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Broadcasting of continuous-variable entanglement
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We present an example for broadcasting of the entanglement of a two-mode squeezed state of the electro-
magnetic field shared by two distant parties into two nonlocal bipartite entangled states. Using the technique of
covariance matrices we demonstrate the entanglement between the nonlocal output modes and the separability
of the local output modes. We find the range of values for the squeezing parameter and the amplifier phase for
which broadcasting of continuous-variable entanglement can be implemented for physical states.
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I. INTRODUCTION

Quantum entanglement is now recognized as a powerful
resource in communication and computation protocols. The
first nontrivial consequence of entanglement on quantum on-
tology was noticed many years ago within the context of
continuous-variable systems [1]. In recent times there has
been a rapid development of the theory of entanglement per-
taining to infinite-dimensional Hilbert spaces [2]. Several in-
teresting applications of storage and distribution of
continuous-variable information are being formulated [3].

Unlike classical correlations, quantum entanglement can-
not be freely shared by several systems. An important issue
is that of broadcasting of entanglement, viz., whether the
entanglement shared by two parties can be transmitted to two
less entangled states by local operations. Such a procedure, if
implemented practically, could have applications in informa-
tion processing tasks. For example, as is well known in the
case of quantum teleportation, the quantum channel that is an
entangled state is lost forever once the state is teleported.
However, if one were able to produce two copies of the
quantum channel, then it could be possible to perform two
different quantum informational tasks with a somewhat re-
duced amount of entanglement in both the channels. The
resources involved in other methods of producing two simi-
larly entangled pairs might be comparitively higher.

The process of broadcasting involves copying of local in-
formation. Since exact cloning of an unknown quantum state
is impossible [4], it is expected for any scheme of broadcast-
ing to be limited to specific input states that lead to optimal
fidelity for the output states. For the case of discrete vari-
ables, it is known that imperfect broadcasting of entangle-
ment is possible for restricted input states [5]. No scheme has
yet been proposed however, for the broadcasting of
continuous-variable entanglement.

The inexact copying of local continuous-variable informa-
tion has nonetheless, been performed in several works. Vari-
ous schemes for duplication of coherent states with optimal
fidelity and economical means have been suggested using
cloning machines comprising of networks of linear amplifi-
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ers and beam splitters [6,7]. The idea of telecloning has been
extended for continuous variables [8] where clones of an
unknown state are generated locally, and then teleported to a
distant party by means of previously shared entanglement.
Further, by employing a number of input copies it has been
shown how superbroadcasting, i.e., the purification of output
clones, can be achieved for continuous-variable mixed states
too [9].

None of the above studies are about broadcasting of
continuous-variable entanglement though, and all of them
involve imperfect cloning of unentangled local modes. It is
thus all the more relevant to investigate whether such ideas
of copying local information can be extended for the purpose
of mapping entangled and nonlocal states of continuous vari-
ables. To this end we formulate a scheme for transmission of
a bipartite entangled two-mode squeezed state into a pair of
nonlocal but again bipartite and less entangled states. We
employ one cloner [6] at each mode locally, which is com-
prised of a linear amplifier and a beam splitter available with
each party.

II. LOCAL CLONING MACHINE

We begin by describing in terms of the covariance matrix
(CM) [10] approach the process of imperfect copying of lo-
cal continuous-variable information through the cloning ma-
chine proposed by Braunstein et al. [6]. A single-mode
squeezed vacuum state of the electromagnetic field is repre-
sented by the squeezing transformation operator acting on

l() <O _r)9 ()
SI =

where r is the squeezing parameter (r>0). The (CM) corre-
sponding to the single-mode (say, i) squeezed vacuum state
is given by

’ e2r 0
o =SS (nN=\ " o 2)

The cloning of this state proceeds as follows. First, a linear
amplifier [10] mediates the interaction between the mode i
and an ancilla (say, a) prepared in the vacuum state, which is
represented by the linear transformation
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Aia(r’ d)) = [Sia(r’ d’)] ' [Sl ® Ia] (3)

with ¢ being the phase of the amplifier. After this interaction
the squeezed state mode together with the ancilla mode and
another blank state mode (say b) are incident on a three-
mode 50:50 beam splitter B;,, which we define through a
symplectic transformation as

iz 0 00 iz o
0o Jiiz 00 o 12
5 0O 0 10 0 0 @
O 0 01 0 0
Viz 0 00 —\12 0
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The above beam splitter is defined in such a way that it does
not affect the ancilla mode. The total cloning operation is
thus represented by the transformation

Tiab(r’ ¢) = [Biab] : [-Aia ® Ib] (5)
with the corresponding CM given by
Tiab = Tiab(r? d)) T;'rab(r’ ¢) . (6)

This procedure leads to symmetric cloning resulting in the
two cloned output modes i and b.

