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Teleportation is a crucial element in fault-tolerant quantum computation and a complete understanding of its
capacity is very important for the practical implementation of optimal fault-tolerant architectures. It is known
that stabilizer codes support a natural set of gates that can be more easily implemented by teleportation than
any other gates. These gates belong to the so-called Ck hierarchy introduced by Gottesman and Chuang �Nature
�London� 402, 390 �1999��. Moreover, a subset of Ck gates, called semi-Clifford operations, can be imple-
mented by an even simpler architecture than the traditional teleportation setup �X. Zhou, D. W. Leung, and I.
L. Chuang, Phys. Rev. A 62, 052316 �2000��. However, the precise set of gates in Ck remains unknown, even
for a fixed number of qubits n, which prevents us from knowing exactly what teleportation is capable of. In this
paper we study the structure of Ck in terms of semi-Clifford operations, which send by conjugation at least one
maximal Abelian subgroup of the n-qubit Pauli group into another one. We show that for n=1,2, all the Ck

gates are semi-Clifford, which is also true for �n=3,k=3�. However, this is no longer true for �n�2,k�3�. To
measure the capability of this teleportation primitive, we introduce a quantity called “teleportation depth,”
which characterizes how many teleportation steps are necessary, on average, to implement a given gate. We
calculate upper bounds for teleportation depth by decomposing gates into both semi-Clifford Ck gates and those
Ck gates beyond semi-Clifford operations, and compare their efficiency.
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I. INTRODUCTION

The discovery of quantum error-correcting codes and the
theory of fault-tolerant quantum computation have greatly
improved the long-term prospects for quantum computing
technology �1,2�. To implement fault-tolerant quantum com-
putation for a given quantum error-correcting code, protocols
for performing fault-tolerant operations are needed. The ba-
sic design principle of a fault-tolerant operation protocol is
that if only one component in the procedure fails, then the
failure causes at most one error in each encoded block of
qubits’ output from the procedure.

The most straightforward protocol is to use transversal
gates whenever possible. A transversal operation has the vir-
tue that an error occurring on the kth qubit in a block can
only ever propagate to the kth qubit of other blocks of the
code, no matter what other sequence of gates we perform
before a complete error-correction procedure �3,4�. Unfortu-
nately, it is widely believed in the quantum information sci-
ence community that there does not exist a quantum error
correcting code, upon which we can perform universal quan-
tum computations using just transversal gates �4�, and re-
cently this belief is proved for a special case when the code
is a stabilizer code �5�.

However, most known quantum codes are stabilizer
codes. We therefore have to resort to other techniques, for
instance, quantum teleportation �6� or state distillation �7�.
The Ck hierarchy is introduced by Gottesman and Chuang to
implement fault-tolerant quantum computation via teleporta-
tion �6�. The starting point is, if we can perform the Pauli
operations and measurements fault tolerantly, we can then
perform all Clifford group operations fault tolerantly by tele-
portation. We can then use a similar technique to boot strap
the way to universal fault-tolerant computation, using tele-

portation, which gives a Ck hierarchy of quantum teleporta-
tion, as defined below.

Definition 1. The sets Ck are defined in a recursive way as
sets of unitary operations U that satisfy

Ck+1 = �U�UC1U† � Ck� , �1�

where C1 is the Pauli group. We call a unitary operation an
n-qubit Ck gate if it belongs to the set Ck and acts nontrivially
on at most n qubits.

Note by definition C2 is the Clifford group, which takes
the Pauli group into itself. And Ck�Ck−1, but Ck for k�3 is
no longer a group.

All the gates in Ck can be performed with the two-bit
teleportation scheme �Fig. 1� in a fault-tolerant manner. Be-
cause, as proved in �4�, it is possible to fault tolerantly pre-
pare the ancilla state ��U

n �, apply the classically controlled
correction operation Rxy�

†, and measure in Bell basis on a
stabilizer code. However, the precise set of gates which form
Ck is unknown, even for a fixed number of qubits. It is dem-

FIG. 1. Two-bit teleportation scheme. “�” denotes an Einstein-
Podolsky-Rosen �EPR� pair, B represents Bell-basis measurement,
and Rxy� =URxyU

†, where Rxy is a Pauli operator. The double wires
carry classical bits and a single wire carries qubits. Any gate in the
Ck hierarchy can be implemented fault tolerantly using this telepo-
ration scheme.
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onstrated in �8� that a subset of Ck gates could be imple-
mented by a different architecture than the standard telepor-
tation, called one-bit teleportation, as shown in Fig. 2. Those
gates adopt the form L1VL2, where V is a diagonal gate in Ck
and L1 ,L2 are two Clifford operations. Gates of this form are
recently studied in literature and are called semi-Clifford op-
erations �9�. In the following we will denote the n-qubit Pauli
group as Pn and a semi-Clifford operation is defined to be a
gate which sends at least one maximal Abelian subgroup of
Pn to another maximal Abelian one under conjugation.

Due to the fact that one-bit teleportation needs only half
the number of ancilla qubits per teleportation than the stan-
dard two-bit teleportation, it is important to understand the
difference of capabilities between one- and two-bit telepor-
tation for the practical implementations of fault-tolerant ar-
chitecture. It is conjectured in �8� that those two capabilities
coincide for �n=2,k=3�, which means that all the C3 gates
for two qubits are semi-Clifford operations.

In this paper, we prove this conjecture for a more general
situation where �n=1,2 , ∀k�, and �n=3,k=3�. We then dis-
prove it for parameters �n�2,k�3� by explicit construction
of counterexamples. We leave open the question for the pa-
rameters �n�2,k=3�, and a more general problem of fully
characterizing the structure of Ck: we conjecture that all gates
in Ck are something we refer to as generalized semi-Clifford
operations, i.e., a natural generalization of the concept of
semi-Clifford operations to the case including classical per-
mutations. Our results about this semi-Clifford operations
versus Ck gates relation can be visualized in Fig. 3.

Just as in the usual circuit model, different gates are
implemented with different levels of complexity using this
teleportation scheme. It is then natural to ask the questions of
how to characterize this concept of gate complexity with

concrete physical quantities, how does this measure based on
teleportation schemes compare with the usual circuit depth,
and what it implies for the practical construction of quantum
computation architecture. To answer these questions, we in-
troduce a quantity as a measure of gate complexity for fault-
tolerant quantum computation based on the Ck hierarchy,
called teleportation depth, which characterizes how many
teleportation steps are necessary, on average, to implement a
given gate. We demonstrate the effect of the existence of
non-semi-Clifford operations in Ck on the estimation of the
upper bound for the teleportation depth, as well as some
quantitative difference between the capabilities of one- and
two-bit teleportation.

The paper is organized as follows: Sec. II gives definition
and basic properties of semi-Clifford operations and gener-
alized semi-Clifford operations; in Sec. III we study the
structure of Ck hierarchy in terms of semi-Clifford and gen-
eralized semi-Clifford operations; Sec. IV is devoted to the
discussion of teleportation depth and how it depends on the
structure of Ck; and with Sec. V, we conclude our paper.

