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The mixing time of a discrete-time quantum walk on the hypercube is considered. The mean probability
distribution of a Markov chain on a hypercube is known to mix to a uniform distribution in time O�n log n�.
We show that the mean probability distribution of a discrete-time quantum walk on a hypercube mixes to a
�generally nonuniform� distribution ��x� in time O�n�, and the stationary distribution is determined by the
initial state of the walk. An explicit expression for ��x� is derived for the particular case of a symmetric walk.
These results are consistent with those obtained previously for a continuous-time quantum walk. The effect of
decoherence due to randomly breaking links between connected sites in the hypercube is also considered. We
find that the probability distribution mixes to the uniform distribution as expected. However, the mixing time
has a minimum at a critical decoherence rate p�0.1. A similar effect was previously reported for a quantum
walk on an N-cycle with decoherence from repeated measurements of position. A controlled amount of deco-
herence helps in obtaining—and preserving—a uniform distribution over the 2n sites of the hypercube in the
shortest possible time.
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I. INTRODUCTION

Quantum walks �QWs� are quantum versions of Markov
chains in which coherent superpositions play a key role �1�.
Both the continuous-time �CTQW� and the discrete-time
�DTQW� versions of QWs �2,3� have been used as a basis for
quantum algorithms that outperform their classical counter-
parts �4–8�. Some of them are based on a QW on the hyper-
cube �9�, which has received considerable attention after it
was shown that the mean time required to traverse the hy-
percube between two opposite vertices �hitting time� is ex-
ponentially faster than its classical counterpart �10,11�. In
this work we consider the mixing properties of a DTQW in
the hypercube, both in the coherent case and in the presence
of decoherence from randomly broken links.

The probability distribution of a classical Markov chain in
a hypercube mixes to the uniform distribution in time
O�n log n�, where n is the dimension of the hypercube. In the
quantum case, the probability distribution results from a uni-
tary process and so it cannot converge to a stationary distri-
bution. Aharonov et al. have shown that the time-averaged

distribution, defined in the discrete-time case by P̄�x ,T�
� 1

T�t=0
T−1P�x , t�, does converge to a limiting distribution �12�.

One may sample from this distribution by selecting t uni-
formly in �0,T−1�, running the QW for t steps, and then
measuring the position of the walker. The time it takes for
the average distribution to be �-close to this limiting distri-

bution is known as the mixing time M� �we shall later pro-
vide formal definitions�. Aharonov et al. give an upper bound
for the mixing time of QWs on generic graphs. For a hyper-
cube driven by a Grover coin, this bound is O� n3/2

� �. Our
numerical simulations indicate a mixing time of O�n /��,
which is better than the classical mixing time. Moore and
Russell have considered mixing times with respect to a uni-
form distribution in both the DTQW and CTQW on hyper-
cubes �9�. In the case of the CTQW they found that the
average limiting distribution is not uniform and that one can
always find ��0 such that no mixing time to the uniform
distribution exists. Since the CTQW can be obtained from a
DTQW by a suitable limiting process �13�, we could expect
the limiting distribution in the DTQW to be also nonuniform.

In this work, we show that the asymptotic distribution of
a DTQW on the hypercube is not uniform, obtain an explicit
expression for it, and characterize the average mixing time to
this distribution. The instantaneous mixing time is a useful
notion that captures the first instant in which the position
distribution is �-close to a reference distribution. It has been
shown that, for both kinds of QW on a hypercube, the in-
stantaneous mixing time to the uniform distribution depends
linearly on the dimension n �9�. This represents an improve-
ment over the corresponding classical walk, from O�n log n�
to O�n�. We confirm this result for the DTQW and show that
��0 can be found such that an instantaneous mixing time to
the stationary �nonuniform� distribution does not exist.

