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Quantum discord, as introduced by Olliver and Zurek �Phys. Rev. Lett. 88, 017901 �2001��, is a measure of
the discrepancy between two natural yet different quantum analogs of the classical mutual information. This
notion characterizes and quantifies quantumness of correlations in bipartite states from a measurement per-
spective, and is fundamentally different from the various entanglement measures in the entanglement vs
separability paradigm. The phenomenon of nonzero quantum discord is a manifestation of quantum correla-
tions due to noncommutativity rather than due to entanglement, and has interesting and significant applications
in revealing the advantage of certain quantum tasks. We will evaluate analytically the quantum discord for a
large family of two-qubit states, and make a comparative study of the relationships between classical and
quantum correlations in terms of the quantum discord. We furthermore compare the quantum discord with the
entanglement of formation, and illustrate that the latter may be larger than the former, although for separable
states, the entanglement of formation always vanishes and thus is less than the quantum discord.
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I. INTRODUCTION

A generic bipartite quantum state �, mathematically rep-
resented by a density operator, is a hybrid object with both
classical and quantum characteristics. It can encode classical
as well as quantum correlations by means of superposition,
entanglement, and mixing. How to distinguish these two
kinds of correlations is of basic importance and interest in
quantum information theory.

To address the above issue, one usually works in the
widely used entanglement vs separability dichotomy sce-
nario first formalized by Werner �1�. Numerous investiga-
tions exist concerning the detection, quantification, and ap-
plications of entanglement along this line �2–4�. However,
entanglement is not the only aspect of quantum correlations,
and it is found that there are tasks in which some quantum
correlations other than entanglement are responsible for the
quantum advantage. For instance, there are “quantum nonlo-
cality without entanglement” �5–7� and quantum speedup
with separable states �8–11�. Therefore, it is desirable to in-
vestigate quantum correlations from another perspective.

An appealing and significant approach different from the
entanglement vs separability scenario is taken by Olliver and
Zurek �12�. The idea is to take advantage of the observation
that in pursuing quantum analogs of classical notions,
equivalent classical expressions often lead to different quan-
tum analogs due to noncommutativity of operators which
represent quantum states and observables, and this difference
can be exploited to characterize and quantify the “quantum-
ness” of an object. In particular, Olliver and Zurek defined a
quantity, called the quantum discord, as the difference of two
natural quantum extensions of the classical mutual informa-
tion, and exhibited its applications in revealing quantum as-
pect of correlations in bipartite states including separable
ones. The quantum discord is further used by Zurek in ana-
lyzing Maxwell’s demons �13�. A closely related and impor-

tant quantity has also been introduced by Henderson and
Vedral from a different perspective �14�. Other similar quan-
tities with the same spirit have been extensively studied by
Horodecki et al. �15�.

We will consider the following setup that allows for in-
troducing the relevant notions. Consider a classical bipartite
state for a system with parties a and b, which is mathemati-
cally represented by a joint probability distribution pjk with j
and k indexing the measurement outcomes of parties a and b,
respectively. Thus the marginal probabilities for parties a and
b are pj

a
ª�kpjk and pk

b
ª� jpjk, respectively. Let H�¯� be

the Shannon entropy functional, e.g., H�p�ª−� jkpjk log2pjk.
The classical mutual information is defined as �16,17�

I�p� ª H�pa� + H�pb� − H�p� , �1�

which may be rewritten as

I�p� = H�pa� − H��p�pb� , �2�

where

H��p�pb� ª H�p� − H�pb� = − �
jk

pjk log2p�j�k �3�

is the conditional entropy, while

p�j�k ª
pjk

pk
b �4�

is the conditional probability distribution given the marginal
pb.

Now consider quantum extensions of the above scenario.
The classical probability distributions are replaced by density
operators acting on a composite Hilbert space and the sum-
mation is replaced by the trace. Thus a bipartite density op-
erator � shared by parties a and b plays the role of a joint
probability p, while the marginal states �reduced density op-
erators� �a=trb � and �b=tra� �partial trace� play the role of
the marginal probabilities pa and pb, respectively. The Shan-
non entropy functional is replaced by the quantum entropy
�von Neumann entropy� �18,19�*luosl@amt.ac.cn
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S��� ª − tr � log2� . �5�

With these substitutions, the aim is to generalize the classical
mutual information into the quantum scenario and investi-
gate its consequences and implications.