II. SEMI-CLIFFORD OPERATIONS
AND ITS GENERALIZATION

The concept of semi-Clifford operations was first intro-
duced in �9�, to characterize the property of gates transform-
ing Pauli matrices acting on a single qubit. Here we gener-
alize it to the n-qubit case, through the following definition.

Definition 2. An n-qubit unitary operation is called semi-
Clifford if it sends by conjugation at least one maximal Abe-
lian subgroup of Pn to another maximal Abelian subgroup of
Pn. That is, if U is an n-qubit semi-Clifford operation, then
there must exist at least one maximal Abelian subgroup G of
Pn, such that UGU† is another maximal Abelian subgroup of
Pn.

A simple example of the semi-Clifford operation is any
diagonal gate. Denote 	Si� the group generated by a set of
operators �Si�. Then any diagonal gate keeps the group
	Zi�i=1

n � ��1� i� invariant, which is a maximal Abelian sub-
group of Pn. In fact, any semi-Clifford operation can be re-
lated to diagonal gates via some Clifford operations. This
most basic property of a semi-Clifford operation is given by
the following proposition.

Proposition 1. If R is a semi-Clifford operation, then there
exist Clifford operations L1 ,L2 such that L1RL2 is diagonal.

Proof. Zi represents the Pauli Z operation on the ith qubit.
If R is an n-qubit semi-Clifford operation, then there must
exist n-qubit operations L1 ,L2�C2 such that RL2ZiL2

†R†

=L1
†ZiL1 �10�, i.e., L1RL2ZiL2

†R†L1
†=Zi holds for any i

=1. . .n. Therefore, �L1RL2�Zi=Zi�L1RL2�, i.e., the n-qubit
gate L1RL2 is diagonal. �

In other words, semi-Clifford operations are those gates
diagonalizable “up to Clifford multiplications.” Thus the
structure problem of the whole set of semi-Clifford opera-
tions is reduced to that of the diagonal subset within it.

As we shall see later, the notion of semi-Clifford opera-
tions is useful in characterizing some but not all gates in the
Ck hierarchy. More generally, we might also consider those
gates with properties of transforming the span, or in other

FIG. 2. One-bit teleportation scheme. For Z teleportation, A= I,
B=H, D=Z, and E is a CNOT gate with the first qubit as its target.
For X teleportation, A=H, B= I, D=X, and E is a CNOT gate with the
first qubit as its control. All semi-Clifford Ck gates can be imple-
mented fault tolerantly using this scheme.

FIG. 3. Semi-Clifford operations versus Ck gates. A: all gates; B:
generalized semi-Clifford gates; C: semi-Clifford gates; D: Ck gates;
E: C3 gates. C is strictly contained in B and E is strictly contained in
D. The two question marks indicate two open problems we have:
whether D is a subset of B; and whether E is a subset of C.
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words the group algebra over the complex field, of a maxi-
mal Abelian subgroup of Pn.

Definition 3. A generalized semi-Clifford operation on n
qubits is defined to send by conjugation the span of at least
one maximal Abelian subgroup of Pn to the span of another
maximal Abelian subgroup of Pn.

Denote the span of the group 	Si� as C�	Si��. Then in a
more mathematical form we can write the above definition as
follows:

If U is a generalized semi-Clifford operation on n qubits,
then there must exist at least one maximal Abelian subgroup
G= 	gi� of Pn, such that for all s�C�	gi��, UsU†

�C�U	gi�U†�, where UGU† is another maximal Abelian sub-
group of Pn.

A simple example of the generalized semi-Clifford opera-
tion is any classical permutation �which is some permutation
of computational basis states�. A classical permutation keeps
C�	Zi�i=1

n � ��1� i�� invariant, since it maps any diagonal
gate to another diagonal gate. In fact, any generalized semi-
Clifford operation can be related to a classical permutation
via some semi-Clifford operations. This most basic property
of a generalized semi-Clifford operation is given by the fol-
lowing proposition.

Proposition 2. If R is a generalized semi-Clifford opera-
tion, then there exist Clifford operations L1 ,L2 and a classi-
cal permutation operator P such that PL1RL2 is diagonal.

Proof. If R is a generalized semi-Clifford operation, then
there must exist L1 ,L2�C2 such that RL2C�	Zi�i=1

n �L2
†R†

=L1
†
C�	Zi�i=1

n �L1, i.e., L1RL2C�	Zi�i=1
n �L2

†R†L1
†=C�	Zi�i=1

n �.
That is, L1RL2 maps all the diagonal matrices to diagonal
matrices; therefore L1RL2 must be a monomial matrix, i.e.,
there exist a permutation matrix P and a diagonal matrix V,
such that L1RL2= P†V⇒ PL1RL2 is diagonal. �

Note for the single qubit case, i.e., n=1, the concepts of
semi-Clifford operation and generalized semi-Clifford opera-
tion coincide.

III. THE STRUCTURE OF Ck

In this section we study the structure of gates in Ck. To
begin with, we study some basic properties of Ck gates. Then
we give our main results as structure theorems, which state
that all the Ck gates are semi-Clifford when �n=1,2 , ∀ k�
and �n=3,k=3�, but for �n�2,k�3� there are examples of
Ck gates which are non-semi-Clifford. We then discuss the
open question for the parameters �n�2,k=3�, and based on
the constructed counterexamples we conjecture that all Ck
gates are generalized semi-Clifford operations.

It should be noted that the set of n-qubit Ck gates is always
strictly contained in the set of n-qubit Ck+1 gates. In �6�,
explicit examples are given to support this statement. If we
denote as �n−1�U� the n-qubit gate which applies U to the
nth qubit only if the first n−1 qubits are all in the state �1�,
then �n−1(diag�1,e2�/2m

�) is in Cm+n−1 \Cm+n−2.

A. Basic properties

We first state an important property of gates in Ck, which
reduces the problem of characterizing the structure of Ck into

a problem of characterizing a certain subset of gates in Ck.
Proposition 3. If R�Ck, then L1RL2�Ck, where L1 ,L2

�C2, k�2.
Proof. We prove this proposition by induction.
�i� It is obviously true for k=2.
�ii� Assume it is true for k.
�iii� For k+1, R�Ck+1 implies RAR†�Ck, where A�C1.

If we conjugate A by L1RL2, we obtain

L1RL2A�L1RL2�† = L1R�L2AL2
†�R†L1

†. �2�

Since L1 ,L2�C2, L1
† ,L2

† are in C2 also. And because
L2AL2

†�C1, R�L2AL2
†�R†�Ck. According to assumption �ii�,

L1R�L2AL2
†�R†L1

†�Ck. Finally, as we can see from Eq. �2�,
L1RL2�Ck+1. �

According to Proposition 3, in order to characterize the
full structure of Ck, we only need to characterize the structure
of a subset of it which generates the whole set with Clifford
multiplications.

It is known that Ck is not a group for k�2 and its struc-
ture is in general hard to characterize. However, if we denote
all the diagonal gates in Ck as Fk, then we have the follow-
ing:

Proposition 4. Fk is a group. If we can characterize the
group structure of Fk, then the structure of the Ck subset
�L1FkL2� is known to us �L1 ,L2�C2 ,Fk�Fk�. According to
Proposition 1, this is just the set of all semi-Clifford opera-
tions in Ck. In the next section, we will repeatedly use this
fact to gain knowledge about semi-Clifford Ck gates from the
group structure of Fk and for now we will give a brief proof
of the above proposition.