All these properties are affected by decoherence. The im-
pact of decoherence on QWs has been investigated mostly in
one- or two-dimensional systems using repeated measure-
ments �14,15� or topological noise from broken links
�16–18�. Kendon and Tregenna have presented early numeri-
cal results showing the impact of repeated measurements on
the hitting time �starting at node x, it is the mean time re-
quired to reach the opposite node x̄� of a DTQW in a hyper-
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cube �15�. In the presence of decoherence the natural expec-
tation is that the position distribution of a QW in an
n-hypercube mixes to a uniform distribution essentially as in
the classical case. Recently, the effect of repeated measure-
ments on a QW on the hypercube has been considered ana-
lytically by Alagic and Russell using superoperator tech-
niques for the case of the CTQW �19�. They found that, for
weak decoherence rates, both the hitting time and the mixing
time �to the uniform distribution� remain linear in n but if the
rate of measurements is beyond a model-dependent thresh-
old, the classical result is re-obtained, i.e., the CTQW distri-
bution mixes to uniform in time O�n log n�. We consider
here the effect on the probability distribution of the DTQW
of randomly breaking links in the network. This mechanism
involves no measurements and is an example of unitary noise
�20�.

Decoherence is usually regarded as an obstacle to quan-
tum computing as it destroys the entanglement and superpo-
sitions required by a quantum processor. However, it has
been argued that a controlled amount of decoherence might
be useful to obtain particular probability distributions. For
instance, weak decoherence may be used to generate a quasi-
uniform distribution in the QW on a line �15�. Maloyer and
Tregenna have shown that the mixing time of a DTQW on an
N-cycle may be reduced by allowing for some decoherence
from repeated measurements, provided that those measure-
ments affect the position of the QW �21�. We find a similar
effect in the case of the hypercube with decoherence from
broken links. There is a critical decoherence rate for which
the mixing time has a minimum. This result provides another
example in which decoherence, from topological randomness
and in the absence of measurements, enhances a useful quan-
tum feature, namely, fast mixing times.

This paper is organized as follows. In Sec. II we consider
the coherent QW on the hypercube, briefly reviewing some
ideas from �9� and then deriving its asymptotic distribution,
which is nonuniform. In Sec. III, we give the unitary evolu-
tion rule in the presence of broken links and present numeri-
cal results for the mixing time as a function of the decoher-
ence rate. In Sec. IV we summarize our main results and
present our conclusions.

II. COHERENT QW ON THE HYPERCUBE

A coined quantum walk in an n-dimensional hypercube
has a Hilbert space HC � HP, where HC is the n-dimensional
coin subspace and HP the 2n-dimensional position subspace.
A basis for HC is the set �	j
� for 0� j�n−1 and HP is
spanned by the set �	x
� with 0�x�2n−1. A generic state of
the discrete quantum walker in the hypercube is

	��t�
 = �
j=0

n−1

�
x=0

2n−1

� j,x�t�	j,x
 , �1�

where 	j ,x
= 	j
 � 	x
. The evolution operator for one step of
the walk is

U = S � �C � I� , �2�

where C=�i,jCij	i
�j	 is a unitary coin operation in HC, I is
the identity in HP, and S is the shift operator defined by

S = �
j=0

n

�
x=0

2n−1

	j,x � ej
�j,x	 . �3�

Here, x � ej is the bitwise binary sum between the
n-component binary vectors x= �xn−1 , . . . ,x1 ,x0� and ej, a
null vector except for a single 1 entry in the jth component.
We will use both representations �decimal and binary� as
needed. They may easily be recognized by the context in
which they are placed.

Applying the evolution operator on state �1�, we obtain
the map for the components of the wave vector,

�i,x�t + 1� = �
j=0

n−1

Cij� j,x�ei
�t� . �4�

The analysis of the problem is simplified in Fourier space.
Since the hypercube is a Cayley graph of Z2

n, the most suit-
able transform is the Fourier transform on Z2

n, spanned by the
2n kets

	k
 �
1

2n �
x=0

2n−1

�− 1�k·x	x
, k � �0,2n − 1� ,

with bitwise product k ·x�� j=0
n−1xjkj. The transformed ampli-

tudes are �̃i,k= 1
2n �x=0

2n−1�−1�k·x�i,x. The evolution operator is
diagonal in k space and acts nontrivially in the coin sub-
space. The operator Uk, which acts on 	�k
��	k	�

=�i=0

n−1�̃i,k	i
, has matrix elements given by Uk�i , j�
= �−1�kiCij.