The fidelity of the two clones can be evaluated through
the relation [11]

F= 1 )

= =,
VDet(aj, + 0y) + 6— VO

where oy, is given by Eq. (2), and o, is obtained by tracing
out the ancilla mode from the CM in Eq. (6), i.e.,

_(P 0) q
O-out_ 0 M ()

with  P=[e*(c—hs)>+k>s>+1]/2, M=[e ¥ (c+hs)>+k*s*
+1]/2, and 6=4(Det[oy,]—1/4)(Det[ oy, ]—1/4), where

c=cosh(2r), s=sinh(2r), h=cos(2¢), k=sin(2¢).

)

The fidelity for the above phase sensitive cloning machine is
thus given by

1
F= .
V(P +e*) (M +e™2) + 3(PM — 1/4) — 3(PM — 1/4)
(10)
If the phase of the amplifier is set to ¢=0, the fidelity be-
comes F=2/(\8c*+12c+5—-3+6¢). Since the fidelity of
the clones depend on the input state, the cloning is said to be

state dependent. It follows that as r—, F—0, and as r
—0, F—1.

III. PROTOCOL FOR BROADCASTING ENTANGLEMENT

Let us now consider a continuous-variable entangled state
(an entangled state of the electromagnetic field) which is
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shared by two parties located far apart at sites / and J, re-
spectively, and is represented by the generic two-mode (i and
J) squeezed state with one mode at each end. The two-mode
squeezed vacuum state is obtained by applying the transfor-
mation [10]

T;(r)=B;j(1/2) - [Si(r) & S;(r)] (11)

on two uncorrelated squeezed vacuum modes [S;,(r) and
S,(r)] given by Eq. (1). B;;(1/2) denotes a balanced 50:50
beam splitter with the matrix form

Viz o iz oo
— —
B.(1/2) W0 e (12)
P iz o0 iz o ]
0 \e’% 0 - \’%

The CM corresponding to the two-mode squeezed state is
given by

c 0 s O
; c 0 -

o =TyTn=| o (13)
0 -s 0 ¢

The two-mode squeezed vacuum state is the quantum optical
representative for bipartite continuous-variable entangle-
ment. In the Heisenberg picture the quadrature operators of
the two-mode squeezed state are given by

R e’)ﬁgo) +e 70 R e"ﬁl@ + e’ﬁ(.o)
X = —1—, pi= —t -7 s
l \"E ' \5
i er)eEO) _ e—r)e(_()) i e—rpAl(O) _ erﬁ('O) (14)
X:= —L, p L= — "I N
J \5 J \E

where the superscript (0) denotes the initial vacuum modes,
the operators X and p represent the electric quadrature ampli-
tudes (the real and imaginary parts, respectively, of the
mode’s annihilation operator).

Our purpose here is to broadcast the above two-mode
squeezed state to two less entangled two-mode squeezed
states. For broadcasting of the above state we apply local
cloning machines on the two individual modes of the en-
tangled bipartite state, located at the sites / and J, respec-
tively. Our scheme for broadcasting proceeds as follows (Fig.
1). The local cloner acting on the mode at site I copies the
information available locally onto two modes (i and b). Simi-
larly, the cloner acting on the mode at site J copies informa-
tion onto two modes (j and b'). Note that since the two
modes on which the cloners act at sites / and J, respectively,
are the constituents of an initially entangled bipartite state,
the forms of the output local clones will be different in gen-
eral, from the outputs of the cloning for a single-mode
squeezed state given by Eq. (8). More importantly, the prop-
erties of entanglement between the output states are now
dependent on the initial entangled state to be broadcasted.