Proof. We prove by induction.
�i� It is of course true for k=2.
�ii� Assume it is true for k, i.e., Fk is a group.
�iii� Then for k+1, note for any Fk+1�Fk+1, Fk+1MFk+1

†

=FkM =MFk�, for nondiagonal M �C1, where Fk ,Fk��Fk.
�a� If Fk+1�Fk+1, then Fk+1

† �Fk+1, since Fk+1
† MFk+1

=Fk
†M =MFk�

†, which is in Fk by assumption �ii�.
�b� If F1k ,F2k�Fk, then F1kF2k�Fk, since F1k−1F2k−1

�Fk−1. �
According to this proposition, all semi-Clifford Ck gates

can be characterized by the group structure of diagonal Ck
gates.

B. Structure theorems

Our main results about the structure of Ck are the follow-
ing three theorems, which state that all the Ck gates are semi-
Clifford when �n=1,2 , ∀ k� and �n=3,k=3�, but it is no
longer true for �n�2,k�3�.

Theorem 1. All gates in Ck are semi-Clifford operations
for �n=1,2 , ∀ k�.

Proof. Here we prove the case of n=2. The proof of the
n=1 case is similar but can also be checked by direct calcu-
lation and lead to a complete classification of all one-qubit Ck
gates according to the group structure of diagonal one-qubit
Ck gates. We give details for the n=1 case in Appendix A.

For n=2, we prove this theorem by induction.
�i� It is obviously true for k=1,2.
�ii� Assume it is true for k.
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�iii� For k+1:
�a� We calculate the set S1= �L1V� for all L1�C2, where

V�Fk. Note by assumption �ii�, S1 gives us all the elements
in Ck up to Clifford conjugation.

�b� Note in general V=diag�ei	 ,ei
 ,ei� ,ei�� for some
angles 	, 
, �, and �. By exhaustive calculation with all
L1�C2 we show that if there exists an element Vs�S1 such
that Vs is trace zero and Hermitian, then V
=diag�e−i1 ,e−i2 ,ei2 ,ei1� for some 1 and 2. Furthermore,
we can again show by exhaustive calculation with all L1
�C2 that the only trace zero and Hermitian Vs�S1 is of the
following form up to Clifford conjugation:

Vs =

0 0 0 e−i1

0 0 e−i2 0

0 ei2 0 0

ei1 0 0 0
� . �3�

�c� We calculate the set S2= �L1VsL1
†� for all L1�C2,

which by assumption �ii� and fact �b� gives all the elements
in Ck which are trace zero and Hermitian.

�d� We show that for any two-qubit gate U such that
UVsU

†=Z1 and �UP2U†��S2, there exist L1 ,L2�C2 such
that L1UL2 is diagonal. This can be started from studying the
eigenvectors of Vs, which can be chosen of the form

U =
1
�2


1 0 0 1

0 1 1 0

0 ei2 − ei2 0

ei1 0 0 − ei1
� , �4�

and carefully considering the possible phase of each eigen-
vector and the possible superposition of the eigenvectors due
to the degeneracy of the eigenvalues, similar to the process
shown in Appendix A. �

Theorem 2. All gates in Ck are semi-Clifford operations
for �n=3,k=3�.

Proof. We prove this theorem exhaustively using the fol-
lowing proposition:

Proposition 5. An n-qubit Ck gate U is semi-Clifford if
and only if the group �UPnU†��Pn contains a maximally
Abelian subgroup of Pn.

Proof. Suppose U=L1VL2, then UPnU†

=L1VL2PnL1
†V†L1

†=L1VPnV†L1
†� �L1ZiL1

†�i=1
n .

On the contrary, if �UPnU†��Pn contains a maximal
Abelian subgroup of Pn, then there must exist L1 ,L2�C2
such that UL1

†ZiL1U†=L2ZiL2
†, i.e., L2

†UL1
†ZiL1U†L2=Zi holds

for any i=1. . .n. Therefore, �L2
†UL1

†�Zi=Zi�L2
†UL1

†�, ⇒L2
†UL1

†

is diagonal. If we denote this diagonal gate as V, L2
†UL1

†

=V⇒U=L1VL2.
Therefore, by exhaustive study with the subgroups of the

three-qubit Clifford group which are isomorphic to P3, we
complete the proof of this theorem. More detailed analysis
about this is given in Appendix B. The calculation is done
using GAP �11�. �

Theorem 3. Not all gates in Ck are semi-Clifford opera-
tions for �n�2,k�3�.

Proof. Actually we only need to prove this theorem for
n=3, k=4 then it naturally holds for all the other parameters

of �n�2,k�3�. However, we would like to explicitly con-
struct examples for all �n=3,k�4�. Define Wk as in Fig. 4.

Proposition 6. The gate

Wk = T�c1,c2,t3� � V3,k �5�

is a Ck+1 operation but not a semi-Clifford operation, where
T�c1 ,c2 , t3� is a Toffoli gate with the first and second qubits
as its control and the third qubit as its target, and V3,k is
single qubit operator diag(1,exp�i� /2k−1�) on the third qubit.

Proof. To prove that Wk is in Ck+1:
�i� When k=2, Vk=diag�1, i��C2. W2 is of the form LR,

where L is a Clifford operation and R is the Toffoli gate.
According to Proposition 3, W2 and the Toffoli gate are both
in C3.

�ii� For k�2, direct calculation shows that �WkZiWk
†��C2,

i=1,2 ,3. WkX1Wk
†�Ck, WkX2Wk

†�Ck, WkX3Wk
†�Ck−1. The

images of Xi’s under the conjugation of Wk can all be written
in the form WkXiWk

†=XiFki=Fki� Xi, where Fk1, Fk1� , Fk2, Fk2�
are diagonal gates in Ck and Fk3, and Fk3� are diagonal single
qubit gates in Ck−1 acting on the third qubit.

The image of the whole three-qubit Pauli group
�WkP3Wk

†� is generated by the six elements shown above. As
multiplication by Clifford gates preserves the Ck hierarchy,
we only need to check the images of Pauli operations which
are composed of two or more Xi’s and see if their images are
still in Ck.

This is obviously true considering the special form of
�WkXiWk

†�. Multiplication of any two of them is of the form
WkXiXjWk

†=XiFkiFkj� Xj. This is in Ck as the diagonal Ck gates
form a group. Furthermore, multiplication of all of them
takes the form WkX1X2X3Wk

†=X1FkiFkj� X2Fk3� X3. As Fk3� is a
single qubit operation on the third qubit, WkX1X2X3Wk

†

=X1FkiFkj� Fk3� X2X3. This is again a Ck gate because of the
group structure of diagonal Ck gates.

Therefore, we have checked explicitly that Wk�Ck+1.
To prove that Wk is not semi-Clifford, we can exhaus-

tively calculate �WkP3Wk
†� and find its intersection with P3.

The fact that �WkP3Wk
†��P3 does not contain a maximally

Abelian subgroup of P3 implies that Wk is not semi-Clifford,
due to Proposition 5.