From this point on, let us particularize to the
n-dimensional Grover coin C�i , j��2 /n−�ij, which obeys
the permutation symmetry of the hypercube and is, among
the operators of this kind, the one farthest from the identity
�9�. We shall now describe the eigenproblem of Uk. Its ei-
genvalues depend only on n and on the Hamming weight of
k, defined as 	k	�� j=0

n−1kj. However, its eigenvectors 	�i�k�
,
for i=1, . . . ,n, depend on k.

For Hamming weights 	k	=0 �or 	k	=n�, a set of n−1 de-
generate eigenvectors with eigenvalue 	=1 �or −1� is
	�i�0�
= �	0
− 	i
� /2, for i� �1,n−1�. The remaining eigen-
vector, with eigenvalue 	=−1 �or 1�, is the uniform super-
position 	�n�0�
= 1

n
� j=0

n−1	j
.
In the case where the Hamming weight takes values 0


 	k	
n, there are n− 	k	−1 degenerate eigenvectors with ei-
genvalue −1, given by 	�i�k�
= �	0
− 	i
� /2 with i� �1,n
− 	k	−1� and 	k	−1 degenerate eigenvectors with eigenvalue
1, given by 	�i�k�
= �	n− 	k	
− 	i+1
� /2 for i� �n− 	k	 ,n−2�.
The two remaining eigenvalues turn out to be the most rel-
evant. They can be expressed as e�i�k, with �k defined by

cos �k � 1 −
2	k	
n

. �5�

The corresponding conjugate eigenvectors are 	�n�k�

=� j=0

n−1 j�k�	j
 and 	�n−1�k�
=� j=0
n−1 j

��k�	j
 with components
 j�k� given by

MARQUEZINO et al. PHYSICAL REVIEW A 77, 042312 �2008�

042312-2



 j�k� =
1
2
� kj

	k	
− i

1 − kj

n − 	k	
� . �6�

In the last equation i=−1. This set of normalized eigenvec-
tors, summarized in Table I, forms a nonorthogonal basis.

A. Limiting distribution

Let P�x , t� be the probability to find the walker on the
vertex x of the hypercube at time t. As mentioned in the
Introduction, this probability depends on the initial condition
and, as is typical of unitary evolutions, it does not converge
to a stationary distribution. However, the time-averaged dis-

tribution P̄�x ,T�� 1
T�t=0

T−1P�x , t� always converges as T→�
�12�. We define

��x� � lim
T→�

P̄�x,T� �7�

as the stationary distribution, and consider the problem of
determining it for a QW in a hypercube of dimension n. The
initial state vector is localized at vertex x=0 and uniformly
distributed in the coin subspace,

	��0�
 =
1
n

�
j=1

n

	j
 � 	x = 0
 . �8�

This choice respects the permutation symmetry of the hyper-
cube. The initial state is expressed in terms of the eigenvec-
tors of Uk as

	��0�
 =
1

n2n �
k=0

2n−1

�
i=1

n

ai�k�	�i�k�
 � 	k
 ,

where the coefficients are sums of components of the eigen-
vectors ai�k�� 1

n2n � j=0
n−1�	�i�k�	j
. These sums are zero unless

i=n−1 or i=n, so only these two eigenstates contribute,

	��0�
 = �
k=0

2n−1

�an−1�k�	�n−1�k�
 + an�k�	�n�k�
� � 	k
 .

The relevant coefficients are an�k�= �	k	+ in− 	k	� /n2n+1

and an−1�k�=an
��k� when 	k	� �1,n−1�. If 	k	=0 or 	k	=n,

then an=1 /2n+1 and an−1=0. The state of the walker at time
t is

	��t�
 = �
k=0

2n−1

�an−1�k�e−i�kt	�n−1�k�
 + an�k�ei�kt	�n�k�
� � 	k
 .

�9�

The probability of finding the walker at time t at vertex x is
P�x , t�=� j=0

n−1	�	j ,x	��t�
	2. This quantity can be evaluated in
the k representation,

P�x,t� =
1

2n �
k,k�=0

2n−1

�− 1��k�k��·x�
j=0

n−1

�	j,k	��t�
�	��t�	k�, j


=
1

2n �
k,k�=0

2n−1

�− 1��k�k��·x�an−1�k�an−1
� �k��

��	�n�k�	�n�k��
e−i��k−�k��t + an�k�an
��k��

��	�n−1�k�	�n−1�k��
ei��k−�k��t + an�k�an−1
� �k��

��	�n−1�k�	�n�k��
ei��k+�k��t + an−1�k�an
��k��

��	�n�k�	�n−1�k��
e−i��k+�k��t� .