The definition of successful imperfect broadcasting [5] of
the entangled two-mode squeezed state (13) can be elabo-
rated as follows. The initial entangled state is broadcasted if
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FIG. 1. Schematic diagram for the broadcasting protocol. Alice
and Bob have the modes i and j, respectively, which are entangled.
Alice inputs her mode 7 and an ancilla mode a on the linear ampli-
fier LA1. The output mode from LA1 and a blank mode b are made
to fall on a beam splitter and the resultant modes 1 and 2 emerge
from it. Bob uses a similar setup (cloning machine) on his side to
input his mode j and obtain the output modes 3 and 4. It is shown
that the entanglement between i and j is broadcasted to the en-
tanglement between the nonlocal modes 1 and 3 (and 2 and 4), but
the local pairs 1 and 2 (and 3 and 4) form separable states for a
range of values of the squeezing parameter r.

both the nonlocal pairs of output modes (i and b’ on the one
hand), and (j and b on the other hand) are entangled. Further,
since our task is to create output states that are bipartite
entangled, the local pairs of output modes (i and b at site I)
and (j and b’ at site J) should be separable, simultaneously.
Our aim is to verify whether the above conditions are satis-
fied for the output states when the two cloners act at their
respective sites. To this end, we formulate this bilocal clon-
ing procedure using the CM approach [10].

The broadcasting operation is implemented through an
ancilla mode, a linear amplifier and a beam splitter located at
both sites. Thus, after introducing the ancillas a and a’ (at
the ends I and J, respectively), the CM of the joint two-mode
squeezed state with the ancillas takes the form

c 0 00s 000
0 ¢c 000 —s 00
00 1000 00
00 0100 00

e M= 0 00 0 00 (15
0-5s000 ¢ 00
00 000 0 10
00 0000 01

Next, both parties apply linear amplifiers on their respective
modes and ancillas. The local amplifiers can be jointly rep-
resented as

A0
A(r,¢)=< O‘ ,42)’ (16)

where the A; are given by [10]
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c—hs 0 ks 0

A 0 c+hs 0 — ks (17)
Tl ks 0 c+hs O
0 —ks 0 c—hs

for i=1,2. After interaction with the local amplifiers, the CM
of the two modes with their ancillas is transformed to

Ui’f{ia’(r’ ¢) = A0 (r, $)A. (18)

Thereafter, both parties introduce their respective blank
modes (b and b') on which the information of the original
modes is to be copied. Both parties now have three local
modes each, i.e., original, ancilla, and blank mode, which
fall on a 50:50 beam splitter defined through a symplectic
transformation in Eq. (4), at each end. The two local beam
splitters can be represented jointly by

B (Biab 0 ) (19)
- O Bja’b’

and the resultant CM at the end of the cloning processes at
both the ends is given by
” Y

O-iabja’b’ =B O-iabja’b’B' (20)
Using the above CM we can now check if the criteria for
successful broadcasting are satisfied. In order to verify the
entanglement of the nonlocal pairs of modes shared by the
two sides, we obtain the reduced CMs corresponding to these
modes, which (after tracing out the remaining modes from

Trpjarpr) AT€ given by
O_?Z?,nlocal(r’ (ﬁ) — o_j}i?nlocal( r, ¢)
G+1 E
0 — 0
2 2
H+1 -F
0 0 -
2 2
| E G+1 ’
— 0 0
2 2
-F H+1
0 — 0
2 2

21

where E=s(c—hs)?, G=(c—hs)*c+ks*, and H=(c+hs)*c
+ks?.

In order to describe a physical state a CM ¢ must satisfy
the uncertainty principle

oc+iJ=0 (22)

_(0 1) (0 1) ’
T=o1 o)1 o) 29

The uncertainty principle is equivalent to the following con-
ditions [10,13]:

with
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FIG. 2. (Color online) Contours representing the conditions for
broadcasting (i) entanglement of the nonlocal states (marked with
squares), (ii) physicality of the output local and nonlocal states
(marked with dots), and (iii) separability of the output local modes
(remaining boundaries of the shaded regions) are plotted in the r-¢
plane. All the conditions for broadcasting are satisfied in the dark
regions.

VE >1, (24)

where v_ refers to the symplectic eigenvalue of o. Note that
for the CM (21), the above conditions imply

)\i>0,

=[G+ 1)H+1)-E2 = E(G-H))4=1, (25)

where \; are the standard eigenvalues, and the * sign is for
the condition on the symplectic eigenvalues referring to (H
—G) being positive or negative, respectively.