With this example we have directly proved Theorem 3.�

C. Open problems

Let us try to understand more about the structure theo-
rems we have in the previous section.

First recall from �8� that the controlled-Hadamard gate
�1�H�, which is a C3 gate, is explicitly shown to be semi-

FIG. 4. A non-Clifford-diagonalizable Ck gate Wk. Vk

=diag�1,ei�/2k−1
�.
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Clifford. We can also view this from the perspective of
Proposition 5, by noting that �1�H�Z1�1�H�†=Z1,
�1�H�Y2�1�H�†=Z1 � −Y2, which means that the maximal
Abelian subgroup of the Pauli group generated by 	Z1 ,Y2�
� 	�1, � i� is in the image of �1�H�. However, if we con-
sider W3 from the perspective of Proposition 5, we obtain
W3Z1W3

†=Z1, W3Z2W3
†=Z2, W3Z3W3

†=�1�Z2� � Z3. Note
THAT this does not give us a maximal Abelian subgroup of
the Pauli group 	Z1 ,Z2 ,Z3�� 	�1, � i�, due to the effect of
�1�Z2� caused by conjugating through the Toffoli gate. This
intuitively explains why Theorem 3 could be true, but no
counterexample to Theorem 2 exists.

Note that Wk is actually a generalized semi-Clifford op-
eration, which is apparent from its form. Also, the construc-
tion of the series of gates Wk, as well as their extensions to
n�3 qubits, cannot give any non-semi-Clifford C3 gate. We
then have the following conjectures on the open problem of
the structure of Ck hierarchy in general.

Conjecture 1. All gates in C3 are semi-Clifford operations.
Conjecture 2. All gates in Ck are generalized semi-Clifford

operations.

IV. THE TELEPORTATION DEPTH

Teleportation, as a computational primitive, is a crucial
element providing universal quantum computation to fault-
tolerant schemes based on stabilizer codes. However, not all
gates are of equal complexity in this scheme. To actually
incorporate this technique in the construction of practical
computational architecture, it is useful to know which gates
are easier to implement and which are harder, so that we
could achieve optimal efficiency in performing a computa-
tional task. In the circuit model of quantum computation, we
face the same problem and in that case “circuit depth” was
introduced �12� to characterize the number of simple one-
and two-qubit gates needed to implement an operation.
While this provides a good measure of gate complexity, it
does not take into consideration of fault tolerance. It is inter-
esting to have measures quantifying fault-tolerant gate com-
plexity to be compared with “circuit depth” to give us a
better understanding of the computational tasks at hand.

Based on the Ck hierarchy introduced in �6� and the
knowledge of its structure gained in the previous section, we
define a measure of gate complexity for the teleportation
protocol, called teleportation depth, which characterizes how
many teleportation steps are necessary, on average, to imple-
ment a given gate. Since any teleportation unavoidably
causes randomness, we need to figure out a certain point to
start with, i.e., we should assume in advance that some kind
of gates can be performed fault tolerantly. We know that a
fault-tolerant protocol is usually associated with some quan-
tum error-correcting codes. Self-dual Calderbank-Shor-
Steane codes, such as the seven-qubit Steane code, admit all
gates in the Clifford group to be transversal �10�. In such a
situation, we only need to teleport the gate outside the Clif-
ford group, and in the following, we will assume this as a
starting point. The advantage of doing this, in practice, is that
due to Proposition 1, we have the freedom of preparing the
ancilla states up to some Clifford multiplications.

A. Definition of the teleportation depth

With the standard two-bit teleportation scheme �Fig. 1� in
mind, it is easy to see that all gates in the Ck hierarchy can be
teleported fault tolerantly as a whole in a recursive manner.
Suppose U is an n-qubit Ck gate. The ancilla state can be
fault tolerantly prepared and all the elements in the telepor-
tation circuit of U are in C2 and can be performed fault tol-
erantly, except the classically controlled operation U1=Rxy�
=URxyU

†, where Rxy is an operator in C1 which depends on
the �random� Bell-basis measurement outcomes xy. How-
ever, as U is in Ck, U1 is in general a Ck−1 operation and can
be implemented again by teleportation. In this way, after
each teleportation step, a Ck gate is mapped to another gate
one level lower. This recursive procedure terminates when Ui
is in C2.

Based on the above picture we give a more formal defi-
nition of teleportation, which characterizes its randomness
nature.

Definition 4. The teleportation map f takes an n-qubit op-
erator A to a set of operators via the following manner:

f : A → �APj1
A†� j1=1

4n+1
, �6�

where Pi are elements of the n-qubit Pauli group Pn.
Note that

f � f : A → ��APj1
A†�Pj2

�APj1
A†�†� j1,j2=1

4n+1
�7�

and

f � f � f : A

→ ���APj1
A†�Pj2

�APj1
A†�†�Pj3

���APj1
A†�Pj2

� �APj1
A†�†�†� j1,j2,j3=1

4n+1
, . . . . �8�

Each element in the image of the map f �m on A is associ-
ated with a set

S = �j1, j2, . . . , jm� . �9�

Denote fS
�m�A� as the element in the image of the map f �m

on A associated with the set S. Each element in the image
occurs with equal probability.

Definition 5. fS
�m�A� terminates if fS

�m�A��C2.
If fS

�m1�A� terminates, then fS�
�m2�A� terminates for any m2

�m1, and S�= �j1 , j2 , . . . , jm1
, . . . , jm2

�. Therefore, for each
fS

�m�A� that terminates, there must exist a set Smin with the
minimal size such that fSmin

��Smin��A� terminates, where Smin

= �j1 , j2 , . . . , jm�� �m�= �Smin � �. In our following discussions,
we will only consider sets S which are minimal in this sense.

This mapping procedure works directly on Ck gates. If W
is an n-qubit Ck gate, then there is no need to decompose it
into consecutive applications of several other gates and we
say we can “direct teleport” W. W is in Ck iff ∀ S,
fS

��k−2��A��C2, and ∃S�, such that fS�
��k−3��A��C2.

Among all Ck gates, the set of semi-Clifford operations
have the special property that they can be teleported with
only half the ancilla resources as in a standard teleportation
scheme. This “one-bit teleportation scheme” is illustrated in
Fig. 2. This scheme also complies with the mapping descrip-
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tion given above. Instead of Bell basis measurement, ran-
domness in a one-bit teleportation scheme comes from single
qubit measurement and Pj belongs to a maximal Abelian
subgroup of the whole n-qubit Pauli group in general.

To teleport an arbitrary n-qubit gate A, we can first de-
compose A into the Ck hierarchy, A=A1A2 . . .Ar, where Ai
�Cki

, because we only know how to teleport Ck gates fault
tolerantly. We call this procedure “decomposition of A into
C�.” Suppose that to teleport each gate Ai, mi maps are
needed on average, with the average taken over all possible
sets S= �j1 , j2 , . . . , jm�. Then the teleportation depth of A is
defined as follows.

Definition 6. The teleportation depth of a gate A, denoted
as T, is the minimal sum of all mi—the average number of
teleportation steps needed to implement each component
gate of A—where the minimum is taken over all possible
decompositions of A into C�.