Our goal is to calculate the asymptotic probability distribu-
tion ��x� defined by Eq. �7�. The first two terms contribute
only if 	k	= 	k�	, since limT→�

1
T�t=0

T−1e�i��k−�k��t=�	k	,	k�	 and
there is no contribution from the last two terms because
limT→��t=0

T−1e�i��k+�k��t=0. Thus, the asymptotic distribution
can be evaluated from

TABLE I. Eigenvalues and eigenstates of Uk. The quantities �k and  j�k� are defined in Eqs. �5� and �6�,
respectively.

Hamming weight Eigenvalue Eigenstate 	�i�k�
 Index i Multiplicity

	k	=0 −1 �	0
− 	i
� /2 i� �1,n−1� n−1

1

�
j=0

n−1

	j
/n
n 1

1� 	k	�n−1 −1 �	0
− 	i
� /2 i� �1,n− 	k	−1� n− 	k	−1

1 �	n− 	k	
− 	i+1
� /2 i� �n− 	k	 ,n−2� 	k	−1

ei�k

�
j=0

n−1

 j�k�	j

n 1

e−i�k

�
j=0

n−1

 j
��k�	j


n−1 1

	k	=n 1 �	0
− 	i
� /2 i� �1,n−1� n−1

−1

�
j=0

n−1

	j
/n
n 1
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��x� =
1

2n �
k,k�=0

2n−1

�	k	,	k�	�− 1��k�k��·x�	an−1�k�	2�	�n�k�	�n�k��


+ 	an�k�	2�	�n−1�k�	�n−1�k��
� . �10�

The overlap between the nontrivial eigenvectors is

�	�n�k�	�n�k��
 = �	�n−1�k�	�n−1�k��
 =
n�k · k�� + 	k	�n − 2	k	�

2	k	�n − 	k	�
.

�11�

After using 	an�k�	2= 	an−1�k�	2=1 /2n+1, we obtain the sta-
tionary distribution

��x� =
2

22n +
1

22n �
k,k�=0

�	k	=	k�	�0,n�

2n−1

�− 1��k�k��·x

��n�k · k�� + 	k	�n − 2	k	�
2	k	�n − 	k	� � . �12�

The above expression is not efficient to calculate ��x�. It is
possible to simplify it by noting that ��x� depends only on
	x	=� j=0

n−1xj. After some algebra we eventually obtain

��x� =
2

22n +
1

22n �
i=1

n−1

�
j=0

i

�
l=0

	x	

�
m=0

	x	

�
p=0

m

�− 1�l� 	x	 − m

l − m + p
��m

p
�

�� n − 	x	 − i + m

i − j − l + m − p
��i − m

j − p
��n − 	x	

i − m
�

��	x	
m
� i�n − 2i� + nj

2i�n − i�
, �13�

where the combinatorial coefficients are � n
m �= n!

�n−m�!m! for n
�m�0 and � n

m �=0 otherwise. This expression is equivalent
to Eq. �12� and, for some values of x, it yields simple results,
such as

��0� =
1

4n +
��n + 1

2 �

2�n��n�
. �14�

It should also be noted that the identity ��x�=��2n−1−x�
also helps in the evaluation of ��x�. Clearly, the asymptotic

distribution for P̄�x , t� is not uniform for the initial condition
of Eq. �8�. Note, for example, that for n sufficiently large,
Eq. �14� leads to ��0��1 /2��2n+1��2−n. We have per-
formed numerical implementations which confirm the pre-
diction of Eq. �13�. This distribution is shown for hypercubes
of several dimensions in Fig. 1. The maximum of the distri-
bution occurs at the initial site x0=0 and at x̄0=2n−1. Notice
that ��x� takes only 1+ �n /2� different values, which corre-
spond to sites with Hamming distances 0 ,1 ,2 , . . . , �n /2� from
either the initial site x0 or its opposite site x̄0.