The first natural quantum extension is of course the quan-
tum mutual information

I��� ª S��a� + S��b� − S��� �6�

=S��a� − S�����b� , �7�

which can be considered as a direct formal generalization of
either Eq. �1� or Eq. �2�, with the quantum conditional en-
tropy being defined as

S�����b� ª S��� − S��b� , �8�

which in turn is a formal generalization of the classical con-
ditional entropy defined by Eq. �3�. The quantum mutual
information has fundamental physical significance, and is
usually used as a measure of total correlations �19–26�. See
Refs. �24,25� for two recent operational justifications and
Ref. �26� for a historical review.

In order to reveal the quantum nature of correlations, Ol-
liver and Zurek considered another route of generalizing the
classical mutual information by use of a measurement-based
conditional density operator �12�. Here a measurement is al-
ways understood to be of von Neumann type which consists
of a set of one-dimensional projectors that sum up to the
identity. Let �Bk� be such a measurement performed locally
only on party b, then the quantum state, conditioned on the
measurement outcome labeled by k, changes to

�k =
1

pk
�I � Bk���I � Bk� �9�

with probability pk=tr�I � Bk���I � Bk�. Here I is the identity
operator for party a. Clearly, �k may be considered as a con-
ditional density operator �conditioned on the measurement
outcome labeled by k�, which is a formal quantum generali-
zation of the classical conditional probability distribution p�·�k
defined by Eq. �4�. With this conditional density operator, an
alternative variant of quantum conditional entropy �with re-
spect to the measurement �Bk�� is defined as

S�����Bk�� ª �
k

pkS��k� , �10�

and furthermore, a variant of quantum mutual information
�based on the measurement �Bk�� may be defined as

I�����Bk�� ª S��a� − S�����Bk�� , �11�

which is intuitively motivated by the classical Eq. �2�. The
quantity

C��� ª sup
�Bk�

I�����Bk�� �12�

is interpreted, implicitly by Olliver and Zurek �12� and ex-
plicitly by Henderson and Vedral �14�, as a measure of clas-
sical correlations. See Refs. �12,14,27� for further explana-
tions.

Now, we have two quantum analogs of the classical mu-
tual information: The original quantum mutual information
I���, and the measurement-induced quantum mutual infor-
mation C���. The difference

Q��� ª I��� − C��� �13�

is the so-called quantum discord, and is interpreted as a mea-
sure of quantum correlations by Olliver and Zurek �12�. It
can be shown that the quantum discord is always non-
negative by expressing mutual information in terms of quan-
tum relative entropy and invoking the monotonicity property
of the latter �18,19�.

Due to the complicated optimization involved, it is usu-
ally intractable to evaluate the quantum discord for generic
cases. The purpose of this article is to evaluate the quantum
discord analytically for a certain family of two-qubit states,
and investigate the comparative relations between the total,
quantum, and classical correlations, as measured by the
quantum mutual information, the quantum discord, and the
quantity defined in Eq. �12�, respectively, for some specific
two-qubit states. It is explicitly shown that it is not the case
that for all states the classical correlations �defined by Eq.
�12�� are greater than or equal to the quantum correlations
�defined by Eq. �13��. Thus states exist that have greater
quantum correlations than classical correlations. Last, the
quantum discord is compared to the entanglement of forma-
tion �which is a specific measure of entanglement� for some
specific two-qubit states. This comparison shows that the
quantum discord can be larger than the entanglement of for-
mation for some states, whereas it can be smaller for other
states. Thus, these measures of correlations are not only
quantitatively but also qualitatively different.

The remainder of the article is arranged as follows. In
Sec. II, we derive the analytical expressions of the quantum
discord for a large family of two-qubit states, and in Sec. III,
we compare various correlation measures based on the quan-
tum mutual information and the quantum discord. We also
compare the quantum discord and the entanglement of for-
mation. Finally, Sec. IV is devoted to the summary.

II. TWO-QUBIT SYSTEMS

Pairs of two-level systems, e.g., two-qubit systems, are
primary building blocks for encoding correlations via quan-
tum systems �28�. Consider a two-qubit system with Hilbert
space C2 � C2 and computational base ��00	 , �01	 , �10	 , �11	�.
Any state for such a system may be parametrized as �28�

� =
1

4

I + u��� � I + I � v��� + �

j,k=1

3

wjk� j � �k� . �14�

Here I is the identity operator on the composite system or on
the marginal systems, depending on the context, ��
= ��1 ,�2 ,�3� with �1 ,�2 ,�3 being the Pauli spin observables
in the x ,y ,z directions. u� = �u1 ,u2 ,u3�, v� = �v1 ,v2 ,v3��R3,
u��� =u1�1+u2�2+u3�3, etc., and wjk are real numbers. Ac-
cording to the singular value decomposition theorem in lin-
ear algebras, the matrix W= �wjk� can always be written as
W=Oa diag�c1 ,c2 ,c3�Ob or, equivalently, as
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�
j,k=1