Due to Definition 6, in order to calculate the teleportation
depth of a given gate A, one needs to find all possible de-
compositions of A into C� gates and calculate the corre-
sponding depth, then minimize over all of them. This is gen-
erally intractable, but one may expect to upper bound the
depth with some particular decomposition of A into C� gates.

Let us first consider the case of an n-qubit Ck gate.
Definition 7. T�n ,k� is the teleportation depth of an

n-qubit Ck gate.
As such a gate can be teleported directly, T�n ,k� is upper

bounded by the average number of steps needed in this direct
teleportation scheme to terminate the teleportation proce-
dure.

T�n,k� �
1

N


S

�S� , �10�

where the summation is over all possible �minimal� sets S
and N is the number of such sets.

However, when k→�, it is not obvious that the above
summation will converge. We will show that this is true.
Then for an arbitrary gate A, by decomposing A into a finite
series of Ck gates, we can see that the teleportation depth of
A turns out to be finite. Then we do not actually require the
procedure to terminate within a finite number of steps.

Different teleportation schemes, for example, one-bit and
two-bit teleportation, give different upper bounds on telepor-
tation depth for a certain circuit. While for some circuits one
scheme is obviously more efficient than others, the compari-
son among different schemes in other cases may not be so
straightforward and may depend sensitively on various pa-
rameters in the circuit. In the following sections, we study
such dependence and present surprising results beyond our
usual expectation with examples from important quantum
circuits.

B. Teleportation depth of semi-Clifford Ck gates

We first calculate explicitly an upper bound for the tele-
portation depth of semi-Clifford n-qubit Ck gates. We know
from �8� that this kind of gate can be teleported directly with
the architecture of one-bit teleporation and we denote the
upper bound calculated with this “one-bit” “direct” telepor-

tation procedure as T1�n ,k�. For a general n-qubit gate, if it
is possible to decompose it into a series of semi-Clifford Ck
operations, the upper bound of teleportation depth obtained
by teleporting each part separately using the one-bit telepor-
tation scheme is in general denoted as T1.

Definition 8. T1 is the average total number of teleporta-
tion steps needed to teleport separately each semi-Clifford Ck
component of a quantum circuit using the one-bit teleporta-
tion scheme, if such a decomposition is possible. More spe-
cifically, T1�n ,k� is the average number of teleportation steps
needed to teleport an n-qubit semi-Clifford Ck gate directly
�i.e., without decomposition� using the one-bit teleportation
scheme.

Apparently we have T�n ,k��T1�n ,k� in general.
The probability that the teleportation process terminates

immediately after one teleportation step equals the percent-
age weight of a maximal Abelian subgroup in the whole
Pauli group, which is 1

2n for an n-qubit Pauli group. Now
each teleportation step may have two possible endings: �i�
with probability p= 1

2n , �UPnU†��Pn and the process termi-
nates; �ii� with probability 1− p, �UPnU†� is a general
n-qubit Ck−1 gate and the process goes on. The upper bound
of the teleportation depth calculated with this process is then

T1�n,k� = p
s=1

k−3

s�1 − p�s−1 + �k − 2��1 − p�k−3

= 2n�1 − �1 −
1

2n�k−2� . �11�

It is clearly seen from Eq. �11� that T1�n ,k� converges to
2n when k→�, which means that T�n ,k� is in general
bounded. For instance, when n=2, Eq. �11� tells us that
T�2,k��T1�2,k�=4�1− �3 /4�k−2�. The behavior of T1�2,k� is
shown in Fig. 5. However, since T1�2,k�=4�1− �3 /4�k−2�
�4�1− �1 /2�k−2�=2T1�1,k�, we find that teleporting two
single qubit semi-Clifford Ck gates together using the one-bit
teleportation scheme needs fewer teleportation steps than to
teleport each of them separately.

Since 1− 1
2n �1, T1�n ,k� quickly reaches 2n as k grows.

Therefore, generally, the upper bound of the teleportation
depth of a Ck gate given by “direct teleportation” is not de-

5 10 15 20
1

1.5

2

2.5

3

3.5

4

k

T
1(

2,
k)

FIG. 5. �Color online� The behavior of T1�2,k�
=4�1− �3 /4�k−2�.
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termined by k, but by the number of qubits n it actually acts
on. Moreover, since T1�n , � �=2n, i.e., the upper bound of
teleportation depth increases exponentially with n, in gen-
eral, when n ,k are large, it is better to decompose an n-qubit
Ck gate into some one- and two-qubit gates to obtain a lower
upper bound. However, if k� P�n�, where P�n� is a polyno-
mial in n, then T1�n ,k� scales as P�n�.

Now we give two examples as applications of the above
upper bounds, through which we obtain some idea about the
order of teleportation depth in comparison with the usual
circuit depth.

1. Teleportation depth of the n-qubit quantum
Fourier transform

The first example is the n-qubit quantum Fourier trans-
form �QFT� circuit, as shown in Fig. 6. Rk denotes the uni-
tary transformation Rk=diag�1,e2�i/2k

�. The circuit depth of
n-qubit QFT goes as n2 and we will soon find that the tele-
portation depth of this circuit is of the same order.

Each block of gates within a single dashed box �Had-
amard plus controlled z rotations on the kth qubit� is a semi-
Clifford �n−k+1�-qubit Cn−k+2 gate, k=1, . . . ,n−1, and can
be teleported directly using the one-bit scheme. Therefore
the whole circuit can be teleported piece by piece by one-bit
teleportation. Note that

T�n,k = n + 1� � T1�n,k = n + 1� �12�

=2n�1 − �1 −
1

2n�n−1� �13�

�n − 1 �14�

for large n. Actually, numerical data shows that even when n
is small, T1�n ,k=n+1��n−1 is almost also true.

Therefore, the teleportation depth of the n-qubit QFT is
upper bounded by


j=2

n

T�j,k = j + 1� � 
j=2

n

T1�j,k = j + 1� � 
j=1

n

�j − 1� �15�

=
1

2
n�n − 1� � O�n2� . �16�

Numerical calculation show that  j=2
n T1�j ,k= j+1� is almost

1
2n�n−1�−1.

Note that the probability for the teleportation process to
terminate is 1 for teleporting an n-qubit Ck=n+1 gate n−1=k

−2 times. This means that the upper bound we obtained for
this block teleportation scheme of QFT is just slightly lower
than naively assuming that we need k−2 teleportation steps
to teleport a Ck gate. The reason we do not benefit from the
average is that for QFT, k is generally comparable with n.

2. Uniformly controlled rotation

Now we consider another example �Fig. 7�, the uniformly
controlled rotations, which are widely used in analyzing the
circuit complexity of an arbitrary n-qubit quantum gate
�13,14�. This circuit in general needs 2n+2−4n−4 CNOT gates
and 2n+2−5 one-qubit elementary rotations to implement. For
complexity analysis of this circuit see, for example, �13�.

The teleportation depth of this rotation is in general upper
bounded by 2n. However, if each �n−1�-qubit-controlled gate
is in Ck, we might expect to do better. For instance, when k
=cn, for any positive constant n, the teleportation depth
scales as cn, i.e., linear in n. Moreover, if k� P�n�, where
P�n� is a polynomial in n, then the teleportation depth scales
as P�n�.

