�t�…��i�� . �34�

This property holds true for an arbitrary finite number of
factorizable modes.

In the following we concentrate on two groups of initially
entangled states. The first group consists of quantum corre-
lated number states,

��� =
1
�2

��0,N� � �N,0�� , �35�

��� =
1
�2

��0,0� � �N,N�� . �36�

The second group consists of entangled coherent states,

��� =
1

�N
��0,z� � �z,0�� , �37�

where N=2�1+exp�−�z�2�� and z is a complex number. The
results for the entanglement of four Bell states �35� and �36�
are presented in Fig. 3 for the case N=1. It is seen that two
of the initial states result in the same entanglement evolution.
Increase of N modifies oscillatory behavior of the negativity
evolving in time �Fig. 4� in the similar way as in the single-
mode case.

The controlling system prepared in the entangled state
�37� strongly affects the qubit-qubit entanglement and it is
related directly to �z� as shown in Fig. 5. When �z� increases,
the entanglement becomes smaller and smaller for all t; how-
ever, the amplitude of oscillations becomes larger. The effect
of phase of the complex number z is less spectacular and will
not be discussed here.
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FIG. 3. �Color online� Negativity of the qubit-qubit system. The
two-mode control is determined by �32� and �33� with �1=�2=1.
The initial state of the controlling quantum system is the number
state given by Eqs. �35� or �36� with N=1. The reservoir R1 is
super-Ohmic at T=0. Remaining parameters are the same as in Fig.
1.
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FIG. 4. �Color online� The same as in Fig. 3 for selected values
of N of the initial state �35� or �36� of the controlling quantum
system.

DAJKA, MIERZEJEWSKI, AND ŁUCZKA PHYSICAL REVIEW A 77, 042316 �2008�

042316-6



VII. SUMMARY

We have analyzed the non-Markovian entanglement dy-
namics based on the exact reduced description. In our setup,
the system is composed of two qubits which are coupled to
their own independent environments: The first qubit is
coupled to the infinite heat bath R1 while the second qubit
can undergo the free evolution, can be coupled to infinite or
finite environments R2. The two subsystems �each consisting
of the qubit and its own environment� are uncoupled. Our
considerations are limited by the choice of a class of the
initial qubit-qubit preparation. We assume that the qubits are
prepared initially in one of the Bell states. The error in the
initial preparation has been modeled in terms of the so-called
depolarizing channel.

The entanglement of the bipartite system is shown to be a
monotonically decreasing function of time when R1 is an
infinite heat bath and R2 is absent or infinite. In such a case,
the effect of the heat bath R1 is to decrease the amount of
entanglement of the initial state: The stronger the qubit-
reservoir coupling the stronger the reduction of the degree of
entanglement. We have discussed the influence of the low-
frequency spectral properties of the heat bath. We have
pointed out that for the super-Ohmic bath, it is possible to
maintain entanglement forever not only at zero temperature
but also at nonzero temperature. It extends and completes
previous studies concerning other systems �14,33� and/or
other modeling of environments �15,16�. We have also for-
mulated the criterion which quantifies the maximal amount
of initial noise for which the qubits remain asymptotically
entangled. This allows us to prove the conjectures of the
paper �13� within the assumed class of initial states.

We have found that in the case when R2 is a finite quan-
tum environment, the dynamics of entanglement can oscil-
late. This nonmonotonic behavior appears to be linked to the
non-Markovian character of the dynamics and does not vio-
late “the principle” of nonincreasing entanglement under
LOCC. In the short-time regime this oscillating behavior is
modified by the infinite thermostat R1 that is responsible for
a reduction of negativity. However, asymptotically A1�t�
→const and the negativity becomes a periodic function of
time. Both the amplitude and the period of these oscillations
are very sensitive to the initial state of the quantum environ-
ment R2. The difference between the minimal and the maxi-

mal values of negativity can be of a few orders of magnitude.
It means that qubits evolve quasiperiodically between en-
tangled and almost disentangled states. One cannot use this
method to control the entanglement during its evolution.
However, both studied cases �one-mode and two-mode con-
trol� are found promising to design a priori a desired se-
quence of times, when qubits are almost disentangled. It can
be achieved by means of an appropriate choice of the initial
state of the quantum environment. This, in turn, could help to
work out a method to manipulate the degree of entanglement
at certain time intervals. It additionally provides useful infor-
mation for experimental design of quantum-information pro-
tocols.

The model considered in this work is �one of� the sim-
plest. However, its features are generic for a large class of
quantum open systems. We have limited our studies to the
Heisenberg-Weyl dynamical symmetry due to its potential
implementations by means of optical devices such as, e.g.,
quantum cavities. There is no fundamental obstruction to
study other symmetries. An example, the rotational SU�2�
symmetry, is briefly discussed in the Appendix. Generaliza-
tion of the discussion to the noncompact groups �e.g., to
SU�1,1� related to the squeezed states� with nonequivalent
representation series �18� is a natural open problem.

The approach presented in this paper can be extended to
describe systems composed of more than two qubits. The
dynamics given in Eq. �6� becomes then generated by a finite
product of dephasing generators. However, in such a case
one faces a highly nontrivial problem of the many-body en-
tanglement where the results depend strongly on the chosen
entanglement measure �34�. Such an extension would be use-
ful for the solid-state quantum-information processing.
Moreover, it would also be of importance to extend the
model toward more realistic decoherence scenarios.
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APPENDIX: ENVIRONMENT R2 WITH ROTATIONAL
SYMMETRY

Here, we present one more example of the controlling
system R2 which has a rotational dynamical symmetry, i.e.,
the case when the H� can be expressed in terms of genera-
tors of the SU�2� group. Such systems, usually exemplified
by quantum tops, have a well-defined classical limit �17�.
Instead of the monotonicity, we briefly discuss the effect of
classicization of R2 on the entanglement.

Let us assume that the qubit S2 is coupled to a particle of
angular momentum j in the presence of an external magnetic
field B�t�. The control is performed by the quantum system
of the Hamiltonian

H��t� = −
1

j
B��t�J � 1 �A1�

with the magnetic field

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

ln
(N

)

t

A2(t)=1

|0z>+|z0>, z=1
|0z>+|z0>, z=3
|0z>+|z0>, z=5

FIG. 5. �Color online� The same as in Fig. 3 for selected values
of z of the initially entangled coherent state �37� of the controlling
quantum system.
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B��t� = 	�b0ẑ + b1�x̂ cos�t� + ŷ sin�t��
 �A2�

and the angular momentum operator J= �Jx ,Jy ,Jz�. When the
controlling system is initially in its ground state, the negativ-
ity can be expressed in terms of the SU�2� coherent states,

A2�t� = ���−�t���+�t��� , �A3�

where �18�

���t� =
i�1 sin��t�exp�i��0 − 1�t�

2� cos��t� − i�1 − �0�sin��t�
�A4�

with �1=b1 / j, �0= �b0 / j, and �=��1−�0�2+�1
2 /2. In-

creasing j results in dequantization of the top which becomes
classical in the limit j→�. We have performed numerical
calculations, not reproduced here, for time evolution of
qubit-qubit entanglement for the system with fixed b0=b1
=1 and increasing integral j. As a result, we formulate the
conjecture that the classicization of the controlling system
decreases its impact on the entanglement. We expect that the
classical limit of infinite j is equivalent to A2�t�→1 for ar-
bitrary t�0.
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