3

Ojm
a wjkOnk

b = �mncm. �15�

Here Oa= �Ojm
a � and Ob= �Onk

b � are orthogonal matrices in
O�3�. Moreover, there always exist unitary matrices U and V
in U�2� such that U� jU

†=�m=1
3 Ojm

a �m and V�kV
†

=�n=1
3 Onk

b �n �28�. Letting �� =u�Oa, �� =v��Ob�T �T denotes
transposition� and noting that

U � V
 �
j,k=1

3

wjk� j � �k�U†
� V†

= �
j,k=1

3

wjk�U� jU
†� � �V�kV

†�

= �
m,n=1

3 
 �
j,k=1

3

wjkOjm
a Onk

b ��m � �n = �
m=1

3

cm�m � �m,

�16�

one sees that the state � is locally unitary equivalent to

� =
1

4

I + a��� � I + I � b��� + �

j=1

3

cj� j � � j� . �17�

That is, a general two-qubit state can always be reduced, up
to local unitary equivalence, to a state in the above form. For
analytical simplicity and since we are only interested in the
correlations in the bipartite states, we will only consider
those states with the maximally mixed marginals, that is, we
will only consider the following further simplified family of
states:

� =
1

4

I + �

j=1

3

cj� j � � j� , �18�

where cj are real constants satisfying certain constraints such
that � is a well defined density operator �see below�. Our
primary aim is to evaluate the quantum discord Q��� defined
by Eq. �13�, which in turn requires us to evaluate I��� de-
fined by Eq. �6� and C��� defined by Eq. �12�.

First, we evaluate the total correlations I���. It can be
directly checked that � have eigenvalues

	0 =
1

4
�1 − c1 − c2 − c3� , �19�

	1 =
1

4
�1 − c1 + c2 + c3� , �20�

	2 =
1

4
�1 + c1 − c2 + c3� , �21�

	3 =
1

4
�1 + c1 + c2 − c3� , �22�

from which we readily see the constraints of the coefficients
cj are such that 	l� �0,1� for l=0,1 ,2 ,3. The marginal

states of � are �a= I /2 and �b= I /2. Consequently, the quan-
tum mutual information in � is

I��� = 2 + �
l=0

3

	l log2	l. �23�

Next, we evaluate the classical correlations C���. Let

�
k = �k	�k�:k = 0,1� �24�

be the local measurement for party b along the computational
base ��k	�; then any von Neumann measurement for party b
can be written as

�Bk = V
kV
†:k = 0,1� �25�

for some unitary V�U�2�. But any unitary V can be written,
up to a constant phase, as

V = tI + iy��� �26�

with t�R, y� = �y1 ,y2 ,y3��R3, and

t2 + y1
2 + y2

2 + y3
2 = 1. �27�

After the measurement �Bk�, the state � will change to the
ensemble ��k , pk� with

�k ª
1

pk
�I � Bk���I � Bk� �28�

and pk=tr�I � Bk���I � Bk�. We need to evaluate �k and pk.
For this purpose, we write

pk�k = �I � Bk���I � Bk� = �I � �V
kV
†����I � �V
kV

†��

= �I � V��I � 
k��I � V†���I � V��I � 
k��I � V†�

=
1

4
�I � V��I � 
k�
I + �

j=1

3

cj� j � �V†� jV��
��I � 
k��I � V†� . �29�

By use of the relations

V†�1V = �t2 + y1
2 − y2

2 − y3
2��1

+ 2�ty3 + y1y2��2 + 2�− ty2 + y1y3��3, �30�

V†�2V = 2�− ty3 + y1y2��1 + �t2 + y2
2 − y1

2 − y3
2��2

+ 2�ty1 + y2y3��3, �31�

V†�3V = 2�ty2 + y1y3��1 + 2�− ty1 + y2y3��2

+ �t2 + y3
2 − y1

2 − y2
2��3, �32�

and 
0�3
0=
0, 
1�3
1=−
1, 
 j�k
 j =0 for j=0,1, k
=1,2, we obtain p0= p1= 1

2 and

�0 =
1

2
�I + c1z1�1 + c2z2�2 + c3z3�3� � �V
0V†� , �33�

�1 =
1

2
�I − c1z1�1 − c2z2�2 − c3z3�3� � �V
1V†� , �34�

where
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z1 ª 2�− ty2 + y1y3� , �35�

z2 ª 2�ty1 + y2y3� , �36�

z3 ª t2 + y3
2 − y1

2 − y2
2. �37�

Let

� ª
�c1z1�2 + �c2z2�2 + �c3z3�2, �38�

which depends on the measurement �Bk� or, equivalently, on
V. Then

S��0� = S��1� = −
1 − �

2
log2

1 − �

2
−

1 + �

2
log2

1 + �

2
.