We next obtain the partial transpose G *"'(r, ¢) of the
CM (21) and compute its symplectic eigenvalues. The con-
dition for the entanglement of the nonlocal modes is given
by

P=[(G+)H+1)+E—EG+H+2))4<1. (26)

Since the above eigenvalues are functions of the squeezing
parameter r and the amplifier phase ¢, the requirements for
entanglement and physicality impose restrictions on the al-
lowed ranges for these parameters for which broadcasting
can be implemented.

Our remaining task for implementing broadcasting is to
find the conditions under which the local output modes turn
out to be separable. After tracing out the ancilla mode on site
I and also all the modes on the site J from o7 ..., the
reduced CM representing the system of the two clones on
site I (which is also equal to the corresponding reduced CM
on the site J) is given by

FIG. 3. (Color online) The fidelity of broadcasting F is plotted
versus the squeezing r (x axis), and the amplifier phase ¢ (y axis).

oy, ) = o (r, @)

G+1 G-1
0 —_— 0
2 2
H+1 H-1
0 0 —_—
2 2
= . (27)
G-1 G+1
—_— 0 0
2 2
H-1 H+1
0 —_— 0
2 2

The condition for separability of the modes can be obtained
from the generalization of the positivity of partial transposi-
tion criterion for continuous-variable systems [12]. For a
two-mode state represented by the CM (27), the necessary
and sufficient condition for the separability of these modes
[10,13] reduces to

G=1 (H=1) (28)

for G<H (H<G). For local modes to be physical, one must
satisfy both the conditions given by Eq. (24), which can be
combined with the above separability condition to lead to the
requirement of the relation

GH=1 (29)

being satisfied.

We have thus identified the four conditions: (i) physicality
of nonlocal output modes (v»=1 and \;>0); (ii) entangle-
ment of nonlocal modes (7*<1); (iii) physicality of local
output modes (GH=1), and (iv) separability of local modes
[G=1 (H=1) for G<H (H<G)], for implementing
broadcasting. We display in Fig. 2, the contours representing
these conditions which demarcate the allowed regions in the
space of the squeezing parameter r and the amplifier phase
¢. One sees that broadcasting is possible (dark shaded re-
gions in the figure) for several values of the above two pa-
rameters.

We have shown that broadcasting is possible in our
scheme for various combinations of input states and ampli-
fier phases. Finally we compute the fidelity of the broad-
casted states, i.e., the entangled nonlocal states (21). The
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fidelity of broadcasting, Fj is obtained through Eq. (7), in
which we substitute the expressions for oy, and o, from
Egs. (13) and (21), respectively. In Fig. 3 we display Fy as a
function of the squeezing parameter r and the amplifier phase
¢. One sees that this scheme of ours yields a phase- and
state-dependent broadcasting fidelity. From the obtained ex-
pression for Fp it is possible to see that for r— o, Fp—0,
and for r—0, Fz—0.36.

IV. CONCLUSIONS

To summarize, we have presented an example for broad-
casting of continuous-variable entanglement. We consider an
initial two-mode squeezed state of the electromagnetic field
which is shared by two distant parties. Both parties apply
local cloning machines [6] on their respective modes involv-
ing an ancilla state, a linear amplifier, and a beam splitter,
which yield two symmetric cloned modes at each end. The
initial state is transmitted into a pair of bipartite but less
entangled states that is finally shared by the two distant par-
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ties. Using the covariance matrix formalism [10] we have
shown the entanglement between the pair of nonlocal output
modes, as well as the separability of the local output modes.
Our protocol for imperfect broadcasting of continuous-
variable entanglement can be implemented for various com-
binations of the squeezing parameter and the phase of the
amplifiers that yield physical output states.

We conclude by noting some possible related directions of
study. Other cloning protocols [7] could be investigated for
the purpose of alleviating the state dependence or phase sen-
sitivity of the present scheme and increasing fidelity of
broadcasting. Further, the possibility of generating three-
mode quantum channels through local operations [ 14] useful
for communications could be explored with continuous vari-
ables using our scheme. Finally, it may be noted that the first
experimental demonstration of continuous-variable cloning
has been reported recently [15], and with further develop-
ment it could be feasible to experimentally broadcast en-
tangled states of continuous variables too.
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