Further insight may be obtained if one considers the prob-
ability p�	x	� of finding the walker at long times at a Ham-
ming distance 	x	 from the initial site. There are � n

	x	 � sites
with Hamming weight 	x	, and this probability is simply

p�	x	� = � n

	x	 ���x� . �15�

The stationary distribution ��x� depends only on 	x	 and may
be evaluated efficiently from Eq. �13�. The probability p�	x	�
takes at most 1+ �n /2� different values, as ��x� does. In Fig.
2 p�	x	� is compared with the corresponding probability for a
uniform distribution over the hypercube, in which case the
most likely situation would be to find the walker with a
Hamming distance �n /2 from the starting site. Instead, we
see that the most probable situation is to find it near the
marked sites x0 , x̄0, with 	x	�0 or 	x	�n.

In summary, the fact that the QW starts localized at x0
=0 marks both x0 and x̄0 as special sites, and persistent in-
terference effects give rise to a nonuniform stationary distri-
bution over sites. The probability of finding the particle with
a given Hamming distance varies much more slowly than for
a uniform distribution over sites. We should remark that the
results obtained for the asymptotic distribution are dependent
on the initial condition. For instance, since the uniform su-
perposition of coin and position eigenstates,

1
n2n � j=0

n−1�x=0
2n−1	j ,x
, is an eigenstate of U with eigenvalue 1,

0 1 2 3 4 5 6 7
0

0.1

0.2

π(
x)

n = 3

0 5 10 15
0

0.1

0.2
n = 4

0 10 20 30 40 50 60
x

0

0.1

0.2

π(
x)

n = 6

0 50 100 150 200 250
x

0

0.05

0.1 n = 8

FIG. 1. �Color online� Limiting distributions for QWs in hyper-
cubes with n=3,4 ,6 ,8 obtained from Eq. �13� with the initial con-
dition �8�. As a reference we show the uniform distribution as a
dashed horizontal line.

0 5 10 15 20 25
Hamming distance, |x|

0

0.05

0.1

0.15

0.2

p(
|x

|)

uniform
stationary

FIG. 2. Asymptotic probability of finding the walker with a
Hamming distance 	x	 from the initial site, given by Eq. �15�, for
n=25. The binomial distribution �1 /2n�� n

	x	 �, which corresponds to a
uniform position distribution of the walker, is shown for
comparison.
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for this particular initial condition the distribution remains
uniform.

B. Mixing time of a coherent evolution

In this section we consider the mixing time for a coherent
evolution. The rate at which the average probability distribu-
tion of a QW approaches its asymptotic distribution is cap-
tured by the following definition �12�,

Definition 1. The average mixing time M� of a quantum
Markov chain to a reference distribution � is

M� = min�	T	 ∀ t � T, �P̄t − �� � �� ,

where �A−B���x	A�x�−B�x�	 is the total variation distance
between the two distributions.

An alternative definition captures the first instant in which
the walk is �-close to the reference distribution �.

Definition 2. The instantaneous mixing time I� of a quan-
tum Markov chain is

I� = min�	t	�Pt − �� � �� .

Both mixing times depend on the initial condition of the QW.
The left panel of Fig. 3 shows the time dependence of the

variation distance of the average distribution from the sta-
tionary distribution, Eq. �12�. For long times, the variation
distance decays approximately as �1 / t while the corre-

sponding distance from the uniform distribution remains es-
sentially constant.

For a quantum walk in a generic graph with arbitrary
initial condition, an upper bound for the total variation dis-
tance to the asymptotic distribution ��x� was derived by
Aharonov et al. �12�,

�P̄�x,T� − ��x�� �
�

T�
�1 + ln�n2n−1�� .

This bound is expressed in terms of the minimum separation
� between distinct eigenvalues of U. For a hypercube of
dimension n driven by a Grover coin, this minimum separa-
tion is �=min	ei�k −1	=2 /n. Thus, for large n, the average
mixing time M� is bounded by O� n3/2

� �. The right panel of Fig.
3 shows the linear dependence of the average mixing time on
the dimension n and the threshold �, for the initial state given
by Eq. �8�. For sufficiently large dimension, it scales as n /�,
which is consistent with this bound.