�39�

Therefore, by defining Eq. �10�,

S�����Bk�� = p0S��0� + p1S��1�

= −
1 − �

2
log2

1 − �

2
−

1 + �

2
log2

1 + �

2
, �40�

and by defining Eq. �11�,

I�����Bk�� = S��a� − S�����Bk��

= 1 +
1 − �

2
log2

1 − �

2
+

1 + �

2
log2

1 + �

2

=
1 − �

2
log2�1 − �� +

1 + �

2
log2�1 + �� . �41�

It can be directly verified that z1
2+z2

2+z3
2=1. Let us put

c ª max��c1�, �c2�, �c3�� , �42�

then

�  �c�2��z1�2 + �z2�2 + �z3�2� = c , �43�

and the equality can be readily attained by appropriate choice
of t ,yj. More specifically, �1� if c= �c1�, then the equality is
achieved by taking �z1�=1, z2=z3=0, e.g., �t�= �y2�= 1

2
, y1

=y3=0; �2� if c= �c2�, then the equality is achieved by taking
�z2�=1, z1=z3=0, e.g., �t�= �y1�= 1

2
, y2=y3=0; �3� if c= �c3�,

then the equality is achieved by taking �z3�=1, z1=z2=0, e.g.,
y1=y2=0.

Therefore, we see that

sup
�Bk�

� = sup
V

� = c . �44�

Now by defining Eq. �12�, we obtain

C��� = sup
�Bk�

I�����Bk�� =
1 − c

2
log2�1 − c� +

1 + c

2
log2�1 + c� .

�45�

Finally, from Eqs. �23� and �45�, we obtain the quantum
discord

Q��� = I��� − C���

=
1

4
��1 − c1 − c2 − c3�log2�1 − c1 − c2 − c3�

+ �1 − c1 + c2 + c3�log2�1 − c1 + c2 + c3�

+ �1 + c1 − c2 + c3�log2�1 + c1 − c2 + c3�

+ �1 + c1 + c2 − c3�log2�1 + c1 + c2 − c3��

−
1 − c

2
log2�1 − c� −

1 + c

2
log2�1 + c� . �46�

It will be interesting to consider the particular case c1
=c2=c3=−c. In this instance, the state � turns out to be the
Werner state

� = �1 − c�
I

4
+ c��−	��−�, c � �0,1� �47�

with ��−	= 1
2

��01	− �10	�. According to the preceding calcu-
lations, we have

I��� =
3�1 − c�

4
log2�1 − c� +

1 + 3c

4
log2�1 + 3c� , �48�

C��� =
1 − c

2
log2�1 − c� +

1 + c

2
log2�1 + c� , �49�

and the quantum discord

Q��� =
1 − c

4
log2�1 − c� −

1 + c

2
log2�1 + c�

+
1 + 3c

4
log2�1 + 3c� . �50�

The graph of Q��� versus c will be plotted in Fig. 2.

III. COMPARISONS

Recall that the quantum mutual information I��� is a
measure of total correlations, while C��� and the quantum
discord Q��� are interpreted as measures of classical and
quantum correlations, respectively �12,14�. The natural ques-
tion arises as to the relationships among these three correla-
tion measures.

Let us first consider some particular cases. In the extreme
case of the maximally entangled Bell state �= ��−	��−�, we
have

I��� = 2, C��� = 1, Q��� = 1. �51�

Thus in this case, the total correlations are equally divided
into the classical and quantum correlations. This equal dis-
tribution still holds for any pure state, which can be directly
proved by means of the Schmidt decomposition. More pre-
cisely, for any bipartite pure state �= ��	��� in any compos-
ite system �not necessarily a two-qubit system�, if its
Schmidt decomposition is written as ��	=� j� j�j	 � �j	, and
S=−� j�� j�2log2�� j�2 is the reduced von Neumann entropy,
then
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I��� = 2S, C��� = S, Q��� = S . �52�

On the other extreme, consider the case when � can be writ-
ten as

� = �
jk

pjk
 j
a

� 
k
b, �53�

where pª �pjk� is a bivariate probability distribution, and
�
 j

a� and �
k
b� are sets of orthogonal projections for parties a

and b, respectively. Clearly, this state is essentially an opera-
tor formalism of the classical probability distribution p with-
out any quantum nature �that is, p and � defined by Eq. �53�
are in one to one correspondence�, and one expects

I��� = I�p�, C��� = I�p�, Q��� = 0. �54�

This is indeed the case as can be directly checked. Thus, in
this instance, all correlations are classical, and there are no
quantum correlations.