C. Teleportation depth beyond semi-Clifford Ck gates

Now recall our series of examples of non-semi-Clifford Ck
gates given in Fig. 4. We know that if Vk�Ck, then Wk
�Ck+1. And the group WkP3Wk

† does not contain a maximally
Abelian subgroup of P3, i.e., Wk�Ck+1 is not directly one-bit
teleportable.

Therefore, we know that there are some Wk gates in the Ck
hierarchy which can only be teleported directly by the stan-
dard two-bit teleportation scheme. Using this scheme, we
can calculate another upper bound for the teleportation
depth, which we denote as T2�n ,k�.

Definition 9. T2 is the average total number of teleporta-
tion steps needed to teleport separately each Ck component of
a quantum circuit using the two-bit teleportation scheme, if

FIG. 6. Circuit for n-qubit
quantum Fourier transform.

FIG. 7. Definition of the n−1-fold uniformly controlled rotation
of a qubit about the axis a� .
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such a decomposition is possible. More specifically, T2�n ,k�
is the average number of teleportation steps needed to tele-
port an n-qubit Ck gate directly �i.e., without decomposition�
using the two-bit teleportation scheme.

For a general n-qubit Ck gate, T2�n ,k� can be calculated
by replacing p with 1

4n in Eq. �11�,

T2�n,k� = p
s=1

k−3

s�1 − p�s−1 + �k − 2��1 − p�k−3

= 4n�1 − �1 −
1

4n�k−2� , �17�

which then converges to 4n when k→�.
One may guess that in general to teleport Wk directly us-

ing the two-bit scheme will give a lower bound for the tele-
portation depth than to teleport the Toffoli gate and Vk

=diag�1,ei�/2k−1
� separately using the one-bit scheme. Sur-

prisingly, this is not generally true.
When Vk�C3, this is indeed true. Teleporting Wk directly

gives a bound of T2�3,4�=1.875, which is less than
T1�3,4�=2, i.e., the bound given by teleporting the Toffoli
gate and Vk separately with the one-bit scheme. However,
when k→�, teleporting Wk directly gives a bound of
T2�3,4�=5.25, which is greater than T1�3,4�=3, i.e., the
bound given by teleporting the Toffoli gate and Vk separately.
This means that there exists a critical value k that determines
which way is more efficient for teleporting Wk, directly or
separately.

Note that if Vk�Ck, we also have Wk
†�Ck+1. Calculating

the bounds of teleportation depth for Wk
† shows a similar

behavior as that of Wk, however of a slightly different value.
For instance, when Vk�C3, teleporting Wk

† directly gives a
bound of 1.5, which is less than 2, the bound given by tele-
porting separately. However, when k→�, teleporting Wk

† di-
rectly gives a bound of 5.5, but teleporting separately gives
only a bound of 3.

Up to now, our discussion is entirely based on the Ck
hierarchy. To summarize the capacity of Ck for fault-tolerant
quantum computation and provide a basis for comparison
with non-Ck schemes discussed below, we introduce another
notion of Tk.

Definition 10. Tk is the minimum number of total telepor-
tation steps needed to teleport separately each Ck component

of a quantum circuit using either one-bit or two-bit telepor-
tation scheme.

Tk is defined in a way that represents the maximum ca-
pacity of teleportation based on Ck hierarchy. In general T1
�Tk, T2�Tk. To understand exactly how they compare for a
given circuit, a full characterization of the structure of Ck is
necessary. Here, based on the structure theorems given in
Sec. III, we gave a simple example where T1 or T2 could be
strictly larger than Tk. The next question to ask is then
whether we can go beyond Ck and this will be discussed in
the following section.

D. Teleportation beyond Ck

In the definition of teleportation depth, we require that A
be decomposed into a set of C� gates. This is due to the fact
that C� are the only gates that we know so far how to per-
form fault tolerantly by teleportation. In general, if we do not
require the decomposition to be in C�, then we might obtain
a better upper bound on teleportation depth than the one
defined previously, i.e., there might exist an upper bound T*

of teleportation depth that is strictly less than Tk. We give
two such examples below. We leave open the problem of
how to implement teleportations fault tolerantly for a general
n-qubit gate.

Example 1. For a general one-qubit gate U, we know that
U can be decomposed into three C� gates, each of which has
T1�2. Hence through the decomposition we can bound its
total teleportation depth by 6. However, to teleport U directly
without decomposition via two-bit teleportation gives a
bound of T2�41=4 less than Tk.

Example 2. Consider a classical reversible circuit given in
Fig. 8. We denote this series of three Toffoli gates as Rc3.
This gate Rc3 is not in Ck hierarchy as can be shown below.

Suppose that Rc3�Ck is at certain level of the hierarchy;
Rc3X1Rc3

† must be a gate in Ck−1. Calculating explicitly as in
Fig. 9 we have that the non-Clifford part of the right-hand
side of the equation is a series of two Toffoli gates, and we
denote it as Rc2. Due to Proposition 3, Rc2 is also in Ck−1.

As shown in Fig. 10, conjugating X1 by Rc2 results in
LRc2

† , where L is a Clifford operation. However, by exchang-
ing the second and third qubits in Fig. 10, we find that
Rc2

† X1Rc2=L�Rc2, i.e., conjugating X1 by Rc2
† gives back Rc2.

Therefore, Rc2 cannot be in the Ck hierarchy and we can
conclude that Rc3 is not a Ck gate either. �

If we leave aside the problem of how to teleport gates
beyond Ck fault tolerantly, we can teleport Rc3 directly and

FIG. 8. The Rc3 gate—three Toffoli gates in series.

FIG. 9. Conjugating X1 by Rc3.

FIG. 10. Conjugating X1 by Rc2.

ZENG, CHEN, AND CHUANG PHYSICAL REVIEW A 77, 042313 �2008�

042313-8



obtain an upper bound of 2.75, which is less than Tk=3, the
bound given by teleporting the three Toffoli gates separately.

V. CONCLUSION AND DISCUSSION

In this paper we address the following questions: What is
the capacity of the teleportation scheme in practical imple-
mentation of fault-tolerant quantum computation and what is
the most efficient way to make use of the teleportation pro-
tocol? To answer these questions we first notice that one-bit
and two-bit teleportation schemes require different resources
to implement and are of different capabilities. To understand
what kind of gates can be teleported fault tolerantly with
these two schemes, respectively, we study the structure of Ck
hierarchy and its relationship with semi-Clifford operations.
We show that for n=1,2, all the Ck gates are semi-Clifford
operations, which is also true for �n=3,k=3�. However, this
is no longer true for parameters �n�2,k�3�. Based on the
counterexamples we constructed for �n=3,k�3�, we conjec-
ture that all C3 gates are semi-Clifford and all Ck gates are
generalized semi-Clifford.

Such an understanding of the Ck structure has great impli-
cations on the optimal design of fault-tolerant architectures.
While all Ck gates can be teleported fault tolerantly, the semi-
Clifford subset of it requires less resources to implement
than others. To quantify this notion of gate complexity in
fault-tolerant quantum computation based on the Ck hierar-
chy, we introduce a measure called the teleportation depth T,
which characterizes how many teleportation steps are neces-
sary, on average, to implement a given gate. Using different
teleportation schemes, we can give different upper bounds on
T, for example, T1, T2, and Tk. The general assumption was
that T1=T2=Tk=T. However, we showed in this work that,
surprisingly, for certain series of gates T1 could be strictly
greater than Tk and Tk could also be strictly greater than T.