The instantaneous mixing time I�, the first time for which
the position distribution P�x , t� is �-close to a given distribu-
tion, must be calculated considering the appropriate parity of
each step of the walk. In the left panel of Fig. 4 we show the
total variation distance of the instantaneous distribution to
the stationary distribution ��x�, given by Eq. �13�, as a func-
tion of t /n, for several values of n. Note that the local
minima do not approach zero as t increases. Hence, for �
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FIG. 3. Left: Total variation distance from the average distribution at time t to both the uniform and the stationary distributions, for a
coherent QW moving on a hypercube of dimension n=8. Axes are logarithmic in the larger plot and linear in the inset. Right: Mixing time
as a function of the dimension n for several thresholds �.
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�0.3 and fixed n, there is no �-instantaneous mixing time. In
the right panel of Fig. 4 we show the instantaneous mixing
time as a function of the dimension n of the hypercube.
There are large oscillations in I� for small � and the depen-
dence on n is clearly nonlinear.

Moore and Russell �9� explore the instantaneous mixing
time to the uniform distribution with appropriate parity. This
is a useful notion that captures the first instant in which the
distribution of the QW is �-close to uniform. In Fig. 5 we
show this �-instantaneous mixing time as a function of the
dimension n of the hypercube, for several thresholds. It
scales linearly with n with a slope close to � /4. As reported
in �9�—and confirmed by our numerical calculations—for
t /n=� /4, the position distribution of the QW on the
n-hypercube is close to uniform. However, the variation dis-
tance to the stationary distribution ��x� does not have this
property, as shown in the left panel of Fig. 4.

III. DECOHERENCE AND MIXING TIMES

Let us now consider the effects of decoherence on the
stationary distribution and on the average mixing time of the
QW on a hypercube. As a source of decoherence we consider
topological noise which randomly opens links between con-
nected sites of the hypercube. The effects of this broken-link
noise model have been previously considered for a QW on a
line �16,17� and on a plane �18�. The broken-link noise is an
example of “unitary noise” �20� which may affect the dy-
namics in a different way from that resulting from perform-
ing coin or position partial measurements with probability p.
This type of noise is characterized by a sequence of uncor-
related unitary operations applied on an initial state,

	��t�
 = UtUt−1 ¯ U1	��0�
 , �16�

and no measurements are performed during the evolution.
Each operator Ui, for i=1, . . . , t, is of the form of Eq. �2�,
with a modified shift operator S�, which accounts for the
current state of the network, i.e., which links are broken at
time step i.

The generalization of the shift operator should preserve
unitarity. We take as a starting point the shift operator de-
fined in Eq. �2�,

S = �
j=0

n−1

�
x=0

2n−1

	x � ej
�x	 � 	j
�j	 , �17�

where ej, a binary n-component vector with 	ej	=1, labels the
n spatial directions in the hypercube. The simplest way to
generalize S to include the possibility of broken links is to
define site-dependent, n-component binary vectors

ej��x� = ej��x � ej�

� �ej if link at site x in direction j is closed,

0 if link at site x in direction j is open.
�

�18�

Then, the modified shift operator is simply

S� � �
j=0

n−1

�
x=0

2n−1

	x � ej��x�
�x	 � 	j
�j	 . �19�

If at site x the link in direction j is broken, 	x � ej�
�x	
= 	x
�x � ej	= 	x
�x	, and no probability flux is transferred
across the broken link. The modified shift operator S� is uni-
tary for any number of broken links. The evolution proceeds
as follows. At each time step, the topology of the hypercube
is defined, opening each link with probability p and setting
the vectors ej��x� according to Eq. �18�. Then S� · �I � C� is
applied to 	��t�
 to generate the state at time t+1. Note that
in this model the state of the network at time t+1 is uncor-
related with the previous state at t.

In the presence of decoherence, the stationary distribution
in the n-hypercube is independent of the initial conditions. In
Fig. 6 we show the evolution of the total variation distance to
�a� the uniform distribution and �b� the stationary distribution
of the coherent case, Eq. �12�. It is clear that the introduction
of even weak decoherence causes the asymptotic distribution
to become uniform in a characteristic time �1 / p. After this
time, the total variation distance to the uniform distribution
decays according to an inverse power law that is independent
of the decoherence rate p. For weak decoherence rates, the
average probability distribution remains close to that of the
coherent case for a time of order p−1/2, as shown in Fig. 6�b�.