Based on the above intuitive observations �that is, corre-
lations in any maximally entangled Bell states are equally
divided into classical and quantum parts, while all correla-
tions in any classical bivariate probability distribution are of
a classical nature, and in both cases, classical correlations are
not less than quantum correlations�, one may ask whether
C����Q��� holds true for all �. In fact, this is in general
false, as demonstrated by the numerical results in Fig. 1. To
gain an intuitive feeling of the relationships between C���
and Q���, we depict the graph of

D��� = C��� − Q��� �55�

for the states defined by Eq. �18� for some specified values of
c1 ,c2 ,c3 in Fig. 1. Without loss of generality, we may as-
sume that c=−c3, and consider D��� as a function of c1 ,c2.
Note that c1 ,c2 ,c3 are constrained such that the eigenvalues
	 j � �0,1�.

We now further compare the quantum discord with the
entanglement of formation which is customarily used as a

measure of entanglement �2–4�. Recall that the entanglement
of formation of � is defined as

E��� ª inf �
l

plS�tra��l	��l�� , �56�

where the infimum is taken over all pure state ensemble re-
alizations of � :�=�lpl��l	��l�. An elegant analytic formula
for E��� when � is a two-qubit state is ingeniously derived by
Wootters �4,29�:

E��� = H
1 + 1 − �2

2
� , �57�

where

� ª max�0,�1 − �2 − �3 − �4� �58�

and �1��2��3��4 are the square root of eigenvalues of ��̃
with �̃=�2 � �2���2 � �2, while �� is the complex conjugate
of � in the computational base ��00	 , �01	 , �10	 , �11	�.

Now for � defined by Eq. �18�, it is readily checked that
�̃=�. Consider the particular case c3c2c10; then

� = max�0,−
1 + c1 + c2 + c3

2
�; �59�

and E��� is given by Eq. �57�. One wants to inquire the
relationship between Q��� and E���, in particular, one wants
to know whether they give the same qualitative characteriza-
tions of quantum correlations.

To address this issue, let us consider � defined by Eq. �18�
with c1=c2=c3=−c, i.e., the Werner states. We depict the
graphs of Q��� and E��� versus c� �0,1� in Fig. 2. We see
that the quantum discord is always positive except for the
trivial cases �pure or maximally mixed�, and in particular it is
positive for any nondegenerate separable Werner states.
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FIG. 1. �Color online� Graph of D���=Q���−C��� versus
c1 ,c2� �−0.1,0.1� for � defined by Eq. �18�, with c=−c3=0.1. Here
we see clearly that Q��� can be larger, as well as smaller, than C���.
The unit of Q��� is bit.
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FIG. 2. �Color online� Graphs of Q��� and E��� versus c for the
Werner state �= �1−c� I

4 +c��−	��−�. Here we see that Q��� is
smaller than E��� when c� �0.879,1�. The unit of Q��� and E��� is
bit.
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More interestingly, we observe that while the quantum dis-
cord dominates the entanglement of formation when c
� �0,0.879�, the dominance is reversed when c� �0.879,1�.
Consequently, there are no simple dominance relation be-
tween the quantum discord and the entanglement of forma-
tion, and they are incomparable in the sense that there exist
states �1 and �2 such that Q��1��E��1�, while Q��2�
�E��2�. They are different not only quantitatively, but also
qualitatively.

IV. SUMMARY

We have evaluated the quantum discord for a family of
two-qubit states, and obtained analytical formulas. The re-
sults are used to illustrate various comparative relations

among the total, quantum, and classical correlations. In par-
ticular, we have demonstrated that there are no simple domi-
nance relations between the quantum and classical correla-
tions in terms of the quantum discord, although both are
entropic measures with intuitive operational meaning. Our
results corroborate the general viewpoint that the quantum
nature of correlations is very intricate and subtle, and many
different quantities are needed in order to capture its various
aspects.
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