The ultimate understanding of the structure of Ck will pro-
vide a clearer clue on how to teleport circuits most effi-
ciently. To achieve this goal, some results from other
branches of mathematics might be helpful. It is noted that the
Barnes-Wall lattices, whose isometry group is a subgroup of
index 2 in the real Clifford group, have been extensively
studied and recently their involutions have been classified
�15�. It is our hope that the C3 structure might be further
understood once we have a better understanding of the Clif-
ford group.

For n=1, we fully characterize the structure of Ck by fur-
ther study on the diagonal gates in Ck, which form a group. It
is interesting to note some evidence that Ck gates might be
the only non-Clifford gates which could be transversally
implemented on a stabilizer code �5�. We also fully charac-
terize the structure of C3 for n=3, but this seems not directly
related to allowable transversal non-Clifford gates on stabi-
lizer codes. It is shown that those transversal non-Clifford
gates are allowed only if they are generalized semi-Clifford
�16�; therefore, we might expect some generalized semi-
Clifford Ck gates transversally implementable on some stabi-
lizer codes. We believe such kind of exploration on the rela-
tionship between transversally implementable gates and
teleportable gates will shed some light on further understand-

ing of practical implementation of fault-tolerant architec-
tures.
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APPENDIX A: SINGLE QUBIT Ck GATES

1. Single qubit gates with eigenvalues ±1

In this section we discuss what kind of single qubit uni-
tary gates could have eigenvalues �1 apart from an overall
phase factor, i.e., if �+ ,�− denote the two eigenvalues of a
single qubit unitary U, then what is the condition under
which �++�−=0? This information is useful since only the
unitary of this kind can be transformed into elements in the
Pauli group under conjugation, i.e., there exists a unitary
operator R, such that RAR†=eiU, where A�C1. We will see
that this kind of unitary has a very restricted form which is
given by the following proposition.

Proposition 7. The single qubit unitary gates which have
eigenvalues �1 apart from an overall phase factor could
only be of the following two forms:

�1��� = � 0 1

ei� 0
�

or

�2��,�� = � cos � sin �ei�

sin �e−i� − cos �
� .

Proof. We begin to prove this proposition by writing
down a general form of single qubit unitary gate as the fol-
lowing:

� = � cos �ei sin �ei�

sin �e−i� − cos �e−i� . �A1�

Direct calculation gives

�� =
1

2
cos �ei −

1

2
cos �e−i

�
1

2
e−i�cos �2e4i − 2 cos �2e2i + cos �2 + 4e2i�1/2.

�A2�

Therefore �++�−=0 gives

cos � sin  = 0. �A3�

If cos �=0, the unitary must adopt the form of �1���; if
sin =0, then apart from an overall phase, we can simply
choose =0, which leads to the form of �2�� ,��. �

Note that �1 could be viewed as a special situation of �2
for the case cos �=0. However, we list �1 separately for
future convenience.
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2. Gate series associated with �1(�) and �2(� ,�)

In this section we investigate the gate series associated
with �1��� and �2�� ,��. It is obvious that if �1���,
�2�� ,���Ck, then the unitary U��� whose columns are the
eigenvectors of �1��� or �2�� ,�� might be in Ck+1, given that
U���ZU���†=�1���.

For �1���, the two normalized eigenvectors can be chosen
as

��1����+ =
1
�2

��0� + ei�/2�1�� ,

��1����− =
1
�2

��0� − ei�/2�1�� . �A4�

We now want a unitary whose columns are eigenvectors of
�1��� apart from an overall factor of each eigenvector, i.e.,

U��,	� = „ei	��1����+, ��1����−… =
1
�2
� ei	 1

ei	ei�/2 − ei�/2� .

�A5�

If U�� ,	��Ck+1, then U�=L1U�� ,	�L2 is also in Ck+1. What
is important for us is to find U�, which is either of the form
�1 or �2, then from its eigenvectors we can generate gates in
Ck+1. It is noticed that if we choose 	=0, then

U��,0� = ���1����+, ��1����−� =
1
�2
� 1 1

ei�/2 − ei�/2�
�A6�

and

U��,0�HX = � 0 1

ei�/2 0
� = �1��/2� . �A7�

Later we will show that for all the allowed values of 	, there
exist L1 ,L2�C2, such that L1U�� ,0�L2=U�� ,	�, so it is suf-
ficient to consider the case of 	=0.

Therefore we obtain a set of unitary given by

Vk��� = �1��/2k�; �A8�

if �1����C2 then �1�� /2k� could be in Ck. We already know
that ��� /2� is in C2; then we have

Vk = �1�2�/2k� �A9�

in Ck.
Note that

SkX = Vk, �A10�

and we already know that Sk�Ck. Therefore by deriving Vk
we obtain nothing new due to Proposition 1.

Now we come to the �2�� ,�� case. Similarly, we begin
from the two normalized eigenvectors of �2�� ,��, which can
be chosen as

��2��,���+ =
1
�2

�cos
�

2
�0� + sin

�

2
e−i��1�� ,

��2��,���− =
1
�2

�sin
�

2
ei��0� − cos

�

2
�1�� . �A11�

We now construct a unitary whose columns are eigenvectors
of �2��� apart from an overall factor of each eigenvector,
i.e.,

U��,�,
� = „ei
��2��,���+, ��2��,���−…

=
1
�2� ei
 cos

�

2
sin

�

2
ei�

ei
 sin
�

2
e−i� − cos

�

2
� . �A12�

If U�� ,� ,
��Ck+1, then U�=L1U�� ,� ,
�L2 is also in Ck+1.
It is noticed that if we choose 
=0, then

U��,�,0� = „��2��,���+, ��2��,���−…

=
1
�2� cos

�

2
sin

�

2
ei�

sin
�

2
e−i� − cos

�

2
� . �A13�

Also later we will show that for all the allowed values of 	,
there exist L1 ,L2�C2, such that L1U�� ,� ,0�L2=U�� ,� ,
�,
so it is sufficient to consider the case of 
=0.

Therefore we obtain a set of unitary given by

Wk��,�� = �2��/2k−1,��; �A14�

if �2�� ,���C2 then �1�� /2k−1 ,�� could be in Ck. We already
know that only when �2�� /4,0� is in C2, then we have

Wk = �2��/2k,0� �A15�

in Ck.
Note that for other possible values of � and �, it is

straightforward to show that there exist L1 ,L2�C2, such that
L1�2�� /4,0�L2=�2�� ,��, so it is sufficient to consider the
case of �=� /4 and �=0.

Note that

HPWkPX � Sk, �A16�

where � means up to an overall phase, and we already know
that Sk�Ck. Therefore again by deriving Wk we obtain noth-
ing new due to Proposition 1.

3. Gates in Ck \Ck−1 for single qubit

We conclude this section by presenting the following
proposition, which gives the structure of gates in Ck \Ck−1 for
a single qubit.