It is also apparent from Fig. 6 that the case p=0.1 goes
faster to the uniform distribution than the other cases shown,
for both smaller and larger values of p. In fact, when the
decoherence rate is reduced or increased around this critical
value, the convergence rate to the uniform distribution be-
comes slower. The fact that a critical decoherence rate pc
minimizes the mixing time has been previously reported by
Kendon and Tregenna �15� in the context of a decoherent
QW in an N-cycle. The dependence of the mixing time of the
decoherent QW on the hypercube on the decoherence rate or,
equivalently, the probability p of broken links is shown in
the left panel of Fig. 7. A minimum can be identified near
pc�0.1, which corresponds to a decoherence rate that may
provide a faster mixing time in the hypercube. The critical
value appears to be independent of, or, at most, weakly de-
pendent on, the dimension of the hypercube. This conclusion
is similar to the one obtained by Kendon and Tregenna �15�
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FIG. 5. Instantaneous mixing time to the uniform distribution as
a function of the dimension n.
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for the N-cycle with repeated measurements, although we
have employed here a different kind of decoherence on a
very different network.

In the right panel of Fig. 7, we show the dependence on
the dimension of the average mixing time to the uniform
distribution for different decoherence levels. The linear mix-
ing time to the stationary distribution, Eq. �13�, of the coher-
ent case is also shown �curve with circles�. The decoherent
mixing times increase with dimension at a rate which is ap-
proximately n7/3, i.e., slightly faster than quadratic, so that
the mixing times with broken links are larger than the coher-
ent mixing time for all dimensions. Note that the data in Fig.
7 also confirm that the walk with p�0.1 mixes faster than
the walks with other decoherence rates.

IV. DISCUSSION

In this paper the mixing properties of a discrete-time
quantum walk on the n-dimensional hypercube have been
considered in detail. The effect of decoherence from broken
links—a specific kind of unitary noise which involves no
measurements—on the mixing properties of the walk has
also been investigated.

The stationary distribution for the coherent quantum walk
on the n-hypercube driven by a Grover coin has been found

analytically, for the particular case of a symmetric initial
condition. It is not the uniform distribution. However, the
stationary distribution in this case is such that all Hamming
weights are roughly equiprobable. It has also been noted that
this distribution is dependent on the initial condition.

According to our numerical simulations, the mixing time
M� on the n-hypercube increases as O�n /��. We have shown
this fact to be consistent with a general result of Aharonov et
al. �12�, which, when particularized for the n-dimensional
hypercube, provides an upper bound of O�n3/2 /��.

The total variation distance to the uniform distribution
shows a local minimum for t= �

4 n, as reported by Moore and
Russell �9�, but a similar behavior with respect to the station-
ary distribution has not been observed. We have also found
that the instantaneous mixing time to the stationary distribu-
tion, when it exists, has a nonlinear dependence on the di-
mension of the hypercube. These results reconcile the
discrete-time quantum walk with the continuous-time quan-
tum walk on the hypercube. The average distributions of
both walks on the n-hypercube fail to converge to the uni-
form distribution, but both are uniform or �-close to uniform
at certain times �t= �

4 n�.
Decoherence, even at low rates, causes the stationary dis-

tribution to be the uniform distribution. The decay of the
total variational distance takes place after a characteristic
time 1 / p and follows an inverse power law independent of p.
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FIG. 6. Evolution of the total variation distance of the average distribution to �a� the uniform distribution U=2−n and �b� the stationary
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For the case of broken-link unitary noise, which involves no
measurements, an optimal decay rate for which the mixing
time is a minimum has been found. In the mixing time as a
function of dimension, the same optimal decay rate has been
found to provide a faster convergence in the decoherent case.
A similar effect has been reported by Kendon and Tregenna
�15� in the N-cycle with decoherence from frequent partial
measurements.

In future work we are interested in generalizing these re-
sults in two ways: �i� finding the stationary distributions in-
duced by arbitrary initial coins and �ii� considering different
coin operations, especially the Fourier coin.
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