Proposition 8. The set Ck \Ck−1 for a single qubit is given
by

L1SkL2 � Ck, �A17�

where L1 ,L2�C2, k�2.
Proof. We almost reached the proof of this proposition by

considering the results in Appendixes A 1 and A 2. The only
problems left we need to clarify are the following.
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�1� What happens when Ck is diagonal, which cannot be
directly obtained by considering the eigenvectors of Vk−1 and
Wk−1. The answer is already known, since Sk is the only
diagonal gate in Ck \Ck−1.

�2� The values of 	 and 
. This can be answered by
noting the fact that the equations

UZU† = G1,

UXU† = G2, �A18�

with G1 ,G2 known totally determines U up to an overall
phase. Let us start from

U��,	� =
1
�2
� ei	 1

ei	ei�/2 − ei�/2� . �A19�

Note that U�� ,	�ZU�� ,	�†��1�2�� and

U��,	�XU��,	�† =
1
�2
� cos 	 sin 	e−i2�

sin 	ei2� − cos 	
� .

�A20�

�

APPENDIX B: DETAILED ANALYSIS ABOUT C3

1. Notations

Let us first define some notations.
Recall Pn is the Pauli group for n qubit with order 4n+1.

Now let P̃n be the quotient group Pn /Z�Pn� with order 4n.
Let C2�n� denote the Clifford group for n qubit. Define the

quotient group C̃2�n�=C2�n� /Z(C2�n�). Since P̃n is a normal

subgroup of C̃2�n�, we could further define a quotient group

Ĉ2�n�= C̃2�n� / P̃n�Sp�2n ,2�. Note that Sp�2,2��S3 and
Sp�4,2��S6. Denote the set K�n�= �A �A�Sp�2n ,2� ,A2

=1�, i.e., K�n� are the set of all involutions of the symplectic
group Sp�2n ,2�.

Denote the order of maximal Abelian subgroup of K�n�
by a�n�. Hence a�1�=2, a�2�=8, a�n��2

n�n+1�
2 �17�.

Define the set M�n�={U �U� C̃2�n� \ P̃n	 �I�}.
Now recall the definition for Ck�n�:

Ck�n� = �U�UPnU† � Ck−1�n�� . �B1�

For any n-qubit U�Ck�n�, the group GU�n� is defined by

GU�n�=UP̃nU†.

Define the set Rk�n�= �U �U� C̃k�n� ,W†=W ,Tr�W�=0�.
And the set Fk�n�= �U �U� C̃k�n� , U is diagonal�.
Denote the group generated by �Ai�i=1

n by 	�Ai�i=1
n � for any

set of operators Ai.

2. Some facts for calculating C3 structure

We state some simple facts about C3 structure which we
use to verify Theorem 3 numerically.

Fact 1. We could always choose GU�n��Rk−1�n� for any
U in Ck�n�, because we can always choose Hermitian and

trace zero elements in Pn as the representative element for

each element in P̃n.
Fact 2. If all n−1-qubit Ck gates are semi-Clifford, and if

GU�n�� 	�Bi�i=1
n �, where Bi� P̃n and Bi�Bj, BiBj�Bk for i

� j�k, then GU�n�� P̃n�KZ�n�, because if 	�Bi�i=1
n �

�KZ�n�, then U�n� could be reduced to U�1� � U�n−1� via
Clifford operation.

Fact 3. If A ,B�M�n��R2�n�, and A ,B correspond to

the same element in Ĉ2�n�, then AB�Pn, because if A ,B

correspond to the same element in Ĉ2�n�, then there exists

	� P̃n such that A=	B.
Fact 4. For any n-qubit C3 gate U, if GU�n�
 	�Zi�i=1

m �,
where m�n, then the quotient group GU�n� / 	�Zi�i=1

m �
�K�n� is Abelian, because elements of GU�n�� C̃2�n� are
either commuting or anticommuting, the corresponding ele-

ments in Ĉ2�n� should commute.

3. n=1 case

Since Sp�2,2��S3, a�1�=2�4. Hence GU�2�� P̃2 con-

tains at least one element in P̃1, i.e., GU�1�� P̃1
KZ�1�
holds for any single qubit C3 gate.

Furthermore, it is noted that any U�Rk�1� can be param-
etrized by

U�,�� = � cos  sin ei�

sin e−i� − cos 
� ,

and starting from elements in R2�1� and calculating their
eigenvectors, we understand that � can only be of the values
0 , �

2 ,� , 3�
2 for cos �0. This directly leads to the fact that

all C3�1� gates are semi-Clifford.

4. n=2 case

Since Sp�4,2��S6, a�2�=8�16. Hence GU�2�� P̃2 con-

tains at least one element in P̃2. However, this is not enough

to claim GU�2�� P̃2 holds for any two-qubit U. We need to

examine the structure of GU�2�� P̃2 in more detail.
Considering the maximal Abelian subgroup in K�2� of

order 8, and its corresponding elements in C̃2�n�, direct cal-
culation shows it does not contain a subgroup of structure

P̃1�Z2. Hence we need to further consider Abelian sub-
group in K�2� of order 4. Due to Lemma 3, we result in

GU�2�� P̃2
KZ�2� holds for any two-qubit C3 gate.
Then using Lemma 1 and Lemma 2, we could calculate

C4�2� numerically. The result then shows that all the C3�2�
gates are semi-Clifford.

5. n=3 case

Since a�3�=64, and direct calculation of this group shows
that not all the elements could be in R2�3�, hence

GU�3�� P̃3 contains at least one element in P̃3. Again, this is

not enough to claim GU�3�� P̃3
KZ�3� holds for any three-
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qubit U. We need to examine the structure of GU�3�� P̃3 in

more detail to dig out two more elements in P̃3.
Using Facts 1, 2, and 3, we could calculate C3�3� numeri-

cally. The result shows that the conjecture is also true in this
case. See the next section for more about C3�3�.

6. Diagonal gates in C3

Define a diagonal matrix A by Ajk=� jke
ij, where j

=1, . . . ,N, N=2n, for the n-qubit case.
We now prove the following:
Lemma 1. If A�C3, if we choose A11=1, then Ajj

=eimj�/4 for any j�1, where mj are some integers.
Proof. We first prove for j=N. Note that we choose A11

=1 to cancel out the overall phase of A. Denote A�
=X�nAX�nA†, and A�=X�nA�X�nA�†. Note that A�, A� are

also diagonal. Since A�C3, A� must be in Pauli apart from
an overall phase. And we also have A11� =e2iN, ANN� =e−2iN.

Hence we must have
A11�

ANN�
=e4iN = �1, i.e., =

mN�

4 for some
integer mN.

For j�N, there always exists a Clifford group operation
which keeps �j� invariant but maps �1�↔ �N+1− j�. Hence
the above procedure applies to any j�N. �

Note that the similar idea applies to the diagonal Ck gates,
i.e., if A�Ck, if we choose A11=1, Ajj =eimj�/2k−1

for any j
�1, where mj are some integers.

Now we consider some concrete gates:
Proposition 9. For n=3, the three-qubit diagonal C3 gates

are given by a group generated by the � /8 gate, control-
phase gate, and control-control-Z gate.

Proof. The proof is directly given by numerical calcula-
tion, based on Lemma 1. �
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